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Abstract: Studying rough calculus was initiated by Z. Pawlak in his many papers. He originated the concept of rough
real functions. Like the notion of continuity in classical analysis, the rough continuity is also a central notion in
rough calculus. Relying on the Pawlak’s approximation spaces on the real closed bounded intervals, first, two
intuitionistic fuzzy sets are established starting from rough functions. Then, based on them, some necessary
and sufficient conditions for the rough continuity in terms of intuitionistic fuzzy set theory will be presented.

1 INTRODUCTION

In 1965, Lotfi A. Zadeh initiated the fuzzy set theory
(Zadeh, 1965) as a new mathematical theory to man-
age uncertainty. In the early 1980s, Zdzisław Pawlak
established a new mathematical tool also to manage
uncertainty which is called the rough set theory (RST)
(Pawlak, 1982).

Let U be a nonempty reference set which is com-
monly called the universe. Any set, classical or non-
classical, is formed from the elements of the universe.
They can be represented with more or less similar
tools, called membership functions.

A classical or crisp set S can be represented,
among other things, by its characteristic function
χS : U →{0,1} (Halmos, 1960; Hayden et al., 1968).
Generalizing this representation, a fuzzy set F is de-
fined by a function µF : U → [0,1] which is called the
fuzzy membership function. In rough set theory, how-
ever, the definition of a similar representation tool is
somewhat more complex.

In RST, first, it is assumed that a beforehand pre-
defined family of subsets of U is given. Namely,
this set family is a partition of U generated by an
equivalence relation. Any equivalence class can be
viewed as a set of indiscernible objects characterized
by the available information (knowledge) about them.
Accordingly, in RST an equivalence relation is actu-
ally called the indiscernible relation.

The partition is called the base system, and its
elements, i.e., the equivalence classes are the base

a https://orcid.org/0000-0002-6357-0233

sets. From the base sets the so–called definable sets
are formed with the union operation.

Next, with the help of base sets, lower and up-
per approximation sets are formed for any S ⊆ U .
The former is the union of all base sets which are in-
cluded in S, whereas the latter is the union of all base
sets which have a nonempty intersection with S. The
difference of upper and lower approximation sets is
the boundary of S. S is exact if its boundary is the
empty set, otherwise it is rough.

In RST, the rough membership function,
rm–function in short, is defined as follows. Let U be
finite. Then, the rm–function is commonly defined by

µS(u) =
|JuK∩S|
|JuK|

,

where | · | denotes the number of elements of a set, and
JuK is the base set (equivalence class) to which u ∈
U belongs (| /0| = 0 by definition). This rm–function
quantifies the degree of the relative overlap between
the set S and a base set.

Both characteristic and fuzzy membership func-
tions are of a priori nature. They have a wide range of
applications, see, e.g., (Aquino et al., 2020; de Jesus
Rubio, 2009; Chiang et al., 2019; Elias et al., 2020;
Meda-Campaña, 2018; Hernández et al., 2020)

In contrast, in RST, initially some information
about the elements of the universe is necessary to have
at our disposal in order to be able to approximate a set.
Thus, the rm–function is of a posteriori nature.

Still, an rm–function can formally be viewed as a
special type of fuzzy membership function, of course,
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with many constraints owing to their derived nature
(Yao and Zhang, 2000). However, the converse is not
true in general ((Biswas, 2000), Example 3.1).

It is broadly accepted that the fuzzy and rough
set theories are related but distinct and complemen-
tary to each other. Nevertheless, they can be com-
bined with each other (Dubois and Prade, 1987;
Dubois and Prade, 1992). Moreover, their common/
distinct features can be outlined based on their fuzzy/
rough membership functions (Chakraborty, 2011;
Csajbók and Ködmön, 2020).

In Section 2 some basic notations are summarized
for the sake of full clarity. Then, the notion of rough
real function and its two possible representations will
be described.

Section 3 contains the material which is required
to establish the connection between the rough
continuity and intuitionistic fuzzy sets. It is the most
extensive section in the paper.

Section 4 presents the main result of the paper. It
provides a necessary and sufficient conditions for the
rough continuity in terms of intuitionistic fuzzy set
theory.

2 ROUGH REAL FUNCTIONS

In the mid 1990s, relying on rough set theory,
Pawlak originated the study of rough calculus in many
papers (Pawlak, 1994; Pawlak, 1996; Pawlak, 1997).
Its basic notion is the rough real function. In
(Csajbók, 2020), employing Pawlak’s ideas, some ad-
ditional representations of rough real functions are
given. Two of them, pointwise and blockwise rep-
resentations, will be required in the rest of this paper.

Let U,V be two nonempty sets. A function f
is denoted by f : U → V , u 7→ f (u) with domain
Dom f = U and co-domain Im f = V . In addition,
u 7→ f (u) is the assignment or mapping rule of f . For
any S ⊆ U , f (S) = { f (u) | u ∈ S} ⊆ V is the direct
image of S. VU denotes the set of all such functions.

If f ,g ∈VU , the operation f �g, �∈ {+,−, ·,/},
and the relation f � g, � ∈ {=, 6=,≤,<,≥,>} are
understood pointwise.

R is the set of real numbers. R≥0 denotes the set
of nonnegative real numbers.

Let a,b∈R (a ≤ b). [a,b]={x ∈ R | a ≤ x ≤ b}
and ]a,b[= {x ∈ R | a <x <b} denote the closed and
open bounded intervals, respectively. It is easy to
interpret, then, the open-closed ]a,b] and closed-open
[a,b[ intervals.

By (·, ·), we mean an ordered pair.
Let [n] = {0,1, . . . ,n} ⊆ N denote a finite set

of natural numbers. Accordingly, ]n] = {1, . . . ,n},

[n[= {0,1, . . . ,n−1}, and ]n[= {1, . . . ,n−1}.
Throughout the paper, let I be a closed bounded

interval I = [0,a] (a ∈ R≥0, a > 0).
The initial notion of the rough calculus is the fol-

lowing.

Definition 1. A categorization or discretization of I
is the sequence SI = {xi}i∈[n] ⊆R≥0, where n≥ 1 and
0 = x0 < x1 < · · ·< xn = a. �

Let IS denote the equivalence relation generated
by the categorization SI . Let x,y ∈ I. xISy if

• x = y = xi ∈ SI for some i ∈ [n], or

• x,y ∈ ]xi,xi+1[ for some i ∈ [n[.

The partition I/IS generated by IS is the following:

I/IS = {{x0}, ]x0,x1[,{x1}, . . . , ]xn−1,xn[,{xn}},

where {xi}= [xi,xi] (i ∈ [n]).
The block of the partition I/IS containing x∈ I is

denoted by JxKIS . In particular, if x ∈ SI , JxKIS = {x}.
If x ∈ JxKIS =]xi,xi+1[ , then JxKIS denotes the closed
interval [xi,xi+1]. When x ∈ SI , JxKIS = JxKIS = {x}.

In terms of RST terminology, IS is an indiscerni-
bility relation on I. The members of I/IS are the
base sets. Any union of base sets are referred to as
definable sets. By definition, /0 is definable. Their
collection is DI/IS .

In RST, the domain and co–domain of the lower
and upper approximation functions are the power set
of I. In the rough calculus, however, the closed
bounded intervals of the form [0,x] (x ∈ I) will only
be approximated. Therefore, the lower and upper
approximations sets are defined by

lS([0,x]) = {x′∈ I | Jx′KIS ⊆ [0,x]}
= ∪{Jx′KIS ∈ I/IS | Jx′KIS ⊆ [0,x]};

uS([0,x]) = {x′∈ I | Jx′KIS ∩ [0,x] 6= /0}
= ∪{Jx′KIS ∈ I/IS | Jx′KIS ∩ [0,x] 6= /0}.

PAS(I) = (I, I/IS,DI/IS , lS,uS) is called the
Pawlak approximation space.

The boundary of [0,x] is

bndS([0,x]) = uS([0,x])\ lS([0,x]).

With a slight abuse of the notations, in order to
simplify the above notations, let us define the follow-
ing numbers:

lS(x) = max{x′ ∈ SI | x′ ≤ x},
uS(x) = min{x′ ∈ SI | x′ ≥ x}.

Then, it is easy to check that

• if x ∈ SI , then lS([0,x]) = [0, lS(x)] = [0,x] and
uS([0,x]) = [0,uS(x)] = [0,x];
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• if x /∈ SI , then lS([0,x]) = [0, lS(x)] $ [0,x], and
uS([0,x]) = [0,uS(x)[% [0,x];

• if x ∈ SI , then bndS([0,x]) = /0; if x /∈ SI , then
bndS([0,x]) = ]lS(x),uS(x)[ 6= /0.

The number x∈ I is exact with respect to PAS(I) if
lS(x)= uS(x), otherwise x is inexact or rough (Pawlak,
1996). Of course, x ∈ I is exact iff x ∈ SI .

In this context, the members of I/IS are called the
rough numbers with respect to PAS(I). In addition,
the categorization points in SI are called the roughly
isolated points with respect to PAS(I).

Let I = [0,aI ] and J = [0,aJ ] be two closed
bounded intervals with aI , aJ ∈R≥0, aI ,aJ > 0. Let SI
and PJ be the categorizations of I and J, respectively,
where SI = {xi}i∈[n] and PJ = {y j} j∈[m] ⊆R≥0 in such
a way that m,n≥ 1, and 0 = x0 < x1 < · · ·< xn = aI ,
0 = y0 < y1 < · · · < ym = aJ . The corresponding
Pawlak approximation spaces are PAS(I), PAS(J).

A Cartesian coordinate system whose x and y
axes equipped with PAS(I) and PAS(J) is called the
(SI ,PJ)–coordinate system, or rough coordinate sys-
tem in short. Any function f ∈ JI attached to a rough
coordinate system is called the rough real function.

In order to make the rough coordinate system
easier to handle technically, the blocks of the parti-
tion I/IS are enumerated as follows.

NI : I/IS→ [2n],

JxKIS 7→
{

B2i = 2i, if ∃i ∈ [n] (JxKIS = {xi}),
B2i+1 = 2i+1, if ∃i ∈ [n[ (x ∈]xi,xi+1[).

The inverse of NI is:

N−1
I : [2n]→ I/IS,

Bi 7→

{{xi/2}, if i≡ 0 (mod 2)]
x i−1

2
,x i+1

2

[
, if i≡ 1 (mod 2) .

The equivalence classes of J/JP can be enumer-
ated in the same way with the help of an enumeration
function NJ . They are referred to as C j’s ( j ∈ [2m]).

Example 1. Figure 1 (a) depicts a rough coordinate
system with SI = {x0 = 0,x1,x2,x3,x4,x5} and P[0,1] =
{y0 = 0,y1,y2,y3,y4 = 1}. Figure 1 (b) presents a
rough real function attached to this rough coordinate
system. �

Definition 2 ((Pawlak, 1994)). Let f ∈ JI . The
pointwise (SI ,PJ)–lower and (SI ,PJ)–upper approx-
imations of f are the functions

f : I→ PJ , x 7→ lP( f (x)) = max{y∈PJ | y≤ f (x)},
f : I→ PJ , x 7→ uP( f (x))= min{y∈PJ | y≥ f (x)}.

f is pointwise exact at x if f (x) = f (x), otherwise
f is pointwise inexact or rough at x.

f is pointwise exact on I′ ⊆ I if f (x) = f (x) for all
x∈I′, otherwise f is pointwise inexact (rough) on I′.�

Definition 3. Let f ∈ JI . The block by block,
blockwise in short, (SI ,PJ)–lower and (SI ,PJ)–upper
approximations of f are the functions

f
←→

: I→ PJ , x 7→ lP(inf f (JxKIS)),

←→
f : I→ PJ , x 7→ uP(sup f (JxKIS)).

The function f is blockwise exact on Bi for some
i ∈ [2n] if f

←→
(Bi)=

←→
f (Bi), that is, the direct images

of Bi with respect to f
←→

and
←→
f are equal; otherwise

f is blockwise inexact (rough) on Bi.
The function f is blockwise exact on I if f is

blockwise exact on all Bi ∈ I/IS, otherwise f is block-
wise inexact (rough) on I. �

Owing to the fact that inf f (JxKIS) and sup f (JxKIS)

are constant on every Bi, the functions f
←→

and
←→
f are

constant on every Bi (i∈ [2n]). Accordingly, using the
word “blockwise” is appropriate.

Example 2. Figure 2 (a) depicts the pointwise lower
and upper approximations of f . f is pointwise exact
at xi,xii,x2,xiii,xiv, and pointwise rough at all other
points.

Figure 2 (b) shows the blockwise lower and upper
approximations of f . f is blockwise exact only on
B4 = {x2}, and blockwise rough on all other blocks.�

It is easy to check the following simple but impor-
tant statement.

Lemma 1. Let f ∈ JI be a rough real function. Then,

f
←→
≤ f ≤ f ≤ f ≤←→f

holds on I.

3 DERIVING INTUITIONISTIC
FUZZY SETS FROM ROUGH
REAL FUNCTIONS

Let U be a nonempty set.
According to (Zadeh, 1965) a fuzzy set (FS) on U

is the function µ ∈ [0,1]U ; see also, (Klir and Yuan,
1995; Dubois and Prade, 2000; Zimmermann, 2001;
Ross, 2010). µ is also called the membership function.
F S(U) denotes the family of all fuzzy sets on U .
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(a) (b)

Figure 1: A rough coordinate system and a rough real function.

(a) (b)

Figure 2: Pointwise and blockwise lower/upper approximations of f .

Let I= {[a,b] | 0≤ a≤ b≤ 1}.
Let µA,νA ∈ F S(U) with µA ≤ νA. An interval-

valued fuzzy set (IVFS) on U is the function
µIV FS

A : U → I, u 7→ [µA(u),νA(u)] (Gorzałczany,
1987). µIV FS

A is also denoted simply by [µA,νA].
Let µA,νA ∈ F S(U) with 0 ≤ µA + νA ≤ 1. An

intuitionistic fuzzy set (IFS) on U is defined by
the function pair µIFS

A = (µA,νA) (Atanassov, 1986;
Atanassov, 1999; Atanassov, 2012). µA and νA are the
IFS membership and IFS nonmembership functions,
respectively. πA = 1− µA− νA ∈ F S(U) is the IFS
indeterminacy function. The family of all intuitionis-
tic fuzzy sets on U is denoted by I F S(U).

Let µIFS
A ,µIFS

B ∈ I F S(U). Then,

• µIFS
A = µIFS

B if µA = µB and νA = νB;

• µIFS
A ⊆ µIFS

B if µA ≤ µB and νA ≥ νB.
It is well known that every IVFS [µA,νA] cor-

responds to an IFS (µA,1− νA), while every IFS
(µA,νA) corresponds to an IVFS [µA,1 − νA]
(Atanassov and Gargov, 1989; Bustince and Burillo,
1996).

There are many papers dealing with the interre-
lationship between rough set and intuitionistic fuzzy

set theory (Rizvi et al., 2002; Cornelis et al., 2003;
Zhou and Wu, 2011; Xu et al., 2014). In this paper,
the starting point is the rough real functions, i.e., real
functions managing them in rough coordinate sys-
tems. Thereafter, intuitionistic fuzzy sets are derived
from their pointwise and blockwise representations.

For the rest of this section, let PAS(I) and
PAS([0,1]) be two Pawlak approximation spaces
defined on the intervals I and [0,1] with the catego-
rizations SI = {x0 = 0,x1, . . . ,xn} and P[0,1] = {y0 = 0,
y1, . . . ,ym = 1}. In addition, let f ∈ [0,1]I be a rough
function attached to the (SI ,P[0,1])–coordinate system.

According to Definition 2 , f , f ∈ [0,1]I , that is,
the pointwise (SI ,P[0,1])–lower and upper approxi-
mations of f are fuzzy sets. Moreover, f ≤ f also
holds. Hence, f IV FS

pw = [ f , f ] forms an interval–valued
fuzzy set. Then, the function pair f IFS

pw = ( f ,1− f )
forms an intuitionistic fuzzy set. (The subscript “pw”
refers to “pointwise”.)

In the intuitionistic fuzzy set theory context, f and
1− f are the IFS membership and nonmembership
functions, respectively, and π

−
f = 1− f − (1− f ) =
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f − f is the IFS indeterminacy function.

Similarly, according to Definition 3 , f
←→

,
←→
f ∈

[0,1]I , that is, the blockwise (SI ,P[0,1])–lower and
upper approximations of f are also fuzzy sets, and
f
←→
≤←→f holds, too. Hence, f IV FS

bw =
[

f
←→

,
←→
f
]

forms
an interval–valued fuzzy set, and so the function pair
f IFS
bw =

(
f
←→

,1−←→f
)

is an intuitionistic fuzzy set.
(The subscript “bw” refers to “blockwise”.)

In terms of intuitionistic fuzzy set theory, f
←→

and

1−←→f are the IFS membership and nonmembership
functions, respectively, and π←→f = 1− f

←→
− (1−←→f )

=
←→
f − f
←→

is the IFS indeterminacy function.

Intuitionistic fuzzy sets f IFS
pw and f IFS

bw are derived
from f with respect to a (SI ,P[0,1])–coordinate sys-
tem. They are called the pointwise and blockwise
roughly derived intuitionistic fuzzy sets.

There are many different geometric interpreta-
tions of intuitionistic fuzzy sets. For our purposes,
the so–called “unit segments” representation will be
appropriate (cf. (Atanassov, 1999), Figure 1.3.).
Figure 3 in this way depicts the geometric interpre-
tations of f IFS

pw = ( f ,1− f ) and f IFS
bw = ( f

←→
,1−←→f ) .

Accordingly, in Figure 3 (a), unit segments f (x),
f (x) − f (x), and 1 − f (x) are assigned to every
x ∈ I; correspondingly, in Figure 3 (b), unit segments
f
←→

(x),
←→
f (x)− f

←→
(x), and 1−←→f (x) are assigned to

every x ∈ I.

Proposition 1. The both inclusion relations

f IFS
pw = ( f ,1− f )⊆ f IFS

bw = ( f
←→

,1−←→f ) (1)

f IFS
bw = ( f

←→
,1−←→f )⊆ f IFS

pw = ( f ,1− f ) (2)
fail in general.

Proof. Due to Lemma 1 , in general,

• f ≤ f
←→

fails in the case of Equation 1 , and

• 1−←→f ≥ 1− f fails in the case of Equation 2 . �

Proposition 2. Let f IFS
pw and f IFS

bw be the pointwise
and blockwise roughly derived intuitionistic fuzzy
sets. Then, f IFS

pw (xi) = f IFS
bw (xi) for every xi ∈ SI

(i ∈ [n]) categorization point.

Proof. f IFS
pw = f IFS

bw ⇔ ( f ,1− f ) = ( f
←→

,1−←→f ) ⇔

f = f
←→

and f =
←→
f . Then, the statement follows from

the fact that f (xi) = f
←→

(xi) and f (xi) =
←→
f (xi) for

every xi ∈ SI (i ∈ [n]) categorization point. �

Example 3. According to Figures 2 (a) and 2 (b),

• f (x0) = f
←→

(x0) = y0 = 0, f (x1) = f
←→

(x1) = y2,

f (x2) = f
←→

(x2) = y3, f (x3) = f
←→

(x3) = y2,

f (x4) = f
←→

(x4) = y2, f (x5) = f
←→

(x5) = y2.

• f (x0) =
←→
f (x0) = y1, f (x1) =

←→
f (x1) = y3,

f (x2) =
←→
f (x2) = y3, f (x3) =

←→
f (x3) = y3,

f (x4) =
←→
f (x4) = y3, f (x5) =

←→
f (x5) = y3. �

Linked to the indeterminacy functions π
−
f and

π←→f , pointwise and blockwise indeterminacy regions
Π
−
f and Π←→f are defined by

Π
−
f = {(x,y) | x ∈ I, y = f (x) = f (x) or

y ∈ ] f (x), f (x)[ if f (x) 6= f (x)};

Π
←→
f =

{
(x,y) | x ∈ I, y = f

←→
(x) =

←→
f (x) or

y ∈
]

f
←→

(x),
←→
f (x)

[
if f
←→

(x) 6=←→f (x)
}

Example 4. In Figures 3 (a) and 3 (b), the areas filled
with grid pattern and solid circles depict the indeter-
minacy regions Π

−
f and Π←→f , respectively. �

Having defined the indeterminacy regions, let us
define two families of functions with the help of them:

G−f = {g | g : I→ [0,1],(x,g(x)) ∈Π
−
f },

G←→f = {g | g : I→ [0,1],(x,g(x)) ∈Π
←→
f }.

Example 5. In Figures 4 (a) and 4 (b) show a function
g from G−f and a function g′ from G←→f , respectively.�

Proposition 3. Let f be a rough real function. Then,

1. Π
−
f ⊆Π←→f .

2. Π
−
f = Π←→f if and only if f IFS

pw = f IFS
bw .

Proof. 1. Case x ∈ I, f (x) 6= f (x). Applying Lemma

1 , ] f (x), f (x)[ ⊆
]

f
←→

(x),
←→
f (x)

[
, and so

{(x,y) | x ∈ I,y ∈ ] f (x), f (x)[}

⊆
{
(x,y) | x ∈ I,y ∈

]
f
←→

(x),
←→
f (x)

[}
Case x ∈ I, f (x) = f (x). If x′ ∈ SI , then

f (x′) = f (x′) = f (x′) = f
←→

(x′) =
←→
f (x′).

Thus, (x′, f (x′)) ∈ {(x,y) | x ∈ I,y = f (x) = f (x)},
and (x′, f (x′)) ∈

{
(x,y) | x ∈ I,y = f

←→
(x) =

←→
f (x)

}
also holds.
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(a) (b)

Figure 3: Geometric interpretations of f IFS
pw = ( f ,1− f ) and f IFS

bw = ( f
←→

,1−←→f ).

(a) (b)

Figure 4: A function g from G−f , and a function g′ from G←→f .

Let x′ /∈ SI . It may occur that

f (x′) = f (x′) = f (x′) = f
←→

(x′) =
←→
f (x′).

Then, (x′, f (x′))∈ {(x,y) | x∈ I,y= f (x) = f (x)} and

(x′, f (x′))∈
{
(x,y) | x∈ I,y = f

←→
(x) =

←→
f (x)

}
holds

at the same time.
If f
←→

(x′) 6=←→f (x′), then (x′, f (x′))∈{(x,y) | x∈ I,

y = f (x) = f (x)}, and, due to Lemma 1 , (x′, f (x′)) ∈{
(x,y) | x ∈ I,y ∈

]
f
←→

(x),
←→
f (x)

[}
also holds.

2. (⇒) It should be proved that “Π
−
f = Π←→f

implies f IFS
pw = f IFS

bw ”. Instead, its contrapositive form
“ f IFS

pw 6= f IFS
bw implies Π

−
f 6= Π←→f ” will be proved.

On one hand, f IFS
pw 6= f IFS

bw ⇔ ( f ,1 − f ) 6=
( f
←→

,1−←→f )⇔ f 6= f
←→

or f 6=←→f . On the other hand,

according to point 1. of this Proposition, Π
−
f 6= Π←→f

⇔Π←→f 6⊆Π
−
f .

Let us assume that f 6= f
←→

(the case f 6=←→f can be

proved similarly). Then, there is an x′ ∈ I in such

a way that f
←→

(x′) < f (x′). Hence, there is an

h ∈ G←→f in such a way that f
←→

(x′)< h(x′)< f (x′).

If f
←→

(x′)< h(x′)< f (x′)< f (x′)≤←→f (x′), then it

is straightforward that (x′,h(x′)) ∈
]

f
←→

(x′),
←→
f (x′)

[
,

but (x′,h(x′)) /∈ ] f (x′), f (x′)[. In other words,
(x′,h(x′))∈Π←→f , but (x′,h(x′)) /∈Π

−
f , i.e., Π←→f 6⊆Π

−
f

satisfies.
If f
←→

(x′) < h(x′) < f (x′) = f (x′) ≤ ←→f (x′),

of course, (x′,h(x′)) ∈
]

f
←→

(x′),
←→
f (x′)

[
also holds.

In addition, h(x′) 6= f (x′) = f (x′). Therefore, in
this case, (x′,h(x′)) ∈ Π←→f , but (x′,h(x′)) /∈ Π

−
f , i.e.,

Π←→f 6⊆Π
−
f also satisfies.

(⇐) It is straightforward. �

Example 6. In Figures 3 (a), (b), it can be observed
that the area of the pointwise indeterminacy region
Π
−
f is included in the area of the blockwise indetermi-

nacy region Π←→f in accordance with Proposition 3 1.
As shown in Figure 3, f IFS

pw 6= f IFS
bw , in particular,
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(a) (b)

Figure 5: Π
−
f 6= Π←→f .

both f
←→
≤ f and f ≤←→f satisfy. It can be seen that

Π
−
f ⊆ Π←→f but Π

−
f 6= Π←→f in accordance with Propo-

sition 3 2. �

Example 7. Figure 2 (a) shows that the graph of f in-
tersects the horizontal line segments y = y1 at xi, and
y = y2 at xii. In Figure 5 (a), x′ ∈ ]xi,xii[ in such a
way that y0 = f

←→
(x′)< h(x′)< f (x′) = y1. Moreover,

h(x′) ∈
]

f
←→

(x′), f (x′)
[

= ]y0,y1[ and f (x′) ∈
] f (x′), f (x′)[=]y1,y2[.

In other words, the points (x′, f (x′)) and
(x′,h(x′)) are on the vertical line segment x = x′.
More precisely, (x′,h(x′)) is between the points
(x′,y0) and (x′,y1), and (x′, f (x′)) is between the
points (x′,y1) and (x′,y2).

Moving on for any x ∈ ]xi,xii[ and suitable func-
tions h ∈ G←→f , the points (x,h(x))’s form the rectan-
gular area ]xi,xii[ × ]y0,y1[ . 1 This area is filled with
diagonal up pattern in Figure 5 (b). It is belongs to
Π←→f but does not belong to Π

−
f . The area filled with

diagonal down pattern can be derived similarly. �

Corollary 1. Let f be a rough real function. Then,

1. G−f ⊆ G←→f .

2. G−f = G←→f if and only if f IFS
pw = f IFS

bw .

Proof. These statements immediately follow from
Proposition 3 . �

In Figure 4 (b), it can be observed that g′∈G←→f , but

f
←→
6= g′
←→

,
←→
f 6=
←→
g′ . This is because f

←→
=y0 < y2= g′

←→
on B1 =]x0,x1[ , and

←→
f = y4 > y3 =

←→
g′ on B5 =

]x2,x3[ . In other words, f IFS
bw 6= g′IFS

bw . This observa-
tion motivates the following definition.

1Here, × denotes the Cartesian product operation.

Definition 4. Let f IFS
pw and f IFS

bw be pointwise and
blockwise roughly derived IFSs.
• f IFS

pw is roughly strong if f IFS
pw = gIFS

pw for all
g ∈ G f , otherwise f IFS

pw is roughly weak.

• f IFS
bw is roughly strong if f IFS

bw = gIFS
bw for all

g ∈ G←→f , otherwise f IFS
bw is roughly weak. �

In the case of f IFS
pw , Figure 4 (a) suggests that f IFS

pw
is always roughly strong. That is what the following
proposition is about.

Proposition 4. For any pointwise roughly derived
IFS f IFS

pw , f IFS
pw is roughly strong, that is, f IFS

pw = gIFS
pw

for all g ∈ G−f .

Proof. Let g ∈ G−f . Then, (x,g(x)) ∈Π
−
f .

Case x ∈ I, g(x) ∈ ] f (x), f (x)[ . In this case,

g(x) ∈ ] f (x), f (x)[=]lP( f (x)),uP( f (x))[

= ]max{y∈P[0,1] | y≤ f (x)},
min{y∈P[0,1] | y≥ f (x)}[

= ]y j,y j+1[

= ]max{y∈P[0,1] | y≤ g(x)},
min{y∈P[0,1] | y≥ g(x)}[

= ]g(x),g(x)[ ,

where y j,y j+1 ∈ P[0,1] for some j ∈ [m[ .
That is,

f IFS
pw (x)= ( f (x),1− f (x))= (g(x),1−g(x))= gIFS

pw (x)

satisfies for all such x ∈ I that f (x) 6= f (x).
Case x ∈ I, g(x) = f (x) = f (x). Then, g(x) =

f (x) = f (x) = y j, where y j ∈ P[0,1] for some j ∈ [m].
And so g(x) = y j = g(x) = g(x).

That is, f IFS
pw (x) = gIFS

pw (x) also holds for all such
x ∈ I that f (x) = f (x). �
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Proposition 5. Let f IFS
bw be a blockwise roughly

derived IFS.
f IFS
bw is roughly strong if and only if f IFS

pw = f IFS
bw .

Proof. (⇒) On the contrary, let us assume that
f IFS
pw 6= f IFS

bw . Then, such a function g ∈ G←→f will be
constructed for which gIFS

bw 6= f IFS
bw holds. However, it

contradicts the condition that f IFS
bw is roughly strong.

f IFS
pw 6= f IFS

bw ⇔ ( f ,1 − f ) 6= ( f
←→

,1 −←→f ) ⇔

f 6= f
←→

or f 6=←→f . It us assumed that f 6= f
←→

, the case

f 6= ←→f can be proved similarly. However, due to
Proposition 2 , f (xi) = f

←→
(xi) satisfies for every xi ∈

SI (i ∈ [n]) categorization point. Then, there should
be an open interval Bi =

]
x i−1

2
,x i+1

2

[
∈ I/IS, where

i ≡ 1 (mod 2) (i ∈ [2n[ ) in such a way that f 6= f
←→

,
i.e., f
←→

< f on Bi.

The case f = f on Bi is not possible, because it

would imply that f = f = f
←→

=
←→
f on Bi. However, it

contradicts the condition that f
←→

< f on Bi.

When f 6= f on Bi, let g ∈G←→f with the constraint
that g(x)∈ ] f , f [ on Bi. It is possible, because ] f , f [⊆]

f
←→

,
←→
f
[

on Bi. Then, f
←→

< f = g
←→

on Bi, and so

f IFS
bw 6= gIFS

bw which is the requested contradiction.
(⇐) According to Proposition 4 , f IFS

pw is roughly
strong, and so f IFS

bw is roughly strong as well. �

4 ROUGH CONTINUITY AND
ROUGHLY DERIVED
INTUITIONISTIC FUZZY SETS

Rough continuity is a central notion in rough calculus
like the continuity in the classical real analysis.

Let I and J two real intervals with categorizations
SI and PJ as they are given above.

Definition 5 ((Pawlak, 1996)). A rough real
function f ∈ JI is (SI ,PJ)–continuous or roughly
continuous at x if

f (JxKIS)⊆ J f (x)KJp
.

Otherwise, f is (SI ,PJ)–discontinuous or roughly
discontinuous at x ∈ I.

f is (SI ,PJ)–continuous (roughly continuous)
on I′⊆ I if f is (SI ,PJ)–continuous at every point of
I′. Otherwise, f is not roughly continuous on I′. �

Proposition 6 ((Csajbók, 2019)). A rough real
function f ∈ JI is (SI ,PJ)–continuous at every x ∈ SI
roughly isolated point.

Definition 6 ((Csajbók, 2019)). The (SI ,PJ)-discon-
tinuity types of f ∈ JI are defined as follows.

The rough discontinuity of f is called
(1) the rough jump discontinuity of the first kind if it

is derived from touching a straight line y = y j for
some j ∈ [m];

(2) the rough jump discontinuity of the second kind if
it is derived from intersecting a straight line y= y j
for some j ∈]m[;

(3) any other type of discontinuity is called the rough
jump discontinuity of the third kind. �

Example 8. Figure 6 (a) depicts rough jump disconti-
nuities of the first and second type.
• f has the rough jump discontinuity of the first

kind at xvi because it is derived from touching the
straight line y = y3 at xvi:

f (JxviKIS) = f ([x4,x5])⊆ ]y2,y3]

6⊆ {y3}= J f (xvi)KJp
.

• f has the rough jump discontinuities of the
second kind at xi, xii, and xiv because they are
derived from intersecting the line segments y= y1,
y = y2, and y = y3, respectively. For instance,

f (JxiKIS) = f ([x0,x1])⊆ ]y0,y3]

6⊆ {y1}= J f (xi)KJp
.

The discontinuities at xii and xiv can be showed in
similar way.
It should be noted that f touches at x1 and in-

tersects at x2 the line segment y = y3 but f is still
continuous at both points. It can be seen that the
contact point is (x1,y3) and the intersection point is
(x2,y3), that is, their both coordinates are categoriza-
tions points.

In Figure 6 (b), f has rough jump discontinuities
of the third kind at xiii and xv:

f (JxiiiKIS) = f ([x2,x3])⊆ ]y2,y4[

6⊆ [y0,y1] = J f (xiii)KJp
;

f (JxvKIS) = f ([x3,x4])⊆ ]y2,y4[

6⊆ [y2,y3] = J f (xiii)KJp
.

Although, f is roughly continuous at x3 pursuant
to Proposition 6 , it may cause rough jump discontinu-
ities of the third kind in blocks ]x2,x3[ and/or ]x3,x4[,
specially, in ]x3,x4[ at xv. �
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(a) (b)

Figure 6: Rough discontinuities.

Proposition 7 ((Csajbók, 2019)). A rough real func-
tion f ∈ JI is (SI ,PJ)–continuous on I if and only if f
does not have rough jump discontinuity of any kind.

Proposition 8. A rough real function f ∈ JI is
(SI ,PJ)–continuous on I if and only if the blockwise
roughly derived IFS f IFS

bw is roughly strong.

Proof. (⇒) Since f is roughly continuous on I, then
f (JxKIS)⊆ J f (x)KJp

for all x ∈ I.
It is straightforward that on C j(∈ J/JP, j ∈ [2m]),

f
←→

=
←→
f = y j/2 if j ≡ 0 (mod 2), and f

←→
= y j−1

2
,

←→
f = y j+1

2
if j ≡ 1 (mod 2). Thus,

• f (x) = y j/2 on JxKIS if f (JxKIS) = J f (x)KJp
= C j

for some j ∈ [2m], j ≡ 0 (mod 2);
• y j−1

2
≤ f (x) ≤ y j+1

2
on JxKIS if f (JxKIS) ⊆

J f (x)KJp
=C j for some j ∈ [2m], j ≡ 1 (mod 2).

It means, considering the definition of Π←→f and
G←→f , that for all g ∈ G←→f , f IFS

bw = gIFS
bw , i.e., f IFS

bw is
roughly strong.

(⇐) On the the contrary, let us assume that f is
roughly discontinuous for some x ∈ I. Since f is
roughly continuous in every roughly isolated point,
see, Proposition 6 , x belongs to an open interval
Bi = JxKIS =

]
x i−1

2
,x i+1

2

[
∈ I/IS for some i ∈ [2n[ ,

i≡ 1 (mod 2).
First, it can be stated that f (JxKIS)∩ J f (x)KJp

6= /0,

because x ∈ JxKIS , and so f (x) ∈ f (JxKIS),J f (x)KJp
.

Moreover, there must be an x 6= x′ ∈ JxKIS in such
a way that f (x) 6= f (x′) and f (x′) ∈ f (JxKIS) but
f (x′) /∈ J f (x)KJp

, otherwise f (JxKIS)⊆ J f (x)KJp
would

be, which contradicts the assumption that f discontin-
uous at x.

It may occur that |J f (x)KJp
|= 1. It happens when

f (x) = f (x) = f (x), that is when f touches or inter-
sects a horizontal line segment y = y j at x.

Case |J f (x)KJp
=1. Then, J f (x)KJp

= {y j} for

some y j ∈ PJ , j ∈ [m] . Moreover, let us recall that
f (x′) 6= f (x) = y j.

First, let us assume that f touches the line segment
y = y j at x, i.e., f (x)= f (x)= f (x)=y j.

Let g ∈ G←→f with the constraint that g(x) = y j on
JxKIS . Such a function g exists, because f (x) = y j 6=
f (x′), and so

• f
←→

< y j ≤
←→
f if f (x′)< y j, or

• f
←→
≤ y j <

←→
f if f (x′)> y j

hold on JxKIS .
Then, f

←→
< g
←→

= y j on JxKIS if f (x′) < y j, while
←→g = y j <

←→
f on JxKIS if f (x′)> y j, i.e., f IFS

bw 6= gIFS
bw

which contradicts the condition that f IFS
bw is roughly

strong.
Secondly, let us assume that f intersects the line

segment y = y j at x. In this case, j ∈]m[, and f (x) =
f (x) = f (x) = y j. Hereinafter, the proof is similar to
the previous case.

Case |J f (x)KJp
|>1. Then, J f (x)KJp

=
[
y i−1

2
,y i+1

2

]
for some j ∈ [2m[ , j ≡ 1 (mod 2). Moreover, let us
recall that f (x′) /∈

[
y i−1

2
,y i+1

2

]
.

First, if f (x′) < y i−1
2

, let g ∈ G←→f with the

constraint that g(x) = y i−1
2

on JxKIS . Such a function

g exists, because f
←→

< y i−1
2
≤←→f holds on JxKIS .

Then, f
←→

< g
←→

= y i−1
2

on JxKIS , i.e., f IFS
bw 6= gIFS

bw ,

which contradicts the condition that f IFS
bw is roughly
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strong.
Secondly, if f (x′) > y i+1

2
, let g ∈ G←→f with the

constraint that g(x) = y i+1
2

on JxKIS . Such a function

g exists, because f
←→
≤ y i+1

2
<
←→
f holds on JxKIS .

Then, g
←→

= y i+1
2

<
←→
f on JxKIS , i.e., f IFS

bw 6= gIFS
bw ,

which contradicts the condition that f IFS
bw is roughly

strong. �

Corollary 2. A rough real function f ∈ JI is (SI ,PJ)–
continuous on I if and only if Π

−
f = Π←→f .

Proof. f is roughly continuous
⇔ f IFS

bw is roughly strong by Proposition 8
⇔ f IFS

pw = f IFS
bw by Proposition 5

⇔ Π
−
f = Π←→f by Propositions 3 2. �

Corollary 3. A rough real function f ∈ JI is (SI ,PJ)–
continuous on I if and only if G−f = G←→f .

Proof. f is roughly continuous
⇔ f IFS

bw is roughly strong by Proposition 8
⇔ f IFS

pw = f IFS
bw by Proposition 5

⇔ G−f = G←→f by Corollary 1 2. �

5 CONCLUSION AND FUTURE
WORK

Rough continuity is a central notion in rough calculus.
This paper has characterized the rough continuity in
three different ways in terms of intuitionistic fuzzy
set theory.

This characterization establishes a connection be-
tween the two theories of uncertainty management,
the rough set theory and intuitionistic fuzzy set
theory. It may allow the application of the means of
intuitionistic fuzzy calculus in rough calculus.

In the future, the investigations can be continued
in several directions. This article has addressed only
one important concept of rough calculus, namely, the
rough continuity. First of all, rough continuity has
some additional features, such as rough discontinuity,
rough Darboux property or Intermediate Value
Property (IVP). The question is how they could also
be captured with the help of IFS tools. Moreover,
the relationships between additional notions of rough
calculus and IFS can also be studied.

Classical Pawlak’s rough set theory has many
different generalizations. The question is whether
they can be captured with IFS tools in one way or
another.
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