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Abstract: Odometry based on Inertial, Dynamic and Kinematic data (IDK-Odometry) for autonomous cars has been
widely used to compute the prior estimation of Bayesian localization systems which fuse other sensors such
as camera, RADAR or LIDAR. IDK-Odometry also gives the vehicle information by way of emergency when
other methods are not available. In this work, we propose the use of deep neural networks to estimate the
relative pose of the car given two timestamps of inertial-dynamic-kinematic data. We show that a neural
network can find a solution to the optimization problem employing an approximation of the Vehicle Slip
Angle (VSA). We compared our results to an IDK-Odometry system based on an Unscented Kalman Filter
and Ackermann-wheel odometry. To train and test the network, we used a dataset which consists of ten
driven trajectories with our autonomous car. Moreover, we successfully improved the results of the network
employing collected data with a model autonomous car in order to increase the trajectories with high VSA.

1 INTRODUCTION

Localization is a fundamental requirement for au-
tonomous cars. Vehicles must be able to avoid obsta-
cles by planning safe paths to reach the desired desti-
nation in order to operate autonomously.

Odometry methods based on the kinematics of the
car mechanical linkages like differential Odometry or
Ackermann steering are widely employed in the lit-
erature; some examples are (Valente et al., 2019),
and (Weinstein and Moore, 2010). Those methods
are normally fused with information from an Inertial
Measurement Unit (IMU) which also drifts in time
due to inaccurate bias estimation or integration. Lo-
calization systems which fuse GPS with other sensors
have significant limitations associated with the un-
availability or highly erroneous GPS based position
estimation.

In contrast, the use of vehicle dynamic param-
eters for localization is relatively rare. Wheel pa-
rameters such as rotational velocity or tire force,
commonly are used to develop stabilization con-
trol systems and Advanced Driver Assistance Sys-
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tem (ADAS) through computing Vehicle Slip Angle
(VSA)(Chindamo et al., 2018). Estimating the VSA
of the vehicle to correct odometry is problematic since
it relies on wheel speed readings, if external condi-
tions such as weather, road conditions, tire air pres-
sure, or vehicle weight (due to trunkload or num-
ber of passengers) change the dynamics of the car,
the estimator is unable to know those changes, and it
would lead to big inaccuracies. Parameters such as
variable wheel size, different tire materials, spring ef-
fects due to the suspension system, diverse steering
and traction mechanisms makes it difficult to the esti-
mators achieve the necessary accuracy. Furthermore,
some indirect external agents cause wheel odometry
to be imprecise, for instance, road conditions, driving
habits, weather, variable vehicle weight, components
failure, and wear. Therefore, it is necessary to develop
a system able to learn how the dynamic-kinematic pa-
rameters of the car relate to the road conditions and
user driving mode. We intend to study whether a neu-
ral network is able to find the associations required to
estimate vehicle pose. To investigate if the approach
can adapt to different vehicle parameters, we use a
model car to safely generate data to improve the re-
sults on the full-scale test vehicle.
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2 EMPLOYED PLATFORMS

2.1 Autonomous Vehicle MIG

The autonomous vehicle MIG (short for Made In Ger-
many) is equipped with drive-by-wire technology and
several different sensors (Figure 1). The sensors in-
volved in this paper are the ApplanixTM POS-LV 520
navigation system and the Controller Area Network
(CAN) bus data. The estimation of the vehicle’s po-
sition is obtained from the Applanix navigation sys-
tem. It provides the position and orientation fus-
ing information from the integrated inertial sensors,
a Distance Measuring Indicator (DMI) attached to the
rear left wheel and a differential GPS. The bus pro-
vides useful data related to the status of the car, such
as Wheel speeds, Car speed, Steering wheel sensor,
Wheel Odometry, Brake pedal and Gas pedal.

Figure 1: Overview of the Sensor Positioning on MIG au-
tonomous vehicle.

2.2 Autominy TX1

Autominy, shown in Figure 2, is an autonomous
model vehicle based on a scaled 1:10 RC car chas-
sis, with a complete onboard system supplied with
perception sensors, high computing CPU and GPU
power, as well as LEDs to emulate car lights. The car
runs under Ubuntu 18.04 and ROS melodic (Stanford
Artificial Intelligence Laboratory et al., ). The avail-
able packages allow the car to drive autonomously
and the user to read the Inertial Measurement Unit
(IMU), the wheel velocities, the position of the steer-
ing wheel and the camera images.

Fig. 3a shows a graphic with the measured wheel
velocities while the car is driving in circles. The
mounted sensor is shown in Fig. 3b. We installed a set
of three cameras on the lab ceiling to obtain ground-
truth global localization.

In this work, both the MIG platform and the Au-
tominy were used to develop the localization ap-
proach. The Autominy TX1 is particularly essential
since the wheel odometry network was improved us-
ing the data generated with extreme manoeuvres, and

(a) (b)

Figure 2: Developed (2018) Autominy TX1 version with
odometry research purposes. a) Autominy TX1 on a track
made with black rubber used to achieve aggressive driving
manoeuvres, The ARUCO marker in b) is used to localize
the car on the track.

(a) (b)

Figure 3: A) Wheel Angular Velocities of Autominy TX1.
Front and rear left wheels have a bigger angular velocity
since the car is driving on circles counterclockwise; when
the car stops, velocities drop to zero. b) The Hall sensor
mounted on the car chassis and the magnetic ring installed
on the wheels.

driving manually between the limits of the localiza-
tion set up in the lab.

3 RELATED WORK

The Ackermann approach is derived from the geomet-
rical assumption that the vehicle has a four-bar steer-
ing mechanism and the car moves in perfect circles
which centre I is localized on the rear wheel axis and
in the intersection point of the perpendicular projec-
tions from the pointing wheel direction (see Fig.4).

Moreover, in the models based on Ackermann, the
mathematical approach assumes that the arc on which
the car moves between origins, can be approximated
up to the second-order as ∆ = |OkOk+1|, taking the
following equations to calculate displacement with
Ackermann kinematics derived from Fig.4:

xk+1 = xk +∆cos(θk +ω/2)
yk+1 = yk +∆sin(θk +ω/2)
θk+1 = θk +ω

(1)

Where x,y and θ are the 2D coordinates of the car
in different k instants of time, ∆ is the travelled dis-
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Figure 4: Ackermann steering geometry on a global frame.
I is the instantaneous center of rotation between the car
frames Ok and Ok+1, ∆ is the traveled distance and ρ is the
radius.

Figure 5: Geometry of the car related to the mobile frame O.
Ψ is the Ackermann angle which is referenced on a middle
virtual wheel, ρ is the radius, e is the half track and L the
wheel-base of the vehicle.

tance, and ω is the angle between coordinate systems
of the car on times k and k+1 related to the instanta-
neous centre of rotation.

In order to calculate ∆ and ω, data obtained from
the ABS should be used. In the most basic approach,
the differential odometry can be calculated from the
rear wheel displacement as follows:

∆ =
δRR +δRL

2
ω =

δRR−δRL

2e
(2)

where δ is the linear displacement of the wheel in
meters, the sub-indexes RR and RL correspond to the
Rear Right wheel and the Rear Left wheel and e is the
half-track of the car.

However, tire slip makes differential odometry not
adequate for practical use. The Ackermann angle ψ is
usually used to improve the results. Add the circle
movement constraint, the radius ρ can be calculated
from Fig. 5 as follows:

ρ =
δRL

ω
+ e ρ =

δRR

ω
− e (3)

Ackermann angle is then included on the equation
list with the radius or the displacement:

tan(Ψ) =
L
ρ

tan(Ψ) = L
ω

∆
(4)

were L is the wheel-base distance of the car. It
is theoretically possible to compute an Ackermann
odometry using the steering angle sensor of the car to
calculate ω with Eq. (4) and integrating the velocity
measurements of each wheel from the ABS sensors to
calculate ∆ with Eq. (2).

In a vehicle the effective half-track e and the
wheel-base L are not constant due to external distur-
bances like the suspension system, the wheel contact
area with the floor which modifies the tire force and
wear of the materials. Additionally, in practice, the
Ackermann steering geometry of the mechanism can
be changed to affect the dynamic settings of the car. In
order to measure the Ackermann angle, the Steering
Wheel Angle Sensor (SAS) of the car must be mapped
between the wheel position and the wheel Ackermann
angle.

The relationship between the steering sensor and
the Ackermann angle can be approximated using the
SAS ((Fejes, 2016), (Kallasi et al., 2017)). The ap-
proximation function holds just for a known work-
ing acceleration and velocity threshold, defined by the
user.

Notwithstanding that the mathematical structure
of the Ackermann principle is simple, the tire force
is not taken into account. It is necessary since the
wheels usually do not move on their heading direc-
tion. Therefore, a more precise concept of odometry
must then take into account the Vehicle Slip Angle
(VSA). VSA, also known as the drifting angle, is the
angle between the vehicle longitudinal axis and the
direction of travel, taking the centre of gravity as a
reference ((Chindamo et al., 2018)). The VSA is cal-
culated as follows:

β =−arctan
(

vy

vx

)
(5)

where vx and vy are the longitudinal and lateral
velocity of the car. The VSA is widely used for sta-
bility controllers such as ESC (Yim, 2017) or VSC
(Fukada, 1999), AFS (Bechtoff et al., 2016), MPC
(Zanon et al., 2014), among others. Typically for such
applications, an accuracy of 0.1 degrees is needed.
The stability controllers regulate the tracking force of
each wheel employing the brakes in the vehicle. In
this way, it is possible to have a point of rotation I
as close to the perpendicular projection of the centre
of gravity. Therefore, in terms of localization, having
such controllers help to ensure that the vehicle has
a common center of rotation among the four wheels.
With this assumption, a new estimation of the trajec-
tory can be formulated.

To estimate VSA through GPS-inertial sensors,
(Kiencke and Nielsen, 2000) compute the slip angle
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employing the bicycle model as follows:

β̇ =
ay

vg
− ψ̇ (6)

where vg =
√

v2
x + v2

y is the velocity of the vehicle,
ψ̇ is the yaw rate and ay is the lateral acceleration. In
this article, this approximation is used as a character-
istic to train the network.

The first efforts to integrate a learning agent to
the estimations fused two methods, an observer (typ-
ically an EKF) which estimates the dynamic of the
car and the neural network estimates the tire data
((Acosta Reche and Kanarachos, 2017), (Dye and
Lankarani, 2016)).

Most of the authors used a general approach of a
three-layered neural network: the input layer, one hid-
den layer and the output layer. The first and second
layer use log-sigmoid transfer function and a linear
activation on the last layer ((Wei et al., 2016), (Brod-
erick et al., 2009), (Li et al., 2016)).

Different state inputs to the net were evaluated.
The neural network which was able to estimate a bet-
ter VSA takes into account the change on dynamic
parameters respect to time.

Although the VSA estimator with neural networks
shows sufficient accuracy in practical applications,
the main issues up to today remain in the inability of
the net to adapt after the training if the vehicle param-
eters change and the option to deal with a road bank-
ing angle which has to be estimated with an external
algorithm and then filter out the lateral acceleration
component due to gravity as in (Sasaki and Nishi-
maki, 2000), and (Melzi et al., 2006). In (Reina et al.,
2010), visual VSA has been used in non-holonomic
robots to correct odometry estimations.

Neural networks and deep learning have shown
their abilities to overcome analytical methods in disci-
plines such as time series forecasting. The application
of neural network methods based on vision in vehi-
cle localization has been widely studied ((Konda and
Memisevic, 2015),(Wang et al., 2017),(Zhan et al.,
2018)). However, very few studies use other sen-
sors such as odometer, imu and GPS. (Brossard and
Bonnabel, 2019) proposed a Gaussian Process com-
bined with neural network and variations inference to
improve the propagation and measurement functions,
thereby improving the localization accuracy. (Belha-
jem et al., 2018) trained a network to learn the lo-
calization error of EKF when GPS was available and
use the network for pose prediction during GPS sig-
nal outage. Different from the existing researches, we
trained an end-to-end neural network to learn the VSA
rate to assist the pose estimation.

4 PROPOSED METHOD

To be able to train a neural network though supervised
learning, we build a dataset that stores an input array
of size nx9 every ∆ of time, being n the number of
timestamps in the dataset. Each row in the matrix has
the following features:

I = [δ,vre f ,ax,ay,Ψ̇V ,ωrl ,ωrr,ω f l ,ω f r] (7)

where: δ is the steering angle, vre f is the speed
over ground, ax is the longitudinal acceleration, ay is
the cross acceleration, Ψ̇V is the yaw rate and ωxx is
the speed of the front and rear wheels.

The idea behind including just the variables in
7 and not other parameters such as constant vehicle
mass, size of the wheel-base, wheel diameter or oth-
ers, is that we are looking for a more complex rep-
resentation of these parameters that allow the neural
network to predict odometry for different size of ve-
hicles.

Since an element of the dataset describes the in-
stantaneous dynamic state of the car, we build the in-
puts of the net as a concatenated pair of vectors of 7,
for instance:

Xk = [Ii,Ii+1] (8)
For the net output, we compose an array of size

nx4, which includes the poses of the car. Instead
of recording the global pose, we stored local relative
poses. Local poses allow us to predict local displace-
ments with the net.

To ease the net training, we reduced the problem
to a two-dimensional trajectory. Although for two-
dimensional estimation, only the Yaw angle to define
orientation is needed, we stored the quaternion values;
during training, the quaternion representation showed
to help the net to converge faster. In an Euler rota-
tion of the format ZY X , the non zero values qz and qw
are the last two items of a quaternion. The generated
vector is then as follows:

yk = [x,y,qz,qw]

One crucial aspect of the data set generation is the
frequency at which the data is sampled. The rate of
the Autominy localization is due to the frame rate
of the ceiling cameras and the post-processing algo-
rithm, which stitch the images, detect the ARUCO
markers, and calculate the position of the car. There-
fore, the sampling rate of the Autominy dataset is
30Hz, while the sampling rate for the MIG dataset
can be configured up to 100Hz.

In order to avoid redundant data, the reading rate
in the MIG was also configured to 30Hz; in this way,
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Figure 6: Autominy circle trajectory carried out with the
same steering angle while increasing velocity, which devel-
oped high VSA and VSA rates.

we averaged a travelled distance of 0.5 m per time-
step. We carried out a sanity check before storing the
data. The sanity check verifies that the candidate vec-
tor is not similar to any of the already stored vectors
through cosine similarity, which is a dimensionless
measure for vectors, which are typically sparse.

sim(x,y) =
x ·y
‖x‖‖y‖

(9)

The similarity equation 9 computes the cosine be-
tween two multidimensional vectors so that a value
of zero means the vectors are perpendicular to each
other, the closer the cosine value to one, the smaller
the angle and the higher the match between vectors.
In our experiments, this value was set to 0.9.

The sanity check also copes with periodic GPS
corrections of the Applanix. Those corrections pro-
duce discrete spatial jumps up to 0.5 m. Since those
jumps in a position generate a non-continuous trajec-
tory, the dataset is sectioned every time a jump is de-
tected. In this way, we store small continuous tra-
jectories with local transformations instead of a long
trajectory with global transformations.

4.1 Dataset Assembling

The datasets were obtained reading the recorded ros-
bags showed in Tables 1 and 2. Autominy was driven
manually in two different trajectories, under variable
dynamic behaviours. Fig. 6 shows a trajectory of the
Autominy periodically increasing its velocity without
changing the steering angle. The vehicle develops
high VSA, which explains the change of the radius
in the spiral trajectory.

Autominy data was recorded using two different
surfaces, Cut Pile green carpet, and PVC black rub-
ber. Driving on different surfaces allowed us to gen-
erate diverse, dynamic performances. While on the
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Figure 7: Range of VSA rates (β̇) in the datasets. Autominy
developed higher β̇ over black rubber, while as expected,
the MIG performed the smallest values.

rubber surface, the car was able to drift easily, on car-
pet it was more stable on the curves. Analyzing how
the dynamics of the car changes on such different sur-
faces is key to develop more accurate controllers and
estimators. In this sense, another advantage of using
scaled models is the ease of studying such properties
by changing the surface conditions on the lab floor.

The dataset of the MIG was recorded in the city
of Berlin on ten different expeditions. There are
no recorded datasets while driving on snow or rain.
Therefore, it is of our interest to expand the dynamic
scope of the MIG trained network by means of in-
cluding the founded associations under the Autominy
dataset.

To examine the dynamic range of the datasets, it is
possible to visualize the slip angle rate derived from
Eq. 5. For Autominy, the Probability Distribution
Function (PDF) of each friction surface is shown in
Fig. 7 together to the MIG slip angle rate, consider-
ing that the available trajectories of the MIG are only
recorded on asphalt, in an average velocity of 20 m/s;
therefore only one PDF of slip angle rate is shown.

As shown in Fig.7, we drove the Autominy on
a higher dynamical range than the MIG. The differ-
ences between the experiments, improve the accuracy
of the MIG net by increasing the gamut of the data
on which the net is trained. The overlapping between
both ranges, allow the net to build a standard feature
map between the Autominy and MIG dynamics.

In Table 1, the amount of train and validation
timestamps are shown. Since on each dataset of Au-
tominy, the trajectories are constantly repeated, the
test section can be safely taken from the same file and
use it to evaluate the results of the net. In the counter-
part, the MIG rosbags are unique trajectories, and we
are interested in leaving trajectories entirely for test-
ing, owing to the fact that we would like to analyze
how the net generalize for unseen trajectories.

We acknowledge that the partition of the datasets
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Table 1: Recorded rosbags in Autominy over black rubber
(br) and green carpet (gc). Different scenarios where used to
increase the range of the dynamic parameters in the vehicle.

#Timestamps Driven
Scenario Train Val. Test length(m)

br driving 2451 817 817 285.7
br drifting 2375 791 791 216.6
gc driving 4716 1578 1578 537.9
gc drifting 3892 1291 1291 349.2

Total 13434 4477 4477 1389.4

Table 2: Recorded rosbags in the MIG and the number of
timestamps in the dataset. Sequences 3, 4 and 8 are used
only for testing, meanwhile the rest of the sequences are
divided between validation and training.

#Timestamps Driven
Scenario Train Val. Test length(m)

FU to OBI 1260 314 0 2356.4
safari online 7326 1831 0 12461.4
thielallee 0 0 3058 4795.3
eng 0 0 583 944.8
react4 1560 389 0 2853.9
reinickendorf 419 104 0 1659.5
aut7 2784 695 0 5907.6
auto8 0 0 1061 1487.9
2tegel 3084 771 0 9968.6
back2fu 1680 419 0 8326.9

Total 18113 4523 4702 50762.3

into training and validation could avert some inter-
esting dynamic information to the net if the data
is indiscriminately divided; therefore, K-fold cross-
validation was used to evaluate the performance of
training on unseen data. The dataset was divided into
four groups (K = 4). To train the final model, from
the total timestamps in the Autominy dataset, 60%
were taken for training, 20% for validation and 20%
for testing. In the MIG dataset, seven sequences were
divided between 80% training and 20% validation and
the rest three sequences were used to test.

Each column of the resulting dataset matrix con-
tains the mean and standard deviation of the column
obtained from standardizing the data by subtracting
the mean and dividing by the standard deviation. This
way of representing the data is more convenient for
the training of the net. The complete database is
composed of 22388 samples from the Autominy and
27338 samples from the MIG.

Since the problem is treated as time-series, the
dataset is not shuffled randomly. Instead, it is divided
into several sequences of different sizes with differ-
ent starts and endings. This data division expands the

learning dataset, in an analogy to dataset augmenta-
tion for image-learning tasks. The initial member of
each sequence is taken as the initial position of the se-
ries, and the transformations are recalculated. Never-
theless, we trained the net to learn the local transfor-
mations between timestamps. Therefore, to test the
net, it is necessary to estimate the global position of
the vehicle by calculating the SE(3) transformation
to the origin frame. It was found that feeding differ-
ent sequence sizes, and shuffling such sequences each
epoch, improved the performance of the net signifi-
cantly. The validation and test datasets are not divided
into smaller sequences, but the full sequences are es-
timated.

We first trained the net with the Autominy
database, then, the feature map was used to train the
net for the MIG.

4.2 Architecture Description

The network architecture of our Ground Autonomous
Localization Net (GALNet) is shown in Fig. 8. This
work utilizes Long Short Term Memory (LSTM) with
a projection layer and two regression heads to esti-
mate the slip-slip angle and localization. The LSTM
exploits correlations among the time-correlated data
samples in long trajectories by introducing memory
gates and units (Hochreiter and Schmidhuber, 1997)
in order to decrease the vanishing gradient problem
(Hochreiter, 1998). Although LSTM has the ability to
handle long-term dependencies, learning them is not
trivial. In this work, a series of linear convolutional
layers are used to extract model dynamics.

The net is represented on times k and k + 1 to
show how the states of the LSTM and SO3 layers
are forward propagated to the next training step. The
first two fully connected layers compute the first re-
lationship between the dynamic variables. We use
this block in the way of an encoder for the derived
two outputs. In one side another dense block com-
putes the VSA rate. The second output is made of an
LSTM layer which finds the time series relationships,
followed by a fully connected couple of layers that re-
duce the dimensionality to fit the pose output vector.
The net estimates local transformation between two
timestamps. Therefore, a fixed custom layer projects
the displacement to a global frame.

4.3 Loss Functions

The model uses the slip angle as an auxiliary input to
the pose regression. Therefore, there are two losses in
the model. One to predict the correct slip angle and
other to regress the position. The loss regarding slip
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Figure 8: Architecture of GALNet.

angle is as follows:

LV SA =
1
N ∑

N
‖xn− x̂n‖1 (10)

where N is the size of the batch.
The proposed method can be considered to com-

pute the conditional probability of the poses Yk =
(y1, ...,yk) given a sequence of vector 7 in time t

p(Yt |Xt) = p(y1, ...,yk|x1, ...,xk)

In order to maximize the previous equation, the
parameters of the net can be found based on Mean
Square Error (MSE). The Euclidean distance between
the ground truth pose yk = (pT

k ,Φ
T
k ) and its estimate

ŷk = (p̂T
k , Φ̂

T
k ) at time k can be minimized by

LPOS =
1
|N|∑N

‖x̂k−xk‖2 +κ

∥∥∥q̂k−
qk

‖qk‖

∥∥∥
2

(11)

The factor κ scales the loss between euclidean dis-
tance and orientation error to be approximately equal.
q is in quaternion representation in order to avoid
problems of Euler singularities in the global coordi-
nate frame. Therefore the set of rotations lives on the
unit sphere. During training, the values of q̂ and q
become close enough to be negligibly compared to
the euclidean distance. Consequently, the constant κ

play an essential role in the accuracy of the net. As a
preliminary setting, we use the approach of (Kendall
et al., 2015) where a constant κ was tuned using grid
search.

Nevertheless, we observed that the error in orien-
tation and position was related not only to κ but also
with VSA rate. Selecting a constant κ value with low
orientation error in small VSA rates (β̇), increased the
orientation error on high VSA rates. When a new
value was tested for high β̇, the orientation error in-
creased for low VSA rates. Fig.9 shows an iteration
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Figure 9: Orientation error for different values of κ related
to the VSA rate (β̇). Best values of κ for low and high β̇ are
showed in purple.

of κ values related to the associated VSA rate. Best
value for almost zero β̇ was found in κ = 350 while
the best value for the higher rates (400 deg/s) was
found to be around κ = 1500.

This results lead to the idea of a self-tuned κ de-
pending on β̇ which is as shown on Fig. 8 also pre-
dicted by the net. In order to adapt the scale value, a
Gaussian function is proposed as follows:

κ(β̇) = b−ae−(β̇−µ)
2
/

2σ2
(12)

where κ is the loss scale value, β̇ is the VSA rate.
b shift vertically the function in order to get the min-
imum value of κ when β̇ is close to zero. a is the
amplitude of the function, σ is the standard deviation
and µ the mean of the normal distribution. σ and µ are
tuned looking for the smaller orientation error with
respect to β̇. For the experiments, best values where
found around a = 2300, b = 2000, µ = 0 and σ = 320.

The final position regressor layer is randomly ini-
tialized so that the norm of the weights corresponding
to each position dimension was proportional to that
dimension’s spatial extent.

Since the MIG database is more extent in the num-
ber of samples, the first net was trained using only
this database. In order to train the Autominy net, the
same architecture was used. To achieve better accu-
racy, the feature map of the previously trained GAL-
Net for MIG was used, the layer group which deter-
mines the dynamic parameters is removed, as well as
the last layer which composes the relative movement.

Finally, the feature map obtained from the second
training is used to fine-tune the MIG net model. This
exploits the associations made by the agent under the
training in the Autominy dataset.
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5 EXPERIMENTAL RESULTS

In this section, we briefly summarise the results of the
proposed architecture for dynamic ground localiza-
tion. We employ the Absolute Trajectory Error (ATE)
and Relative Pose Error (RPE) metrics proposed in
(Sturm et al., 2012).

5.1 Evaluation Algorithms

In order to evaluate the proposed model, we compared
the results with two analytical methods.

The first algorithm is an Ackermann model odom-
etry which is based on the wheel velocities, and an
estimated Yaw rate obtained from the MIG’s ABS
subsystem. Originally, only the differential velocities
of the back wheels were used in the MIG to deter-
mine the direction and displacement of the car; the
major drawback of the differential odometry was that
the wheel ticks have a systematic error that depends,
among other things, on the wheel pressure, this phys-
ical event provoked the estimated trajectory to drift.
In order to compensate for the deviation, the yaw
rate information from MIG’s ABS subsystem was in-
volved. For the results section of this article, we iden-
tify this Ackermann-compensated differential odom-
etry as WO.

The second algorithm is a self-implemented Un-
scented Kalman filter (UKF) estimator which inte-
grates the WO and IMU measurements from the car
inertial unit. The filter is obtained employing the
ROS robot-localization package (Moore and Stouch,
2014).

The net was first trained on the MIG dataset, and
the feature map was then used to train the net with the
Autominy dataset. We differentiate the networks in
the evaluation as GALNet and iGALNet correspond-
ingly.

5.2 Quantitative Evaluation of
Trajectories

In order to measure the errors on the final trained neu-
ral network, Table 3 shows the performance of the net
with the ATE metric and Table 4 shows the RPE for
the MIG trajectories.

Table 3 shows that in some trajectories GALNet
and iGALNet improve the baseline methods. It is in-
teresting to notice that not in all cases iGALNet per-
forms better than GALNet, which means some asso-
ciations are lost in the over-training process.

Table 4 shows that for the MIG, local displace-
ments are still better estimated with WO. This result
is expected since most of the short trajectories that

Table 3: ATE translational error in meters of the MIG
dataset before and after including the Autominy dataset in
the training. The methods used to compare are: MIG Wheel
Odometry (WO), Unscented Kalman Filter (UKF), GAL-
Net trained only with the MIG dataset, and the improved
version (IGALNet) trained with the Autominy dataset.

Method Wo UKF GALNet iGALNet
FU to OBI 86.87 42.51 88.48 43.43
safari online 428.31 4.60 483.21 50.00
thielallee 55.97 13.84 199.5 11.87
englerallee 132.07 167.5 9.20 46.61
react4 24.33 19.10 67.65 10.39
reinickendorf 6.47 3.65 2.84 2.46
auto7 211.96 17.97 89.86 12.36
auto8 17.35 3.73 46.73 4.62
tegel 269.55 4.48 219.55 23.72
back2fu 506.92 7.15 126.48 18.33

Table 4: RPE translational error in meters of the MIG
dataset before and after including the Autominy dataset in
the training. The methods used to compare are: Mig wheel
Odometry (WO), Unscented Kalman Filter (UKF), GAL-
Net trained only with the MIG dataset and the improved
version (iGALNet) trained with the Autominy dataset.

Method Wo UKF GALNet iGALNet
FU to OBI 0.43 0.49 0.71 0.59
safari online 0.27 0.28 1.26 0.45
thielallee 0.41 0.51 0.79 0.60
englerallee 0.44 0.58 0.77 0.74
react4 0.43 0.49 0.70 0.55
reinickendorf 0.51 0.63 0.70 0.65
auto7 0.39 0.48 0.89 0.60
auto8 0.31 0.28 0.42 0.27
tegel 0.95 1.09 1.49 1.34
back2fu 2.77 3.09 4.04 3.13

are sampled at 30 Hz and have a mean displacement
of 0.5 m are straight trajectories. Therefore, integra-
tion of the angular wheel velocity is still a better ap-
proximation for straight driving. WO has its major
disadvantage on estimating orientation. In a global
trajectory, orientation errors are collaterally translated
to translational errors. For that reason, wheel odom-
etry performs worse with the ATE metric. For some
datasets, the precision of the UKF is achieved with
the proposed methods.

Because the net was trained to estimate displace-
ment between two consecutive relative positions, it is
interesting to examine the RPE metric deeper and ob-
serve how the error develops since the GPS adjust-
ments are represented as outliers. For this analysis,
we selected the Safari trajectory. Fig. 10 and 11 show
the RPE violin histograms of the translational and ro-
tational components of the relative transformations.

Fig. 10 corroborates the values in Tab. 3, where
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Figure 10: RPE violin histogram of the translational errors
in meters in the Safari trajectory.
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Figure 11: RPE violin histogram of the rotational errors in
degrees in the Safari trajectory.

the WO estimates more effectively the translational
displacement, while its biggest error is around 3 m
the iGALNet goes up to 9 m, the errors accumulate
closer to zero than the other algorithms. It also shows
the improvement of iGALNet against GALNet. Even
that the purpose of training on the Autominy dataset
was to reduce rotational error focusing on VSA, trans-
lational error improved as well. However, this re-
sult suggests that a pure translational displacement
dataset, generated with the Autominy could help the
estimation.

In Fig. 11, the reduction of outliers between GAL-
Net and iGALNet is more evident. The proposed deep
neural network has a better rotational performance
than the evaluation algorithms, which was the purpose
of this work. The iGALNet network has the smallest
outliers and its error distribution closer to zero than
the rest of the algorithms.

The resemblance between the violin distributions
of the different algorithms shows that the proposed
neural network was able to find the correct associa-
tions to estimate composed displacement.

(a) (b)

Figure 12: A) Seq. 00 of the Autominy dataset, transla-
tional errors are: ATE=1.37 RPE=0.03. b) Seq. 02 of
the Autominy dataset, translational errors are: ATE=2.16
RPE=0.01. On the green the ground truth obtained with the
ceiling cameras in the lab, in blue, the estimated trajectory
of iGALNet.

5.3 Qualitative Evaluation of
Trajectories

Although the net was able to improve for small β̇

and therefore contribute to the precision in the MIG
dataset, the high rates in the Autominy dataset showed
limited precision. Fig. 12 shows two trajectories
driven in the lab with Autominy where β̇ values went
up to 1.2 rad/s.

Figure 13 shows the trajectories of the MIG wheel
odometry, UKF and GALNet before and after (iGAL-

(a) (b)

(c) (d)

Figure 13: Resulting trajectories of the proposed methods in
Thielallee. a) MIG wheel odometry, b) UKF wheel-inertial
odometry, c) GALNet, d) iGALNet.
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Figure 14: Trajectories in datasets FU to OBI, Englerallee and safari online, showing complete and close up of them.

Net) being trained with the Autominy dataset in
Thielallee, the official test area of the MIG in Berlin.
Fig. 14 - 16 show the rest of the resulting trajectories
in the MIG dataset, which give a more visual evalua-
tion of them.

5.4 Reported Runtime

The network is implemented based on the TensorFlow
framework and trained using an NVIDIA Geforce
RTX 2080 ti. Adam optimizer is employed to train
the network with starting learning rate 0.001 and pa-
rameters α1 = 0.9 and α2 = 0.999 both values recom-
mended on the analysis in (Kingma and Ba, 2014).
The training was set for 200 epochs but using call-
back Tensorflow implementations such as early stop-
ping if the loss function does not decrease 0.001 for
more than five epochs to reduce the training time.

Training time on all the trajectories takes approx-
imately 10k to 50k iterations or 2 hours to 6 hours.
Prediction time for an input vector pair takes on aver-
age 25 ms, i.e., 40Hz.

6 CONCLUSIONS

We introduced GALNet, a deep learning architecture
for pose estimation employing inertial, kinematic, and
wheel velocity data from the car. We employed VSA
rate as the main characteristic to estimate vehicle dis-
placements.

We showed that it is possible to use the experi-
ments performed by different vehicles to improve the
results of the deep neural network model. The re-
sults of the estimation were compared with a Classical
Unscented Kalman Filter predictor and a basic wheel
odometry scheme. Transferring learning between two
different experimental platforms brings advantages to
the accuracy of the net. However, the model is highly
dependent on the sensor, which provides ground truth,
and the intrinsic drifting of the device is also trans-
ferred to the model.

The proposed method shows that, with enough in-
formation, a robust net can be trained. The perfor-
mance of the net is information-dependent. If the
characteristics of the dynamic system changes, the es-
timated position could be improved with more data
collection. Therefore the system could be refined on-
line on a test vehicle and update the weights of the net
to avoid wide drifting errors.
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Figure 15: Trajectories in datasets react4, reinickendorf and auto8.
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Figure 16: Trajectories in datasets auto7, tegel and back2fu.
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We showed that it is possible to increment the ac-
curacy of the models by complementing the dataset.
Implementing a model that can integrate more infor-
mation to improve the learning process during driving
is a direction for future work.
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