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Abstract: Creating quality-annotated dataset is one of the main tasks in the field of deep learning technologies for pattern 
recognition. However, in the real world, collecting a sufficient number of detailed images of an object is 
difficult and time-consuming. The article considers an approach to creating synthetic datasets based on the 
ray tracing method. This paper also presents the results of success tests of real object image segmentation by 
convolutional neural networks, trained entirely on synthetic data and data of different nature. 

1 INTRODUCTION 

The success of deep learning depends to a large extent 
on the quality of the data on which the training was 
conducted. Getting the necessary amount of 
qualitatively marked data for training is quite difficult 
and not always possible. Computer graphics allows to 
create realistic images of objects based on textures of 
sufficiently high quality. Unfortunately, creating 
realistic images by using only textures and vertex-
based lighting has some limitations.     In computer 
graphic technologies the method of creating images 
using ray tracing is becoming more popular (Eric 
Haines and Tomas Akenine-Möller, 2019). Ray 
tracing yields realistic images that are closest to real 
ones due to a detailed study of light, shadows, and 
textures. High-quality images are created through the 
following properties of the method: 
1. Possibility of qualitative representation of 

smooth surfaces without their polygonal 
approximations; 

2. Ability to render smooth objects without 
approximating them with polygonal surfaces; 

3. Ability to process complex scenes; 
4. Possibility of high algorithmic parallelizing; 

5. Small dependence of the computational 
difficulties of the method on the complexity of 
the scene; 

6. Correct handling of invisible scenes and 
reflections from parts and surface; 

7. Correct processing of complex shapes; 
8. Correct treatment of translucent and refractive 

materials. 
The main disadvantage of the method is that a 

sufficiently large amount of required calculations for 
scene processing can be overcome using hardware 
solutions of graphic processors with support for ray 
tracing (for example, Nvidia Turing technology with 
RTX support). 

The article considers the approach to creating 
datasets for training from pre-defined CAD object 
models and ray tracing technology. The approach is 
implemented in the form of a software module written 
in programming language Python.  

The approach and developed tool could be used 
for ray-tracing based generation of high-quality 
COCO-style (Common Objects in Context) artificial 
dataset for convolutional neural networks training. 
The learned convolutional neural networks as was 
shown could be successfully used for real image 
processing.  
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2 RELATED WORK 

Generating data for training different models of 
convolutional neural networks is a rather actual topic. 
Therefore, various teams of researchers are 
developing algorithms for creating synthetic datasets. 

The topic of creating synthetic data is discussed in 
some resources: 

a) The paper which considers the benefits of 
synthetic data generation for СNN training (The 
Ultimate Guide to Synthetic Data in 2020); 

b) The research on using ray tracers to create 
training databases (John B. McCormac, 2018).  

There are some tools which are able to make 
synthetic data for СNN learning. 

a) A simple GUI-based COCO-style JSON 
Polygon masks' annotation tool to facilitate the quick 
and efficient crowd-sourced generation of annotation 
masks and bounding boxes. Optionally, one could 
choose to use a pre-trained Mask RCNN model to 
come up with initial segmentations. This tool could 
be used for hand-made annotation of existing images 
(Hans Krupakar, 2018). 

b) This project is a development of the project 
mentioned in the previous paragraph, the 
development of this tool is continued by the team of 
programmers, who are interested in this field. The 
original functionality has been saved and refined 
(Hans Krupakar, 2018). 

However, a tool that could create high-quality 
annotated sets of multiple overlapped objects has not 
been implemented yet. 

c) Nvidia Deep learning Dataset Synthesizer 
(NDDS) a UE4 plugin from Nvidia (J. Tremblay, T. 
To, A. Molchanov, S. Tyree, J. Kautz, S. Birchfield, 
2018) (J. Tremblay, T. To, S. Birchfield, 2018) to 
empower computer vision researchers to export high-
quality synthetic images with metadata. NDDS 
supports images, segmentation, depth, object pose, 
bounding box, key points, and custom stencils. In 
addition to the exporter, the plugin includes different 
components for generating highly randomized 
images. This randomization includes lighting, 
objects, camera position, poses, textures, and 
distractors, as well as camera path following, etc. 
Together, these components make it possible for 
researchers to easily create randomized scenes for 
training deep neural networks. 

The strong features of the Nvidia tool are: 
 Ability of using a physical engine; 
 Flexibility of GUI-based basic scene 

configuring; 
 Possibility of using colored meshes and RGB-D 

point clouds. 

The main weak features of the Nvidia tool are as 
follows: 
 UE4 dependence ( CUDA and graphics need); 
 Batch mode is problematic; 
 External scene configuration is complicated for 

realization. 

3 PROPOSED METHOD 

We would like to present an approach and the tool, 
which is able to generate a synthetic dataset for a 
batch of mesh- defined objects in an automatic mode 
based on ray-tracing. 

Ray-tracing is a process of modelling the real 
physical process of light reflection and consumption. 
The approach allows us to generate realistic images 
and therefore could be able to present high-quality 
training datasets based on artificial images only.   

This tool is based on POV-Ray physical core 
(POV-Ray – The Persistence of Vision Raytracer). 
The main target of the current project is developing a 
python based tool for making artificial images from 
mesh models which could be easily implemented into 
a self-learning process. All instances should be easily 
configured by using text-based config files. The tool 
could be used without long packet dependencies.  

3.1 Process of Image Creation 

Images are generated by using the Ray Tracer — 
POV-Ray. The Persistence of Vision Raytracer 
(POV-Ray: Download) is a high-quality, Free 
Software tool for creating stunning three-dimensional 
graphics (POV-Ray: Hall of Fame). The source code 
is available for those wanting to do their own 
research.  

Creating realistic images significantly depends on 
the configuration of the lighting sources. 

Image generation uses one primary point white 
light source for general lighting: RGB intensity = 
(1.0,1.0,1.0). The light source is used with a common 
brightness factor 1.0, and also has the ability to set the 
rotation angle relative to the camera located at a 
distance equal to the removal of the camera and four 
additional fixed spot light sources of low intensity 
(intensity - [0.4.0.4.0.4]) spaced from the Z-axis by 
angles (75,0,0) (-75,0,0) (0,75,0) (0, -75.0) without 
the possibility of changing its position from the 
configuration file. The primary light illuminates the 
geometry of the part, highlighting its features. 
Additional lighting sources compensate for "rigidity" 
and provide backlight for shaded areas of details. 
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The distance from the parts to the camera is 
calculated as the maximum size along any axis of the 
largest object, increased by 1.7. This distance varies 
for each set of parts with a random additive term, 
which ranges from -1/6 to 1/2 from the calculated 
base distance. 

 

Figure 1: Lighting and camera position scheme. 

The Ray Tracer – POV-Ray requires a description 
of the scene geometry that is automatically generated 
using the jinja stencil. The fixed template is used as 
the base material (which corresponds to the material 
of the parts for the assembly plant in the target 
project) corresponding to the white matte metal of 
coarse processing (base colour < 0.64.0.687.0.71 > - 
zinc, aluminium, finishing - coarse tool, anodization 
with characteristics (POV-Ray meta file) 
{F_MetalD} normal {agate 0.1 scale 0.1}}). 

The main part is generated from the description of 
a three-dimensional object in the [.obj] mesh format. 
Conversion the objects into a description language of 
the ray tracer – POV-Ray doing with centring the 
object in the middle of its bounding box. 

The initial stable position of the part is set by 
fixed values of the rotation parameters, then objects 
are randomized by random law without the possibility 
of overlapping objects. The rotation and slope are 
randomized. 

In the case of solving the bin-packing problem, 
the interposition of parts can be obtained by a virtual 
physical experiment by using physical engines (the 
engines PyBullet and Unreal4 were studied in the 
work). During the simulation process, the box with 
objects was "thrown" from a given height. The details 
occupied a steady position under gravity force, and 
the resulting 6dof coordinates of the objects could be 
loaded into the ray trace module as initial values for 
the trace simulation. It should be noted that physical 
simulation significantly increases the number of 
necessary computational operations and could be 

replaced to Euler angles randomisation with 
overlapping control.  

In the process of image generation, each object 
receives a random shift relative to its initial position 
(steady position) by a distance corresponding to the 
dimension of the bounding box along the x, y axes. A 
fixed shift is made along the Z-axis according to the 
size of the bounding box. 

 
Figure 2: Bin-packing task physical engine example. 

During the process of creating a training dataset, 
the set of details is rotated by random pitch and tilt 
angles, which provides different viewing angles for 
the objects. 

The generation of the training sample is carried 
out in three stages. At the first stage, each image of 
the detail is generated by the ray tracer individually 
with maximum illumination. The maximum 
illumination (hard light - one source with the 
maximum possible intensity, illuminating an 
absolutely black object without reflection) allows us 
to obtain visible outlines and a detail’s mask, 
regardless of the fall of the shadows of the light 
source and re-reflection. 

   

Figure 3: Details masks obtained. 

The outlines are collected by masks depending on 
the position of the object in the stack (masks are 
subtracted) - hidden (hidden by other parts) fragments 
of the outline are masked. 

& 

 

= 

Figure 4: Detail batch processing. 

Using the standard outline highlighting OpenCV 
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approach an outline description and its bitmask are 
constructed for each detail, which will then be 
converted to a COCO-style (T.-Y. Lin, M. Maire, S. 
Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollar, 
and C. L. Zitnick, 2014) (COCO – Common Objects 
in Context) mask description format. 

   
Figure 5: Detail segmentation polygons. 

The description of the contours depends only on 
the rotation of the details and does not depend 
significantly on the position of the main light source 
and is performed only once for each data set 
(reflection variations). 

In the second step, a total stack of objects with an 
operating light intensity is collected for all specified 
(from the configuration file) positions of the light 
source. A stack of objects is assembled on a 
transparent background with various positions of the 
main illumination source. The list is set as the angle 
of deviation from the camera position by enumeration 
in the configuration file. 

The experiments have shown that it is sufficient 
to use five positions of the light source to obtain 
acceptable segmentation quality results. Using the 
position of the light rotated relative to the camera by 
the following angles round axis: LIGHT = [[0, 0, 0], 
[0, 30, 0], [0, 30, 0], [-30, -30, 0], [30, 30, 0]]. 

The different position of the light source allows 
diversifying the picture of light and shadows as close 
as possible to real images in real lighting conditions 
and save computational resources for the re-
generation of the scene. Here the relative arrangement 
of the parts is shown figure 7. 

 

Figure 6: The same scene with different position of the main 
light. 

Therefore:  
Parts will receive a random relative position 

within their bounding boxes (rectangles) in x, y, and 
a fixed distance z so as to avoid overlapping. 
Parts will receive random rotation respecting the z-
axis (the x-axis is horizontal, the y-axis is vertical, the 

z-axis is from the camera to the observer. Scene will 
receive some illumination profiles.  The generated set 
of images is stored in the buffer directory.  

After generating a set of objects and their 
description, they are merged into the resulting Json-
file with COCO-style format. 

In the final step, the stack of details over the 
transparent background is merged with randomly 
selected background images. 

During the generation process, the parts will be 
created with a transparent background and located in 
the image directory. Random frames from arbitrary 
video or specialized image storages could be used as 
a random background source. We used “Home” 2009 
film as the source of the video due to open access 
copyright. Ffmpeg was used for frame generation. 
“Home” is a 2009 documentary film by Yann Arthus-
Bertrand. It shows the diversity of life on Earth and 
how humanity is threatening the ecological balance of 
the planet. This film has no copyright (Yann Arthus-
Bertrand: A wide-angle view of fragile Earth | TED 
Talk). Using this video is especially symbolic. 
Convolutional neural networks are currently gaining 
an increasingly prominent role in our lives. At the 
same time, Neural Network (NN) processing is still a 
very energy-consuming process. Researchers who are 
working in this area have to go a long way to the 
moment when these mathematical algorithms become 
effective. 

Based on this approach the Python-based tool has 
been developed. The tool is able to generate synthetic 
data sets for a batch of objects in automatic mode. 

The main target of the tool presented is making 
artificial images from mesh models which could be 
easily implemented into a self-learning process. The 
tool could be used without smart packet 
dependencies. 

 

Figure 7: Background substitution example. 

The current version does not include the results of 
the physical engine to estimate the position of objects 
in accordance with physics and gravity. The 
connection-gate with physics could be made as to the 
initial position of details (zero position). Also, the 
current version of the software implements the 
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generation of metal objects with a matt zinc-aluminium 
surface. The material could be changed in a POV-Ray 
template file if it is necessary. The options of material 
used will be extended in further work. 

The output image size is fixed and equal to 704 
by 704 pixels (octave size). Based on this resolution, 
the camera position will automatically be calculated. 
Parts will sequentially overlap on the images (the part 
with index 0 is the lowest, the part with the highest 
index is the highest). 

 

Figure 8: Blocks flowchart. 

As a result of the program running a user can get:  
 Annotations as separate JSON files. Each 

contour and mask of the part corresponds to one 
file in the directory. 

 Images with a transparent background; 
 Images with a substituted random background; 
 Joint COCO JSON annotation which refers to 

image files. The set could be directly used for 
NN training. 

After generating a given number of cases, the 
training sample is automatically integrated into a 
single COCO-style description file. 

4 EXPERIMENT AND TESTING 

During the experiment, images with COCO-style 
annotation data were used for СNN training. 
Developed software for automatic generation of 
synthetic images allows getting a dataset of annotated 
images in the COCO (Common Objects in Context) 
format. This format was chosen because it is one of 
the most popular data formats for creating training 
datasets and a lot of developers use it, too. 

The Mask R-CNN (Kaiming He, Georgia 
Gkioxari, P. Dollár, Ross B. Girshick, 2017) model 
was used for our study. Pre-trained weights of COCO 
(mask_rcnn_balloon.h5) were used as an initial state 
of scales. Weights were received from the releases 
page: (Mask R-CNN 2.1). 

The synthetic images generated by the ray-tracing 
tools were formed into training, test and validate sets. 
Model training was conducted on GPU: GeForce 
GTX 1080 Ti major: 6 minor: 1 
memoryClockRate(GHz): 1.645. The following 
model configuration was used in the computational 
experiment. The training was conducted in two stages 
consisting of 40 and 60 epochs with different learning 
speed factors (learning rate), with different number of 
network layers. 

After training, we had the model on three different 
datasets: 
1. Exclusively using synthetic sample; 
2. Exclusively on real frames; 
3. On a combined sample from synthetic and real 

data as a training dataset. 
Three groups of weights were obtained. With 

using the obtained weights the objects were detected 
on new frames that did not participate in model 
training.  

5 ASSESSMENT OF QUALITY OF 
SEGMENTATION 

The result of any algorithm must be evaluated, 
segmentation algorithms are not an exception. 
Unfortunately, there is no hard standard on how to 
estimate the quality of segmentation. But, there are 
various metrics for measuring the success of the 
segmentation by using the model, the work of which 
is based on neural networks. We prefer to use the two 
most popular methods to evaluate the work of our 
model: Metric IoU (Intersection over Union) 
(Rezatofighi, H., Tsoi, N., Gwak, J.Y., 2019) and 
mAP (mean Average Precision) (Zhu, Mu. Recall, 
2004). The results of the computational experiments 
are shown in the tables below. 

Table 1: Description of datasets. 

Training Validation 

Trained on synthetic data 1365 430 

Trained on real data 200 108 

Trained on mixed data 
1502 

137 - real data 
490 

60 - real data

 
During the computational experiment, there were 

two sets of test data consisting of real shots with a 
different number of frames in each set. Both datasets 
for different weights were used to eliminate the 
probability of getting into the test sample of frames 
involved in model training. 
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Table 2: Results of tests (metrics results). 

 Synthetic data Real data 

Trained on 
synthetic data  

mAP: 0.1966 

IoU: 0.8953 

(108 frames) 
mAP: 0.5914 
IoU: 0.5460 
(126 frames) 
mAP: 0.507 
IoU: 0.5178 

Trained on real 
data 

mAP: 0.1664 
IoU: 0.6921 

(126 frames) 
IoU: 0.6054 

mAP: 0.8439 
Trained on mixed 
synthetic and real 

data  

mAP: 0.1960  
IoU: 0.8929 

(108 frames) 
mAP: 0.4058 
IoU: 0.6761 

 
For weights obtained by training the model on 

completely synthetic data, a test sample consisting 
only of synthetic data was formed. Gaussian, Median, 
and convolutional matrix-based filters with different 
steps were applied to the test dataset. The target of the 
filter based experiment was to test the stability of 
detection and to estimate the role of thick details in 
source data during the detection process.  We 
intended to test the stability of the segmentation 
algorithm under various conditions, such as image 
distortion, change in sharpness and contrast. An 
annotation file of the original segmented test sample 
was used in the experiment. The results are shown in 
Table. 

Gauss filtering is used to reduce noise in images, 
and, also, blurs the boundaries of objects in the image. 
The e median filter saves boundaries and raises 
impulse noce. This image transformation makes it 
possible to investigate the stability of the work of 
segmentation algorithms under conditions of 
obtaining a distorted image of lower quality. 

Table 3: Effect of smoothing filters on detection testing on 
real data. 

Filter (window 
size) 

Trained on real 
data 

Trained on 
synthetic data  

Original image 
mAP: 0.8440 
IoU: 0.6055  

mAP: 0.5071 
IoU: 0.5178 

Gaussian 
smoothing(3, 3) 

mAP: 0.8136 
IoU: 0.5903 

mAP: 0.3105 
IoU: 0.4727 

Gaussian 
smoothing(5, 5) 

mAP: 0.7660 
IoU: 0.5568 

mAP: 0.1819  
IoU: 0.3996 

Gaussian 
smoothing(7, 7) 

mAP: 0.6732  
IoU: 0.4932  

mAP: 0.1118  
IoU: 0.3981 

Median 
smoothing(3,3) 

mAP: 0.8186 
IoU: 0.5963 

mAP: 0.3743 
IoU: 0.4890  

Median 
smoothing(5,5) 

mAP: 0.7948  
IoU: 0.5736 

mAP: 0.2153  
IoU: 0.4581 

Median 
smoothing(7,7) 

mAP: 0.6697 
IoU: 0.4914 

mAP: 0.1366 
IoU: 0.4112  

An experiment was conducted to identify the 
effect of filtration on the operation of segmentation 
algorithms with weights obtained by training the 
model on real images and on a mixed data set. 

The influence of brightness, contrast and 
sharpness of the image was also investigated in order 
to verify the operability of the segmentation 
algorithm work with using different technical devices 
with various optical indicators. 

Table 4: The experiment is a change in brightness with 
training on real data.  

Conditions 
Weights trained on 

real data 

Weights trained 
on synthetic 

data 

Brightness:0.8 
mAP: 0.8343 
IoU: 0.5965 

mAP: 0.4268  
IoU: 0.5251 

Brightness:0.9 
mAP: 0.8466  
IoU: 0.5977  

mAP: 0.4848  
IoU: 0.5087  

Brightness:1 
(original) 

mAP: 0.8439 
IoU: 0.6055  

mAP: 0.5071 
IoU: 0.5178 

Brightness:1.1 
mAP: 0.8500 
IoU: 0.6049 

mAP: 0.5132 
IoU: 0.5082 

Brightness:1.2 
mAP: 0.8491 
IoU: 0.5875  

mAP: 0.4905 
IoU: 0.5121 

CLAHE (Contrast 
Limited Adaptive 

Histogram 
Equalization) 

mAP: 0.8006 
IoU: 0.5754 

mAP: 0.3889 
IoU: 0.4985 

SHARPEIN 
[0, -1, 0],  
[-1, 5, -1],  
[0, -1, 0] 

mAP: 0.7863  
IoU: 0.5732  

mAP: 0.3933  
IoU: 0.4439 

SHARPEIN 
[-1, -1, -1],  
[-1, 9, -1], 
[-1, -1, -1] 

mAP: 0.5615 
IoU: 0.4586  

mAP: 0.1599  
IoU: 0.2652  

6 TARGET SYSTEM 
APPLICATION 

The target project is an experimental set that is 
equipped by the KUKA robot (configured and 
programmed by the participants from IWU 
Fraunhofer Chemnitz), smart flexible gripper 
(developed by the Technical University of Sofia) and 
Intel RealSense D415 camera on the gripper body. 
The system is located in the experimental library 
IWU Fraunhofer Chemnitz.  

One of the goals of this project is the development 
of a method for making a decision on the optimal way 
to grasp the object and move it. To solve this problem, 
algorithms have been developed that allow 
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recognizing and localizing an object in a three-
dimensional space and evaluating 6DoF objects.  

Object recognition in the observed scene is based 
on a convolutional neural network, which allows 
semantic segmentation of objects in the image. 

The convolutional neural network was trained 
using 1000 artificial made images in train set and 430, 
360 for validation and test as well.  

 

Figure 9: Real image semantic segmentation example 
during integration experiment (camera is mounted on the 
robot gripper body). 

 

Figure 10: Kuka based experimental set. 

 
Figure 11: Example of the results of 6DoF. 

When the results of the objects’ segmentation in 
the image are obtained, a 3D semantic objects’ 
segmentation in the scene is performed. Thus, the 
general 3D cloud of scene points of a three-
dimensional points set of recognized objects is 
selected.  

This reduces the size of the 3D point cloud, which 
in turn leads to an increase in the performance of the 
6DoF object estimation algorithm. 

The 6DoF estimation procedure has been made by 
the method proposed in the work of Bertram Drost 
and Slobodan Ilic (Drost, Bertram, and Slobodan Ilic, 
2012). 

We have got the 0.75 success of the final step - 
6DoF estimation (with an accuracy of +/- 5 degrees - 
the requirement for the target task: successful 
grasping) during the preliminary experiment. The 
6dof experiment was carried out using the parts of the 
target set (parts for car assembly) at IWU Fraunhofer 
laboratory bench consisting of KUKA manipulator, 
universal grip, IntelRealsense D415 camera mounted 
on the robot arm. Fig. shows an example of the results 
of 6DOF. 

The gripper is designed to provide maximum 
grasping flexibility regarding the geometry of the 
objects and their relative position. The flexibility is 
achieved by the separate or joint action of two 
systems – mechanical and pneumatic. The 
mechanical one consists of two fingers which are 
mechanically actuated and equipped with fingertips 
allowing for a safely grasping of a wide range of 
objects. The pneumatic system provides a vacuum 
based grasping in case of convex or concave surfaces. 

7 CONCLUSIONS 

Using exclusively synthetic data (obtained by 
developed algorithms and by using created software 
modules) for training allows us to ensure acceptable 
quality of segmentation real data frames in the range 
of 50-60%. In joint batch segmentation (processing a 
scene from different angles by obtaining data from a 
video camera attached to a robot arm), the success of 
segmentation can be greatly increased. The metrics in 
this mode will be refined in the next step during the 
calculation experiment at IWU Fraunhofer. 

The mAP metric does not adequately reflect 
segmentation results and should be excluded from 
consideration. 

Studies of stability (influence of digital filters on 
initial images) of developed algorithms have been 
carried out. Results of research of the use of digital 
filters (linear - convolution, nonlinear - work with 
histograms, median filtration), show stability (limit of 
stability) of procedures of segmentation. The physical 
interpretation of these results consists of the "not 
ideal" recording of data in the conditions of operation 
of the robotic stand (blurring and distortion of the 
picture as a result of the movement of objects and 
camera, a variation of illumination). Segmentation 
technologies showed low sensitivity to brightness 
variation within gamma correction 0.8 - 1.2 (IoU 
deviation was about 4%), which confirms the 
accuracy of solutions for the generation of training 
samples listed in items 1.2 of the main report. 
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The system showed significant sensitivity to 
smoothing filters (for the Gauss 3x3 filter, the IoU 
drop was 9% further for the 5x5 by another 14%). The 
fact of stabilization IoU with a further increase of 
smoothing is interesting, which suggests that the 
contribution of thin details of images gives an 
increase of segmentation quality by a quarter). 
Applying median filters to the original image does not 
win as a segmentation. 

The tool developed could be used for making 
fully synthetic trained databases for CAD-described 
objects instead of real images.  

8 THE FURTHER WORK 

Unknown objects issue. The algorithms developed 
could be extended to unknown (the information about 
the model of object and material made are 
unavailable). The problem: the depth sensor used 
(Intel Realsense I415 family) is not able to take the 
data cloud like a 3d scanner. Possible solution is: the 
system should be equipped with a 3d scanning sensor 
which is able to take the right PointCloud picture. 

The current realization of the artificial image 
generation tool is possible with aluminium, zincum, 
and steel details made of one material. It is necessary 
to extend its use to other materials (POV-Ray 
material library could be used). 

The tool developed generates mask-based 
annotation together with polygonal annotation. 
During experiments presented the second only type 
used for training.   
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