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Abstract: An attempt is made to address the problem of classifying incomplete vectors using decision trees. The essence 
of the approach is the proposal that in supervised learning classification of incomplete vectors can be 
improved in probabilistic terms. This approach, which is based on the a priori probability of each value 
determined from the instances at that node of the tree that has specified values, first exploits the total 
probability and Bayes’ theorems and then the probit and logit model probabilities. The proposed approach 
(developed in three versions) is evaluated using 21 machine learning datasets from its effect or tolerance of 
incomplete test data. Experimental results are reported, showing the effectiveness of the proposed approach 
in comparison with multiple imputation and fractioning of instances strategy. 

1 INTRODUCTION 

Datasets are seldom complete and this can introduce 
biases, hence, incorrect predictions when using 
supervised machine learning models. The three most 
common tasks when dealing with incomplete data is 
to investigate the proportion (how much information 
is lost because of missing), the pattern (which values 
are missing) and the law generating the missingness 
(whether missingness is related to the study 
variables). When missing values are confined to a 
single variable we have a univariate pattern or 
univariate nonresponse. When the same cases miss 
instances on a set of variables we have a multivariate 
nonresponse pattern. The monotonic pattern occurs 
when missing a subject implies that other variables 
will be missing as well. Arbitrary patterns occur when 
any set of variables may be missing for any unit. 
Another missing data pattern could occur when two 
sets of variables are never jointly observed. Finally, 
there are cases where no clear pattern could occur 
(general non-response). (Little and Rubin, 1987; 
Schafer, 1996). 

Understanding the law generating the missing 
values seems to be the most important task since it 
facilitates how the missing values could be estimated 
more efficiently. If data are missing completely at 
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random (MCAR) or missing at random (MAR), we 
say that missingness is ignorable.  

For example, suppose that you are modelling 
systems engineering as a function of project 
management requirements. There may be no 
particular reason why some systems engineers told 
you about their project management requirement and 
others did not. Such data is considered to be MCAR. 
Furthermore, the requirements of managing a project 
may not be identified due to a given systems 
engineering task. Such data are considered to be 
MAR. MAR essentially says that the cause of missing 
data (project management requirements) may be 
dependent on the observed data (systems 
engineering) but must be independent of the missing 
value that would have been observed. It is a less 
restrictive model than MCAR, which says that the 
missing data cannot be dependent on either the 
observed or the missing data. For data that is 
informatively missing (IM), we have non-ignorable 
missingness (Little and Rubin, 1987), that is, the 
probability that a successful project is missing 
depends on the unobserved value of an engineering 
system itself. In other words, the missing data 
mechanism is related to the missing values. For 
example, software project managers may be less 
likely to reveal projects with high defect rates. 
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When missing features are encountered, some ad 
hoc approaches such as deleting the data vectors with 
missing values or imputation have been utilized by 
researchers to form a complete-data format. Deletion 
does not add bias if the data are missing completely 
at random (MCAR) but can lower the confidence of 
your supervised machine learning models because the 
sample size is reduced. Imputation means that 
predicted or representative values are filled in place 
of the missing data. If data are MCAR, imputation 
tends to produce and overconfident model due to the 
uncertainty that the values are artificially imputed.  
Some researchers have used sophisticated built-in 
system procedures to deal with the incomplete data 
problem such as C4.5 (Quinlan, 1993) and CART 
(Breiman et al., 1984) and probability estimation 
(Khosravi et al., 2020). 

The major contribution of the paper is the 
proposal that classifying incomplete vectors with the 
decision tree classifier can be performed in 
probabilistic terms. This approach is based on the a 
priori probability of each value determined from the 
instances at that node of the tree that has specified 
values.  

The rest of the paper is organised as follows. 
Section 2 briefly discusses the details of five missing 
data techniques (MDTs) that are used in this paper. 
The framework of the proposed probabilistic method 
is also introduced and described. Section 3 
empirically evaluates the robustness and accuracy of 
the new technique in comparison with multiple 
imputation and Quinlan’s fractioning of cases 
strategy on twenty-one machine learning domains. 
We close with a discussion and conclusions, and then 
directions for future research 

2 DECISION TREES AND 
MISSING DATA 

DTs are a simple yet successful technique for 
supervised classification learning. A DT is a model of 
the data that encodes the distribution of the class label 
in terms of the predictor attributes; it is a directed, 
acyclic graph in the form of a tree. The root of the tree 
does not have any incoming edges. Every other node 
has exactly one incoming edge and zero or more 
outgoing edges. If a node n has no outgoing edges we 
call n a leaf node, otherwise, we call n an internal 
node. Each leaf node is labelled with one class label; 
each internal node is labelled with one predictor 
attribute called the splitting attribute. Each edge e 
originating from an internal node n has a predicate q 

associated with it where q involves only the splitting 
attribute of n. 

Several methods have been proposed in the 
literature to treat missing data when using DTs. 
Missing values can cause problems at two points 
when using DTs; 1) when deciding on a splitting point 
(when growing the tree), and 2) when deciding into 
which child node each instance goes (when 
classifying an unknown instance). Methods for taking 
advantage of unlabelled classes can also be 
developed, although we do not deal with them in this 
paper, i.e., we are assuming that the class labels are 
not missing. 

The next section describes two MDTs that have 
been proposed in the literature to treat missing data 
when using DTs. These techniques are also the ones 
used in the simulation study in Section 3. 

2.1 Multiple Imputation 

Multiple imputation is one of the most attractive 
methods for general purpose handling of missing data 
in multivariate analysis. (Rubin, 1987; 1996) 
described MI as a three-step process. First, sets of M 
plausible values (M=5 in Figure1) for missing 
instances are created using an appropriate model that 
reflects the uncertainty due to the missing data. Each 
of these sets of plausible values is used to “fill-in” the 
missing values and create M “complete” datasets 
(imputation). Second, each of these M datasets can be 
analyzed using complete-data methods (analysis). 
Finally, the results from the M complete datasets are 
combined, which also allows the uncertainty 
regarding the imputation is taken into account 
(pooling or combining). 

There are various ways to generate imputations. 
(Schafer, 1997; Schafer and Graham, 2002) has 
written a set of general-purpose programs for MI of 
continuous multivariate data (NORM), multivariate 
categorical data (CAT), mixed categorical and 
continuous (MIX), and multivariate panel or clustered 
data (PNA). These programs were initially created as 
functions operating within the statistical languages R. 

NORM includes an Expectation-maximization 
(EM) algorithm for maximum likelihood estimation of 
means, variance and covariances. NORM also adds 
regression-prediction variability by using a Bayesian 
procedure known as data augmentation (Tanner and 
Wong, 1987) to iterate between random imputations 
under a specified set of parameter values and random 
draws from the posterior distribution of the parameters 
(given the observed and imputed data). These two 
steps are iterated long enough for the results to be 
reliable for multiple imputed datasets. The goal is to 
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have the iterates converge to their stationary 
distribution and then to simulate an approximately 
independent draw of the missing values (Wu, 1983). 
This is the approach we follow in the paper, which we 
shall now call EM multiple imputation (EMMI). The 
algorithm is based on the assumptions that the data 
come from a multivariate normal distribution and are 
MAR 

2.2 Fractioning of Cases (FC) 

Supervised learning algorithms, like fractioning of 
cases (FC), have been successfully used to handling 
incomplete data although they are generally more 
complex than ordinary statistical techniques. 
Supervised learning is a machine learning technique 
for learning a function from training data. The 
training data consists of pairs of input objects 
(typically vectors), and desired outputs. The output of 
the function can be a continuous value (called 
regression) or can predict a class label of the input 
object (called classification). 

Quinlan, (1993) borrows the probabilistic 
approach by Cestnik et al., (1987) by “fractioning” 
cases or instances based on a priori probability of 
each value determined from the cases at that node that 
has specified values. Quinlan starts by penalising the 
information gain measure by the proportion of 
unknown cases and then splits these cases to both 
subnodes of the tree as described briefly below. 

The learning phase requires that the relative 
frequencies from the training set be observed. Each 
case of, say, class C with an unknown attribute value 
A is substituted. The next step is to distribute the 
unknown examples according to the proportion of 
occurrences in the known instances, treating an 
incomplete observation as if it falls all subsequent 
nodes. 

For classification, Quinlan’s (1993) technique is 
to explore all branches below the node in question and 
then take into account that some branches are more 
probable than others. Quinlan further borrows 
Cestnik et al. (1987) strategy of summing the weights 
of the instance fragments classified in different ways 
at the leaf nodes of the tree and then choosing the 
class with the highest probability or the most probable 
classification. When a test attribute has been selected, 
the cases with known values are divided into the 
branches corresponding to these values. The cases 
with missing values are, in a way, passed down all 
branches, but with a weight that corresponds to the 
relative frequency of the value assigned to a branch.  

Both strategies for handling missing attribute 
values are used for the C4.5 system. Unfortunately, 

for FC, there are no assumptions made about the law 
generating the missing values. Thus, we shall assume 
that the data is MCAR. 

2.3 Probability Estimation Approach 

The proposed probabilistic approach to missing 
attribute values follows both branches from each node 
if the value of the attribute being branched on is not 
known. 

Given  mutually exclusive events , … ,   
whose probabilities sum to unity, then = ∑ |  (2.1) 

where  is an arbitrary event and |  is the 
conditional probability of Y assuming . This is the 
theorem of total probability. 

The total probability theorem and the definition of 
conditional probability (introducing an arbitrary 
event Z) may be used to derive | = ∑ | , |  (2.2) 

The missing value problem addressed in this paper 
can be defined as follows: 
Given: A decision tree, a complete set of training 
data, and a set of instances for testing described with 
attributes and their values. Some of the attribute 
values in the test instances are unknown. 
Find: A classification rule for a new instance using 
the tree structure given that it has an unknown 
attribute value and by using the known attribute 
values. 

Let  be the attribute associated with a particular 
node of the tree that could either be discrete or 
numerical. A discrete attribute has a certain number 
of possible values  and a continuous attribute may 
attain any value from a continuous interval. Each 
node is split into two sons (left and right sons). Hence, 
a new instance could either go to the left (L) or the 
right (R) of each internal node. Further, let  be the 
binarised value for attribute	 . Let C denote a class 
and let there be  classes, = 1,… , . 

The total probability theorem is used to predict the 
class membership of an unknown attribute value by 
computing the conditional probability of a class  
given the evidence of known attribute values. 

For individual j, divide the attributes in the tree 
into classes for both  (the known attribute values) 
and  (the missing attribute values). Then = ∑ ,  (2.3) 

where the sum is over all possible combinations of 
values that branch to the left (L) or right (R) at each 

Classifying Incomplete Vectors using Decision Trees

457



respective internal node, taken by the vector of the 
missing attribute values . For the unknown attribute 
values, the unit probability may be distributed across 
the various leaves to which the new instance could 
belong. These probabilities are going to be estimated 
to each class in three ways as explained below. 

For illustration purposes, suppose that from 
Figure 1 the values for  (categorical attribute) and 

 (numerical attribute) are missing, and  is the 
only numeric attribute with non-missing values.  

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1: Example of binary decision.  

Figure 1 An example of a binary decision tree 
from a set of 40 training instances that are represented 
by three attributes and accompanied by two classes. 
Figures in brackets are the number of instances in 
each terminal node for class 1 and 2, respectively. 
Figures in italic represent training data instances that 
branch to the right or the left of each internal node at 
each respective cut-off point. For purposes of space, 
we shall only look at the second case. 
First Case: Class membership for a new instance is 
predicted given that it will branch to the left of the 
internal node ), given that both  and  
have unknown attribute values. 

The probability that the predicted class 
membership will be class 1 given that it branches to 
the left at internal attribute 2 |  is computed 
as: 

| = | , , , | +| , , , | +| , , , | +| , , , |  (2.4) 

Similarly, | = | , , , | +| , , , | +| , , , | +| , , , | = 1 − |  (2.5) 

Second Case: Class membership for a new instance 
given that it will branch to the right of the internal 
node  is predicted, given that both  and  
have unknown attribute values. The class with the 
biggest probability is selected. We can define the 
probability that the predicted class membership will 
be class 1 given that it branches to the right of internal 
attribute 2 2 | and follows a similar pattern 
as the first case. 

2.3.1 Full Estimation of Probabilities from 
the Training Set (TSPE) 

From Figure 1, there is 1 class and 1 individual 
associated with 	 < 4061.5 , 	 < 3.5 , 	 < 21.5  , 1 class and 1 individual with , 

,  and so on. Also, one of the 7 	individuals 
(i.e. < 4061.5) has , , another 1 has ,  
and so on. Therefore, the estimated probability of 
membership of class 1 is given by: | = + ++ = 0.839 (2.6) 

Following from (2.6), | = 1 −| = 0.161 where |  and |  
are both estimated from the proportion of instances in 
the training set for which this is true, respectively. 

2.3.2 Approximation of Probabilities 
Estimated from Decision Tree (DTPE) 

From figure 1, the estimated probability of 
membership of class 1 is given by: | = 	 | , | +| , |                                         (2.7) 

where | , = | , | ,+ | , | ,= 46 615 + 79 915 = 1115 
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(17,1)
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(4,2) (7,2)
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therefore,  | ≈ 1115 2240 + 1718 1840 = 0.828 

Using (2.7),  | = 	 | , |+ | , |= 1 − | = 0.172 

2.3.3 Full Estimation of Probabilities from 
Training Data using Binary and 
Multinomial Logit Models (LPE) 

In this sub-section, the estimation of probabilities for 
the new probabilistic method is improved by using 
logistic regression (Agresti 1990; McCullough and 
Nelder, 1990) and multinomial logit techniques 
(Hosmer and Lemeshow, 1989; Long, 1998), 
individually. The binary logit model is used to 
estimate probabilities for those datasets that have two 
classes with the latter used to estimate probabilities 
for datasets with more than two classes. 

McCullugh and Nelder (1990) discuss how 
classification and discrimination problems as forms 
of modelling the relationship between a categorical 
variable and various explanatory variables are 
considered. It was shown how logistic regression 
techniques could be used for such a task. For 
example, suppose that there are two classes, 1 and 2, , and v attribute variables , … , . Then the 
probability that an object with values , … ,  
belongs to class 1 as a logistic function of , … ,  
could be modelled: | = ⋯⋯  (2.8) 

and then estimate the unknown parameters  from 
the training data on objects with known 
classifications. 

Binary logit models describe the relationship 
between a dichotomous response variable and a set of 
explanatory variables of any type. The explanatory 
variables may be continuous or categorical. Binary 
logit tries to model the logarithmic odds-ratio for the 
classification (dependent variable C) as a linear 
function of the  ‘input’ or attribute variables = , ,… , . 

For purposes of this paper, the binary logit model 
was not used to estimate probabilities based on all the 
attributes given in the dataset, but to estimate only the 
unknown probabilities of the given attributes 
specifically related to the problem. For each specific 
attribute, the values of the instances were made binary 
in accordance to the branching of that particular value 
at the internal node of the tree, i.e., whether the value 

branched to the left or the right at the internal node. 
For example, if the value branched to the left of the 
internal node of interest, it was recorded as 1. 
Otherwise, it was recorded as 2. 

For the two-class example discussed in Section 
2.3.1, the conditional probabilities involving only the 
class given in equations 3.3 and 3.4, could be 
estimated by the binary logit model in terms of the log 
odds ratio in the form: 

log = +  (2.9) 

where  is the k dimensional coefficient vector. The 
odds ratio is a factor of how many times the event ( ) 
is more likely to happen than the event ( ) given the 
knowledge of A. 

For an example | , ,  is estimated by log , ,, , = + + +  

Although the binary logit model finds the best 
‘fitting’ equation just as the linear regression does, the 
principles on which it does so are different. Instead of 
using the least-squares deviations criterion for the 
best fit, it uses a maximum likelihood method, which 
maximises the probability of getting the observed 
results given the fitted regression coefficients. 

We have talked about a model that could be used 
for a dependent variable that has only two possible 
categories or two classes for the example. We shall 
now look at a model that will be able to handle a 
three-classes or more type of problem. These models 
are known as multinomial logit regression (MLR) and 
have the following form: = ∑  for = 1,… , + 1 (2.10) 

which will automatically yield probabilities that add 
up to one for each j. 

To identify the parameters of the model, is 
set to 0 (a zero vector) as a normalisation procedure 
and thus: = ∑  (2.11) 

In the multinomial logit model, the assumption is that 
the log-odds of each response follow a linear model. 
Thus, the jth logit has the following form: log =  (2.12) 
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where  is a vector of regression coefficients for = 1,… , . This model is analogous to the LR model, 
except that the probability distribution of the response 
is multinomial instead of binomial and there are k 
equations instead of one. The k multinomial logit 
equations contrast each of categories = 1,… ,  with 
category k+1, whereas a single logistic regression 
equation is a contrast between successes and failures. 
If k = 1 the multinomial logit model reduces to the 
usual binary regression model. The multinomial logit 
model is, in fact, equivalent to running a series of 
binary logit models (Hosmer and Lemeshow, 1989, 
Long, 1998). 

The crucial difference between FC and the 
proposed approach is that whereas the proposed 
procedure considers only those instances belonging to 
that particular class for which an unknown instance 
would be classified, FC considers all the instances 
branching to that particular leaf node whose class is 
being predicted, and which would be given at the 
particular leaf node. For illustration purposes on how 
the proposed technique works, the reader is referred 
to Twala (2005). 

3 EXPERIMENTS 

3.1 Experimental Set-up 

In this section, the behaviour of the three proposed 
procedures against two approaches that have 
previously been proposed for handling unknown 
attribute values in test data when using DTs is 
explored utilizing twenty-one datasets obtained from 
the machine learning repository (Murphy and Aha, 
1992). 

The two current methods selected (EMMI and 
FC) are the ones which provided very good results in 
the experiments carried out in (Twala, 2005; Twala et 
al., 2008). The main objective is to compare the 
performance of the proposed methods(TSEPE, DTPE 
and LPE) with current approaches to deal with the 
problem of incomplete test data in terms of smoothed 
error rate and computational cost. EMMI is used as a 
baseline as it was clearly ‘the winner’ in previous 
experiments (Twala and Cartwright, 2005; Twala et 
al., 2005). Besides, since the proposed algorithm is 
superficially similar to FC (one of the most well-
known machine learning algorithm), it was of 
importance to explore how accurate it is relative to 
FC. 

To perform the experiment each dataset was split 
randomly into 5 parts (Part I, Part II, Part III, Part IV, 
Part V) of equal (or approximately equal) size. 5-fold 

cross-validation was used for the experiment. For 
each fold, four of the parts of the instances in each 
category were placed in the training set, and the 
remaining one was placed in the corresponding test. 
The same splits of the data were used for all the 
methods for handling incomplete test data. 

To simulate missing values on attributes, the 
original datasets are run using a random generator 
(for MCAR) and a quintile attribute-pair approach 
(for both MAR and IM, respectively). Both of these 
procedures have the same percentage of missing 
values as their parameters. These two approaches are 
run to get datasets with four levels of the proportion 
of missingness p, (0%, 15%, 30% and 50%). 

For each dataset, two suites were created. First, 
missing values were simulated on only one attribute. 
Second, missing values were introduced uniformly on 
all the attribute variables. For the second suite, the 
missingness was evenly distributed across all the 
attributes. This is the case for the three missing data 
mechanisms, which from now on shall be called 
MCARuniva, MARuniva, IMuniva (for the first 
suite) and MCARunifo, MARunifo, IMunifo (These 
procedures are described in Twala (2005). 

3.2 Experimental Results 

The performance of the MDTS is summarised in 
Figure 2. The best method for handling incomplete 
test data using DTs is EMMI, followed by LPE, FC, 
TSPE and DTPE, respectively. There also appears to 
be small differences in error rate between TSPE and 
DTPE, on the one hand, and LPE and EMMI, on the 
other hand. The differences between the two pairs of 
methods are significant at the 1% level. 

 

Figure 2: Current and new methods: confidence intervals of 
mean error rates (*). 

Figure 3 summarises the overall excess error rates 
for current and new testing methods against three 
amounts of missing values and the law generating the 
missing values. The error rates of each method of 
dealing with the introduced missing values are 
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Figure 3: Comparative results of current and new testing methods A) MCARuniva, B) MCARunifo, C) MARuniva, D) 
MARunifo, E) IMuniva, F) IMunifo.
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averaged over the 21 datasets. From Figure 3A, both 
EMMI and LPE are more robust to MCARuniva data 
while TSPE shows more deterioration in performance 
with an increasing amount of missing data. Figure 3B 
presents error rates of methods for MCARunifo data 
which are similar to results for the MCARuniva suite. 

The results in Figure 3C show TSPE as more 
effective as a method for handling MARuniva data 
than MCARuniva data. Results for MARunifo data 
shows a similar pattern of results to the one observed 
for MCARunifo data (Figure 3D). 

The results in Figure 3E show poor performances 
by TSPE and DTPE for IMuniva data. It can be seen 
from Figure 3F that results yielded by methods for 
IMunifo data are identical to results achieved by 
methods for MARunifo data. 

The results for the proportion of missing values in 
the test set shows increases in missing data 
proportions being associated with increases in error 
rates with the methods performing better when 
missing values are in all attributes than one. The 
results show IM values entailing serious deterioration 
in prediction accuracy compared with MCAR and 
MAR. Overall, the methods performed better when 
data was MCAR. 

It seems that the overall performance of LPE is 
rather effective on average compared with TSPE and 
DTPE, and also gives EMMI serious competition. 
The difference between the two methods (EMMI and 
LPE) was found to be not significant at the 1% level. 
This is the case for all the three missing data 
mechanisms. The slightly better performance of 
DTPE compared with TSPE in some situations, 
especially at higher levels of missing values, is rather 
surprising. This is because for this technique the 
probabilities are not estimated in the correct way but 
by using the information given on the tree. 

Due to the superior performance comparability of 
LPE and EMMI, we now present the trade-offs 
between the computational cost and the accuracy of 
all the five methods. 

Table 1: Computational cost of current and new methods. 

Method Smoothed 
error rate 

Time computation (s) 

TSPE 34.8 30.376 
DTPE 33.6 34.173 
LPE 25.3 39.321 
FC 27.1 41.368 

EMMI 24.9 47.289 

After an optimization process of the precision 
obtained and the computational time required in the 
computational calculations, highly precise results 
were achieved for LPE compared to the EMMI and 

FC while requiring the least amount of time possible. 
However, DTPE has the smallest overall 
computational time, followed by TSPE (Table 1). 

4 REMARKS AND 
CONCLUSIONS 

Our main contribution is the development of a 
probabilistic estimation algorithm for the 
classification of incomplete data. By making a couple 
of mild assumptions, the proposed approach solves 
the incomplete data problem in a principled manner, 
avoiding the normal imputation heuristics. 

It appears that the main determining factor for 
missing values techniques, especially for smaller 
percentages of missing values, is the missing data 
mechanism. However, as the proportion of missing 
values increases, the distribution of missing values 
among attributes becomes very important and the 
differences in performance by the MDTs begin to 
show. 

The comparison with current methods also 
yielded a few interesting results. The experiments 
showed all the techniques performing well in the 
presence of MCAR data compared with MAR data. 
These results are in support with statistical theory and 
to our prior results reported in Rubin and Little 
(1987). Also, it was not surprising that all the 
techniques struggled with IM data (which is always a 
difficult assumption to deal with). 

Poor performances by DTPE and TSPE are 
observed with superior (comparable) performances 
by LPE and MI. The strength of LPE lies in its ability 
of not repeating the same process of determining the 
probabilities whenever a new instance that needs to 
be classified comes along (i.e., it uses the already 
available information to predict the class of that new 
instance). This saves a lot of computational time, 
which is one of the main strengths of this technique. 
Besides, LPE does not make representational 
assumptions or pre-supposes other model constraints 
like MI. Therefore, it is suitable for a wide variety of 
datasets. 

Several exciting directions exist for future 
research. One topic deserving future study would be 
to assess the impact of missing values when they 
occur in both the training and testing (classification) 
sets. Also, so far we have restricted our experiments 
to only tree-based models. It would be interesting to 
carry out a comparative study of tree-based models 
with other (non-tree) methods such as neural 
networks or naïve Bayes classifier.  
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LPE was also applied to twenty-one real-world 
datasets. This work could be extended by considering 
a more detailed simulation study using much more 
balanced types of datasets required to understand the 
merits of LPE, especially larger datasets. 

In sum, this paper provides the beginnings of a 
better understanding of the relative strengths and 
weaknesses of MDTs and using DTs as their 
component classifier. It is hoped that it will motivate 
future theoretical and empirical investigations into 
incomplete data and DTs, and perhaps reassure those 
who are uneasy regarding the use of non-imputed data 
in prediction. 
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