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Abstract: The use of automatically calculated metrics for the evaluation of ontologies can provide impartial support for 
knowledge engineers. However, even though the use of ontological representations is unabated – in opposite 
expected to rise through the increasing use of AI technologies – most ontology evaluation tools today are no 
longer available or outdated. At the same time, due to the growth of the computational cloud, service-driven 
architectures are on the rise, and enterprises tend to prefer to consume services in a platform- or software as 
a service model. In this paper, we argue that the change of the IT-landscape also requires a change in how we 
offer and consume ontology metrics. This hypothesis is backed by an industrial use-case of Robert Bosch 
GmbH and their application of ontologies, as well as their need and requirements for ontology evaluation. It 
motivated the extension of the tool OntoMetrics with a REST-interface, offering a public endpoint for 
ontology metrics on the Internet.

1 INTRODUCTION 

Ontologies, widely regarded as „a formal 
specification of a shared conceptualization” (Borst, 
1997), are not new to the scientific community. The 
importance of an ontological knowledge exchange 
format for AI was outlined by Matthew Ginsberg as 
soon as 1991 (Ginsberg, 1991). With the introduction 
of the Semantic Web in 2001, where ontologies 
intermediate a meaning between the representation 
and data layer (Berners-Lee et al., 2001) and 
recommendation of the W3C for RDF, RDF(S), and 
OWL a little later, this technology got attention from 
a broader set of audience and is now being used by 
various research disciplines or industries like 
medicine, biology, geography, astronomy, defense, 
automotive or aerospace (Grau et al., 2008, p. 309). 
The possible applications for computational 
ontologies are diverse. Examples are, among others, 
the knowledge management system of the food and 
agriculture organization of the united nations, where 
all reports of the fisheries and aquaculture department 
are integrated into a network of ontologies for 
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enhanced information sharing, at the same time 
enlarging the open linked data repository (Caracciolo 
et al., 2012) or the storing of genomes, their 
molecular functions, locations or biological processes 
(Kelso et al., 2010). Ontologies are even used in the 
security-sensitive military branch, allowing queries 
like “which helicopters are used only for attacking” 
(Mishra & Jain, 2019). 

However, with the beginning of the introduction 
of ontologies in various branches, a problem arose. 
The classical engineering processes, like the 
“Ontology Engineering Methodology” (Sure et al., 
2009) or the distributed NeOn Methodology (Suárez-
Figueroa, Gómez-Pérez, & Fernández-López, 2012), 
heavily build on the involvement of knowledge 
engineers for the engineering of the ontology itself. 
But not only are ontology engineers a scarce resource 
(Suárez-Figueroa, Gómez-Pérez, Motta, & Gangemi, 
2012), often the development of large ontologies is 
highly decentralized and requires a participative, self-
organizing structure of domain experts. 
Methodologies like DILIGENT (Pinto et al., 2009) 
propose a framework for this changing landscape by 
putting more responsibilities on the domain experts 
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and end-users, withdrawing the knowledge engineer 
to a controlling and advisory role. 

This puts the validation of the quality of an 
ontology at an even more central position. Many 
quality criteria like accuracy, adaptability, clarity, 
completeness, computational efficiency, conciseness, 
consistency, or organizational fitness (Vrandečić, 
2009) are highly desirable. But the path to the perfect 
ontology or even the measurement of such is difficult 
to achieve. Even the quality ratings of experienced 
knowledge engineers tend to be highly subjective 
without a formal guideline (Tankeleviǧiene & 
Damaševičius, 2009, p. 135). The application of 
automatically calculated metrics within the 
evaluation approach can guide the rating and, 
therefore, the quality assessment of ontological 
representations and offers an objective foundation for 
the interpretation of fitness for a given task. Metrics 
can support the evaluation of ontological 
representations. The propagation of metrics was the 
main driver for the development of the first GUI tool 
“OntoMetrics” (Lantow, 2016). To widen the usage 
of ontology metrics, we extended the OntoMetrics 
web tool with a RESTful-API. We want to enable a 
smooth integration of metrics for future applications 
by allowing users to consume ontology metrics in a 
convenient, service-driven model.  

The rest of the paper is structured as follows: 
Section 2 illustrates the landscape of cloud-driven 
ontology services. In Section 3, we present the current 
usage scenarios and challenges regarding the use of 
ontologies and ontology evaluation of Robert Bosch 
GmbH. Section 4 is concerned with the capabilities 
and architecture of OntoMetrics, followed by the 
conclusion and an outlook on future research with the 
newly developed API. 

2 RELATED WORK 

Over the past years, various ontology evaluation tools 
were developed, ranging from manual procedures to 
semiautomated and fully automated approaches. This 
related work section focusses on the latter – software 
that allow the calculation of metrics without human 
involvement. 

The developed automatic evaluation tools focus 
on different aspects like coupling, structure, coverage 
or correctness and differ in their integration 
approaches, ranging from web- or application-based 
standalone tools (examples are OntoMetrics (Lantow, 
2016) or OntoQA (Tartir et al., 2005)) to such 
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integrated with larger development suites (examples 
are Swoop (Kalyanpur et al., 2006) or Protégé 
(Musen, 2015)). However, a lot of the software 
developed is no longer available or heavily outdated. 
To the best of our knowledge, there is currently just 
one tool available with similar functionality, 
developed by the Universidad de Murcia5. While their 
OQuaRE based approach allows the direct calculation 
of statistical relevant correlations and clusters within 
the datapoints, it has less functionality regarding the 
variety of different measurements and also does not 
provide class-specific metrics (Franco et al., 2020). 
Table 1 gives some examples without raising a claim 
to completeness. 

Table 1: Ontology evaluation tools. 

Software Category Availability
Swoop 
(Kalyanpur et al., 
2006)

Web Ontology-
Editor 

Last Update 
from 2007 

OntoQA 
(Tartir et al., 2005)

Standalone 
Evaluation Tool 

Last update from 
2010 

OntoMetrics 
(Lantow, 2016)

Web Evaluation 
Tool

Available and 
Usable 

Protégé 
(Musen, 2015)

Ontology 
Editor

Available and 
Usable 

ODEval 
(Corcho et al., 
2004)

Standalone 
Evaluation Tool 

Not available 

OntoKBEval 
(Qing Lu & Volker 
Haarslev, 2006)

Standalone 
Evaluation Tool 

Not available 

OntoKeeper 
(Amith et al., 2019)

Web-Tool 
Not publicly 
available 

OQuaRE Metrics 
Calculation 
(Franco et al., 
2020)

Web-Tool & 
Rest Service 

Available and 
Usable 

This sets up the motivation for our research: We 
strongly believe that ontologies will play an important 
role in the future, providing a structured 
representation of knowledge for the integration 
within artificial intelligence. At the same time, most 
ontology evaluation tools are no longer available or 
outdated. Rostock University still offers a functioning 
web-based evaluation tool, which led to the 
collaboration with the Robert Bosch GmbH. Having 
insights in the usage scenarios of ontologies and the 
need for evaluating and measuring ontologies in such 
a large corporation, we argue that as much as the 
usage of ontologies has changed from expert 
knowledge representation to a versatile tool in the 
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toolbox of AI, the evaluation tools have to change as 
well. 

Cloud services more and more replace or 
complement former on-premise applications in 
almost all areas of IT, including semantic 
technologies, as they offer highly sophisticated 
technologies and infrastructure as a service, thus 
allowing the usage of these artifacts without the need 
for investments in expertise and hardware. There are 
already adaptions of ontological services for the 
cloud: Flahive et al. proposed extracting and 
replacing methodologies for tailoring sub-ontologies 
out of large domain ontologies using cloud services 
(Flahive et al., 2013). WebProtégé is a popular cloud-
based editor for collaborative ontology modeling 
(Tudorache et al., 2013). Poveda-Villalón et al. 
developed the OntOlogy Pitfall Scanner (OOPS) for 
detecting anomalies within ontologies. The service is 
available through a GUI and a RESTful interface 
(Poveda-Villalón et al., 2014). VoCol is a git-based 
version control system, including validation, 
querying, analytics, visualization, and documentation 
(Halilaj et al., 2016). The OQuaRE tool by (Franco et 
al., 2020) provides a web- and REST-interface for 19 
different metrics. However, currently, there is no 
cloud-based ontology metrics tool with the same 
measurement capabilities as OntoMetric available. 

3 INDUSTRIAL USE-CASE OF 
ROBERT BOSCH GmbH 

This section motivates the need for applying metrics 
as enhanced quality assurance mechanisms for 
ontologies and knowledge graphs, from the viewpoint 
of the industrial partner Robert Bosch GmbH. Bosch 
partners with University Rostock and benefits from 
using OntoMetrics in multiple ways and industrial use 
cases, as described in the following. 

Bosch is a large automotive and industrial 
company that is heavily investing in becoming one of 
the world-leading artificial intelligence (AI) 
companies. The Bosch Center for Artificial 
Intelligence (BCAI), which was founded in early 
2017 and had continuously been growing since then, 
employs over a hundred AI experts and is the 
spearhead of the AI research and enablement ongoing 
in Bosch. During the past years, the dominant AI 
technologies that have been developed and deployed 
are data-driven, subsymbolic approaches, in 
particular machine learning (ML) and deep learning 
(DL). This is changing, and symbolic approaches, in 
particular ontologies and knowledge graphs, are 

gaining strong momentum in many enterprises, 
including Bosch. The demand for knowledge 
engineering in industrial use cases is growing rapidly, 
but yet, we are rather at the beginning of a potentially 
long rise in knowledge graphs. Gartner identified 
knowledge graphs to be amongst the most important 
innovation triggers for artificial intelligence (Brant et 
al., 2019), as well as amongst the most promising 
emerging technologies of the year 2019 (Smith & 
Burke, 2019), with an estimation of 5 to 10 years of 
continuous growth. 

After long years of propagating semantic 
technologies, we finally see many lead architects and 
decision-makers understand the power of semantic 
technologies, which opens the doors for new 
industrial use cases in various domains. Furthermore, 
a huge potential of domain and application areas is 
still unexplored, yet to be discovered. We believe that 
there will be an even stronger demand and impact of 
ontologies and knowledge graphs in the industry than 
we have seen with ML and DL, as it does not depend 
on the availability of large amounts of data for 
training the algorithms, and as it can be applied for 
representing knowledge of practically any domain. 
But also Semantic AI or Explainable AI, currently 
emerging as an interdisciplinary novel AI approach 
from the combination of ML and knowledge 
representation, promises a big potential for years to 
come (Lecue, 2020). 

The universality of ontologies and knowledge 
graphs make them candidates for being applied in 
potentially all business sectors in Bosch, ranging 
from Mobility Solutions, over Industrial Technology, 
Consumer Goods, Energy and Building Technology, 
up to subsidiary companies like Healthcare Solutions, 
and business units such as Bosch Connected Industry. 
We see many different application areas for standard 
semantic technologies and challenges that they can 
help resolve, such as a semantic specification of our 
data, systems, and factories; the interoperable 
integration and interpretation of heterogeneous data; 
the formalization and application of expert 
knowledge, making products and services truly smart; 
device interoperability in multi-vendor and cross-
domain settings; formal validation of systems and 
products. There is already a series of success stories 
from past and ongoing projects in Bosch, for 
example, the application of knowledge graphs for 
searching enterprise data lakes (Schmid et al., 2019), 
the semantic search and reuse of autonomous driving 
data (Henson et al., 2019), formal model checking 
ontologies for the verification of autonomous driving 
(Kaleeswaran et al., 2019), the semantic 
interoperability and integration of manufacturing 
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(Mehdi et al., 2019) and IoT data (Svetashova et al., 
2019), semantic model extensibility (Svetashova, 
2018), the computerized engineering of building 
automation systems using knowledge graphs as 
integrated semantic information models (Dibowski & 
Massa Gray, 2020), and the application of semantic 
technologies for improved complaint management in 
commercial buildings (Massa Gray et al., 2020).  

A challenge, however, is the skills and expertise 
required for developing good ontologies and 
knowledge graphs. There is a large number of 
qualified engineers, software architects and 
developers skilled in conventional database 
techniques and programming languages available, but 
ontology experts or developers with a background in 
semantic technologies are low in number. The 
continuously growing demand in enterprises cannot 
be met by the job market, and the few ontology 
experts in an enterprise cannot support all ongoing 
modeling tasks. That is why the development of 
models and ontologies often needs to be driven by 
domain experts or developers, who lack that 
expertise, with only little guidance from ontology 
experts. Nonetheless, to make their work efficient and 
successful, they need mature software tools that 
support them in defining good ontology models on 
their own. This is where ontology metrics play an 
important role, as they can help to assess, ensure, and 
improve the quality of ontologies. Ontology metrics 
also help in determining the best ontologies from 
multiple competing ones, which has become a 
frequent task, as more and more ontologies have been 
developed, published, and shared on the Internet. 

We made a comprehensive study of available 
ontology metric approaches and solutions, both in 
scientific publications as well as in software tools. 
Since the metrics need to be available within a short 
time and without much human interaction (i.e., at no 
or little cost), we were particularly searching for 
metrics that can be computed automatically. That 
strongly limited down the available solutions to a few 
ontology tools that calculate and show some basic 
ontology metrics such as counts of classes, instances, 
different types of axioms, etc., e.g., Protégé and 
TopBraid Composer. However, that rather is an 
assessment in terms of quantity than quality. 
Academic solutions, on the contrary, either propose 
metrics that need time-intensive, costly assessment by 
human experts, or that are not available (anymore) for 
download or as online services. Fortunately, in 
OntoMetrics, we found a sophisticated online service 
that computes a comprehensive list of various 
ontology metrics at the push of a button. OntoMetrics 
excels all other solutions we could find in its 

comprehensiveness of metrics it can calculate. It is 
under active development, well documented, 
platform- and tool-independent, and the makers have 
been interested and supportive in enabling us to use 
OntoMetrics within the corporation. 

Over the past years, the IT landscape has 
undergone a tremendous change, as IT infrastructure 
and software architectures have moved from desktop 
applications and in-house server farms to web-based 
UIs, cloud-based infrastructure, and in-cloud data 
lakes. That saves cost at the enterprise side and 
improves flexibility, as it enables on-demand up- and 
downscaling of cloud resources (storage capacity, 
processing power). Semantic technologies fit very 
well into that new landscape since IRIs, 
dereferencability, and the OWL import mechanism 
allow for distributing and storing linked information 
in a decentralized way. The trend in the ontology 
domain goes into the same direction, as several 
ontology tools are now available as browser-based, 
collaborative development environments, e.g., 
WebProtégé, TopBraid EDG, and VoCol. 

The recent enhancement of OntoMetrics from a 
web-based tool, where a user specifies or uploads the 
ontology to be assessed in a web UI and afterward 
sees the results, to a standalone REST service is a 
perfect fit for the IT landscape of today and for Bosch. 
It enables other applications and services to call and 
connect with the offered REST APIs and enables 
them to trigger the metrics calculation and consume 
the results whenever needed. As a REST service 
running inside the Bosch network, we have 
accomplished an enterprise-wide availability of 
OntoMetrics, accessible, and usable from within the 
whole enterprise, without requiring local 
installations. It can be consumed from various tools, 
teams, and projects, independent of the operating 
system, programming language, or hardware being 
used. 

4 THE OntoMetrics TOOLKIT 

Lantow initially introduced the OntoMetrics platform 
in 2016 (Lantow, 2016) as a Java EE based web 
application. This section gives at first an overview of 
the GUI-accessible metrics engine and later presents 
the newly developed REST-interface. 
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Figure 1: Accessing the OntoMetrics API through the Firefox extension “RESTED”.

4.1 OntoMetrics Web Tool 

The tool OntoMetrics is publicly available at the 
server of Rostock University6. Using a simple user 
interface, one can paste ontology content in a textbox, 
a link to a web source, or upload an ontology file. The 
content must conform to RDF, RDF(S) or OWL and 
can apply a serialization via N3, turtle or RDF/XML. 
Overall, the metrics engine allows the calculation of 
81 distinctive measurements. These metrics are 
mainly based on publications by (Gangemi et al., 
2005) and (Tartir et al., 2005). Seventy-two of the 
measurements concern the ontology as a whole. They 
are grouped into nine categories, shown in the table 
below. Additionally, OntoMetrics calculates 9 class 
metrics for every class in the ontology, rating e.g., the 
connectivity or importance of a concept.  

Table 2: Categories of the OntoMetrics evaluation. 

Category Meaning 
Base Metrics 

 
Simple metrics measuring the 
number of ontology elements 
E.g. count of axioms, individuals, or 
object property links 

Schema Metrics Analyses the design of the 
ontology 
E.g. attribute richness, inheritance 
richness, or class-axioms ratio

Graph Metrics Analyses the taxonomy tree of the 
ontology 
E.g. depth, absolute root cardinality, 
or average number of paths 

Knowledgebase 
Metrics 

Analysis of individuals and 
ontology population 
E.g. average population, class 
richness, or number of leaf classes

Class Metrics Evaluation of single classes 
E.g. class readability, class inheritance 
richness, or class instances  

 

 
6 https://ontometrics.informatik.uni-rostock.de 

A full description of every metric, including the 
calculation formula, is available in the OntoMetrics 
wiki7. Before the analysis, it is possible to limit the 
evaluation to the categories that are needed. 
Especially the calculation of the Class Metrics 
requires a large amount of computational power. 
Their exclusion can significantly reduce the required 
calculation time. 

The output prints all metrics with the 
corresponding category and sub-category they belong 
to. For further analysis in a data analysis software, it 
is possible to download the metrics in an XML-file.  

4.2 OntoMetrics Rest-API 

Cloud software, especially in a software as a service 
architecture, has the potential to lower the entrance 
barrier for new technologies. Even though the 
previous sections motivated the relevancy of 
ontologies, their integration in various use-cases as 
well as the need for their evaluation, simple metric 
applications are scarce. The new OntoMetrics API 
indents to fill that gap by providing an easy to use 
programming interface for calculating ontology 
metrics. 

To evaluate an ontology from a web source, one 
can use a GET request on the endpoint 
http://opi.informatik.uni-
rostock.de/api with the parameter ?url 
pointing to the ontological resource. The full request 
should look like the following example for a query to 
the friend of a friend ontology: 

 
http://opi.informatik.uni-
rostock.de/api?url=http://xmlns.com/
foaf/spec/20140114.rdf 

 

7 https://ontometrics.informatik.uni-rostock.de/wiki/ 
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For assessing a local ontology that is not available at 
a web resource, it is possible to use a POST request on 
the same endpoint  
 

http://opi.informatik.uni-
rostock.de/api 

 
The ontology is then expected in the request body. 

The response is delivered in an XML serialization 
using the same top categories and terminology used 
in the GUI-version and presented in Table 2. The 
underlying computational engine is the same for the 
API, as well as for the web-application. Like in the 
GUI-version, the inclusion of class metrics 
significantly increases the response time and is 
therefore disabled by default. If the class-metrics are 
required, a header key named classmetrics with 
the value true enables the calculation. 

If the target ontology is not consistent with an 
RDF syntax or one of its extensions like OWL or 
RDF(S), the service throws an HTTP 400 error and 
returns an XML consisting of further information 
regarding possible causes.  
By default, all assessed ontologies are stored 
internally at Rostock University for further research 
purposes. This behavior can be disabled by adding the 
parameter save : false to the header. The 
response header contains the parameter saved : 
true if the ontology is stored on the server or saved 
: false if otherwise. 

Fig 1 displays an example query to the metrics 
service utilizing the firefox extension “RESTED”, 
with a declined database storage agreement and 
activated class metrics. 

5 CONCLUSION AND OUTLOOK 

Even though the semiotic based ontologies are a long-
existing, mature technology compared to other AI 
approaches, they have not become obsolete, but in the 
opposite, experience much attention with an 
increasing amount of use cases. However, as ontology 
engineers are a scarce resource, these ontologies are 
often developed not by knowledge engineering 
experts, but developers within a given domain. This 
boldens the need for automatic evaluation of the 
ontological artifacts to ensure a high level of quality 
and comparability between the different knowledge 
representations. 

The need for a software-based automatic 
evaluation has been established for several years. And 
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over this time, various tools have been developed. 
Nevertheless, most of these tools are not usable 
anymore due to outdated data formats, deprecated 
dependencies, or just unavailable online resources. 
OntoMetrics is one of the few tools that are still 
available for the upcoming rise in computational 
ontologies. With the newly developed API, we hope 
to lower the entrance barrier for the use of ontology 
metrics. The cloud-based approach shall allow an 
easy integration of the measurements in semantic 
driven applications, thus on the one hand, further 
spread the use of ontology metrics, on the other hand, 
allow us to collect valuable data for further research. 

The application scenarios of Robert Bosch GmbH 
highlight the need for further development and more 
research in the field of ontology evaluation. The 
extension of the OntoMetrics tool with an API is the 
first step to make ontology metrics more usable. The 
next planned feature is the integration of historical, 
evolutional data through the connection of a git-based 
repository service like GitLab or Github8. It is argued 
that through the analysis of the evolution of the 
measured values, statements regarding the current 
maturity of the research ontology can be derived. 
Also, the comparing of various evolutionary 
progressions could allow the inferring of 
recommendations for the next modeling steps under 
the consideration of their maturity. 

These are just two exemplary use-cases for the 
possible benefits of the analysis of historical ontology 
data. We think that there is a tremendous research 
potential in tapping these ontology repositories 
regarding explorative quantitative analysis, finding 
correlations between metrics, and deriving quality 
statements and recommendations.  
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