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Abstract: In this study, we consider a fault prediction problem for the case when there are no variables by which we 
could determine that the system is in the fault state. We propose an approach that is based on constructing 
auxiliary variable, thus it is possible to reduce the initial problem to the supervised learning problem of risk 
estimation. The suggested target variable is an indicator showing how close the system is to the fault that is 
why we call it a risk estimation variable. The risk is growing some time before the actual fault has happened 
and reaches the highest value in that timestamp, but there is a high level of uncertainty for the times when the 
system has been operating normally. We suggest specific criterion that takes uncertainty of risk estimation 
into account by tuning three weighting coefficients. Finally, the supervised learning problem with risk variable 
and specific criterion can be solved by the means of machine learning. This work confirm that data-driven 
risk estimation can be integrated into digital services to successfully manage plant operational changes and 
support plant prescriptive maintenance. This was demonstrated with data from a commercial circulating 
fluidized bed firing various biomass and residues but is generally applicable to other production plants.

1 INTRODUCTION 

The fault prediction problem appears in different 
industries. In many cases a fault causes serious 
damage to production or business processes, which 
comes to a loss of production efficiency and, 
consequently, money. Companies need extra 
resources to undo the damage of the fault, that is why 
preventing the fault is a better practice. By preventing 
the fault, we mean having an detection system that 
would indicate if the process is of the high fault risk 
and we need to do something to prevent the ongoing 
fault. This situation is typical for some industries, and 
many times a critical process fault can mean a big loss 
for the company. In (Paltrinieri and Khan, 2016) the 
importance of risk assessment is considered for 
chemical industries. Another example is the energy 
sector, where any unexpected load limitation or 
shutdown of a power unit can cause considerable 
economical losses. That is why it is very important to 
recognize if the situation is risky that one can prevent 
the system from the fault. In fault detection problem 
for the power plants there is no single performance 
indicator showing how close the system is to the fault. 

Rapidly evolving energy market sets challenges to 
traditional combustion-based power plants as it 
demands efficiency and flexibility in terms of fuel 
and load range. For example, the share of biomass as 
an energy source has increased significantly during 
recent years and it is expected to keep on increasing. 
In this paper we consider a real-world problem 
concentrating on boiler fault prediction in biomass-
fired circulating fluidized bed (CFB) power plants. 
These plants are extremely important and have not 
only the financial benefits, but also benefits for the 
environment as they can be used to replace fossil-fuel 
-based power generation. These plants can utilize 
challenging fuels such as biomass or waste residues 
efficiently, but the drawback is that these types of fuel 
may often cause different problems such as blockages 
in the material flow. Especially this concerns biomass 
fractions that include large amounts of alkali metals. 
Although the consequences of the blockages are 
serious, we still cannot measure the quality of the fuel 
accurately and need to control the process using the 
observational data coming from different other 
sensors. In this study we applied the proposed 
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approach to find patterns in a system state that takes 
place priorly to the fault. 

Most industrial processes are complex, so they 
cannot be designed faultless and cannot be properly 
modelled in advance. It is also hard to tell which 
observing variables could be used for detection of the 
cases when something is wrong with the process. 
Moreover, even the process experts cannot always list 
the states and conditions by which we could identify 
the situations when process could cause the system 
fault. If we could have an adequate mathematical 
model of the target system, it could be used to predict 
the future system state by the inputs and previous 
states. In that case, if we know the future system state, 
we can predict the fault. But due to complexity of the 
production process there is no mathematical model. 
But in the case when the most of processes 
characteristics are being monitored, we have 
observations, that we can use to build data-driven 
models. 

All the above lead the fault prediction to be based 
on analysis of the data that corresponds to stable 
functioning and the data that is prior to the fault. The 
goal of the prediction system is to identify the patterns 
that lead the system to the fault. It is important to 
mention that not all the fault prediction problems can 
be considered initially as a regression or classification 
problems. We consider a case, in which we only know 
the time the fault happened and there are only a few 
faults occurred during the comparatively large time 
interval. Here we need to reduce the initial problem 
to regression problem by adjusting the criteria and 
auxiliary variable construction. Then we apply 
statistical learning methods to the adjusted dataset to 
build up a prediction system. 

Machine learning algorithms are being widely 
utilized to find the relation between the input and the 
output of the system (Kuhn and Johnsson, 2016). 
There are studies on applying the machine learning 
algorithms for solving the fault prediction problem 
for supervised learning, but the most of these studies 
are focused on specific processes. Since the fault 
prediction requires recognition of specific patterns in 
data, that cause the system fault, by fault prediction 
we would mean the risk estimation problem. By risk 
we mean some variable, that indicates the degree of 
how dangerous the current situation is, this 
interpretation is a simplification of the risk definition 
done by (Kaplan and Garrick, 1981), so we are not 
estimating the consequences and probabilities. In 
(Paltrinieri et. al., 2019) the machine learning based 
approach is considered as a promising tool of solving 
risk estimation problems. The difference in 
approaches is the following: is in that paper there is a 

variable that can be used for risk estimation, and in 
our case, we need to construct it first. Other 
approaches of fault detection can be based on training 
model on labelled observations of the system with 
and without faults (Bondyra et al., 2018), but these 
approaches require observations for both regular and 
fault system states. In this study we are interested in 
recognition pre-fault state instead of the fault state.  

In study (Rakhshani et al., 2009) authors consider 
the fault prediction problem for a power plant boiler, 
where the risk estimation is based on the dataset with 
labeled observations. There is continuous variable 
that equals its max value for normal system states and 
min value for the faults. The risk estimation is the 
prediction of that variable and its values become the 
base for the fault detection system. Depending on the 
value, the state can be classified as normal, low fault 
risk and fault. But it could be too late to prevent the 
fault if we detect the fault by the time it has happened 
and this case we consider in this paper. It has also 
been considered in the study (Hujanen, 2019), where 
the problem was reduced to the classification problem 
and deep neural networks were applied to find a 
model. In this study we propose different approach, 
where the risk is assumed to grow constantly starting 
from the time prior to the fault. Also, the risk 
modeling is adjusted according to uncertainty of the 
actual risk level for the observations that is not in this 
prior to the fault interval, since there is no prior 
information that these observations are of the low or 
high risk. 

In this paper we describe the reduction of the 
initial fault detection problem, the way to construct 
the risk variable and adjusted criterion and making 
data-driven models. We also discuss the possibility of 
using the risk prediction models for identification of 
relation between different fault cases. 

2 RISK ESTIMATION 
APPROACH 

Today computational resources allow us to make the 
data-driven solutions based on the artificial neural 
networks and the other computationally intensive 
algorithms (Chollet and Allaire, 2018), (Goodfellow 
et al., 2016). These methods and their 
implementations are becoming more important in the 
era of Industry 4.0 (Brink et al., 2016), when the 
collected data could be analyzed and used as 
decision-making systems for improving 
performance. 

The considered process state can be characterized 
by different inputs that correspond to the sensor data 
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from the different parts of the boiler plant. Each of 
these inputs can be described as time series with fixed 
step size: ܺ ൌ ሼݔଵ, ,ଶݔ … , ,௦ሽݔ ܶ ൌ ሼݐଵ, ,ଶݐ … ,  ,௦ሽݐ
where ݏ is a sample size. We also know ݉ times at 
which the fault happened: ݐ௜

௙, ݅ ൌ 1,݉, so we assume 
that there had been some time before that, at which 
the risk began to grow. This time before the fault is a 
parameter ∆  of the proposed approach. We put 
forward a hypothesis, that there is no risk in any other 
timestamp, than timesteps before the fault limited by 
the parameter. We also assume that risk increases 
monotonically starting from zero, and it reaches its 
maximum value of one by the fault time, so the risk 
variable can be evaluated by the following function  

,ݐሺݎ ௙ሻݐ ൌ ቐ
ݐ െ ௙ݐ

∆
൅ 1, ௙ݐ െ ∆	൑ ݐ ൑ ,௙ݐ

0, ,݁ݏ݅ݓݎ݄݁ݐ݋
 (1)

where ݐ௙  is the fault time and ∆  is the parameter. 
Since there could be ݉  different faults, the risk 
function for whole observation time can be evaluated 
as a sum of single fault functions (1): 

ሻݐሺݎ ൌ෍ݎ൫ݐ, ௜ݐ
௙൯.

௠

௜ୀଵ

 (2)

We assume that there is always a normal system state 
between the different faults, so it is possible to find 
such ∆	that ∄݅, ݆, ௜ݐ	

௙ ൏ ௝ݐ
௙:	ݐ௝

௙ െ	ݐ௜
௙ ൏ ∆, so non-zero 

intervals of the risk functions are not overlapping. 
According to this approach, we need to find a relation 
between the system state variables and the risk 
feature. In this study we assume that the risk is 
increasing identically before any of the faults.  

We need to split the data on train and test sets to 
estimate the adequacy of model and its 
generalization. Since we work with time series, 
which consists of several intervals corresponding to 
several faults, we consider two splitting schemes. 
First option is to leave the data for one of the faults 
for the test and to keep other faults data for the train. 
This would help us to understand which faults have 
similar (or different) patterns corresponding to the 
risk increase. Second option is to split the data on two 
subsets, one before some date as train and validation 
and second after that date as test. In that case we can 
see, how good is historical data in predicting the 
future faults. To provide validation we used 
stratification, so train and validation contain 
observations from a common process and 
observations from the interval before the fault. 

As a modeling criterion we used the root mean 
square error 

 

ሻݎሺ̃ܫ ൌ ඩ෍൫ݎሺݐ௜ሻ െ ௜ሻ൯ݐሺݎ̃
ଶ

௡

௜ୀଵ

, (3)

where n is a test or validation subset size, ݎሺݐ௜ሻ, ݅ ൌ
1, ݊തതതതത are risks (2) at ݐ௜ timestamps and ̃ݎሺݐ௜ሻ, ݅ ൌ 1, ݊തതതതത 
are risk estimations at the same time points by the 
model. Since we cannot properly estimate the risk for 
the time, when no fault was detected and we cannot 
estimate the risk for time intervals right after the 
fault, we suggested to use specific weights for these 
errors in the sum (3): 

ሻݎ௪ሺ̃ܫ ൌ ඩ෍ݓሺݐ௜ሻ ∙ ൫ݎሺݐ௜ሻ െ ௜ሻ൯ݐሺݎ̃
ଶ

௡

௜ୀଵ

, (4)

where ݓሺݐሻ is a weighting function, 

ሻݐሺݓ ൌ ቐ
,௔௙௧௘௥ݓ ݐ ∈ ௔ܶ௙௧௘௥,

,௡௢௥௠௔௟ݓ ݐ ∈ ௡ܶ௢௥௠௔௟,
,௥௜௦௞ݓ ݐ ∈ ௥ܶ௜௦௞,

 (5)

and ௔ܶ௙௧௘௥  are the time intervals corresponding to 
states after the faults, ௥ܶ௜௦௞  are the time intervals 
before the faults and ௡ܶ௢௥௠௔௟ are the other intervals. 
Here ݓ௔௙௧௘௥ ௡௢௥௠௔௟ݓ ,  and ݓ௥௜௦௞  are weighing 
coefficients. These coefficients are used for 
increasing the influence of errors caused at the points, 
when the risk was growing and decrease the 
influence of errors of risk estimation for the time 
intervals for which the risk value is uncertain. 

The goal of our risk modelling approach is to 
estimate the risk of the current system state and to 
observe its dynamics for decision making. It means 
that we need to have model with optimal parameters 
∗ߙ , which is adequate in risk estimation and thus 
minimizing the criterion (4): 

ሻ൯∗ߙ|ݐሺݎ௪൫̃ܫ ൌ min
ఈ
ሻ൯, (6)ߙ|ݐሺݎ௪൫̃ܫ

where ̃ݎሺߙ|ݐሻ is the model prediction in case of its 
parameters ߙ. Data-driven model estimates the risk 
by process state variables, so 

ሻߙ|௜ݐሺݎ̃ ൌ ሻ, (7)ߙ|௜ሻݐሺݔሺݎ̃

and ݔሺݐሻ ൌ ,௜ݔ ௜ݐ	:݅ ൌ  .ݐ
The fault prediction problem is reduced to 

minimization problem (4), where we use specific 
weight coefficients (5). The solution of reduced 
problem is optimal model parameters (6), that we use 
to estimate a risk by system state variables. Now the 
risk estimation can be used for fault prediction and 
decision making, but this topic is out of the scope of 
the study. In the next chapter we discuss the way we 
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transform the state variables into risks (7) by solving 
the regression problem (6). 

3 DATA-DRIVEN RISK 
ESTIMATION 

In this study we consider the dataset, a collection of 
process variables measurements. We explicitly 
selected 54 variables, which, from the experts’ point 
of view, could be useful for the fault detection. The 
dataset contains 50879 observations and 8 different 
process faults. In this study we tried different time 
delta parameters and finally used ∆ൌ 2 hours. In case 
of this value and observation step size, there are only 
192 observations can be labelled as leading to the 
fault. It is typical that the faults occur uniquely, so 
there is imbalance between the number of 
observations of normal process state and the number 
of observations leading to the fault. 

We tried different machine learning algorithms, 
such as lasso regression, random forests, and 
artificial neural networks with different number of 
layers and perceptron, still the chosen one is 
beneficial. In this study we used deep neural network 
with 5 layers, containing 64, 64, 64, 32 and 1 
neurons, respectively. We added dropout for the 2nd, 
3rd and 4th levels: 0.5, 0.5 and 0.25, respectively. We 
used root mean square propagation as a learning 
algorithm with a batch size of 5000 and 100 
iterations. We used the Keras framework (Allaire and 
Chollet, 2018) for modeling, and the application were 
implemented in R (R Core Team, 2018). The weighs 
(5) for criterion (4) are set as following: ݓ௔௙௧௘௥ ൌ
௡௢௥௠௔௟ݓ ൌ ௥௜௦௞ݓ ,1 ൌ 10. The weights were tuned 
manually, but these weights tune the model 
sensitivity, and the desired sensitivity comes out of 
the business needs.   

As it was discussed in the previous chapter, we 
used two different cross-validation schemes. First, 
we use leave-one-out approach for the faults. We 
train and validate the model on all the data except the 
one of the faults, which is used for the final test. 
According to that, we solved 8 different regression 
problems, which correspond to 8 different faults. Due 
to randomness of the learning algorithms, we solve 
each problem 10 times for each case to evaluate the 
statistics. 

We separated the errors on the ones that model 
makes on the common system functioning, and the 
error in risk estimation in case of the fault. The 
minimum error values for common and risky states 
are given in Table 1 and Table 2, respectively. 

Table 1: Minimum error in risk estimation of the common 
process for cases when one fault is left for test and others 
were used to learn the model. 

Fault case to test Error minimum (common) 
1 1.746891e-05 
2 0.0003728659 
3 0.0004703251 
4 0.0001684821 
5 4.076825e-05 
6 6.904885e-06 
7 0.0001324624 
8 5.641435e-05 

Table 2: Minimum error in risk estimation of the process 2 
hours before the fault for cases when one fault is left for test 
and others were used to learn the model. 

Fault case to test Error minimum (fault) 
1 0.09567184 
2 0.1083031 
3 0.09283183 
4 0.08412199 
5 0.1146508 
6 0.1078044 
7 0.103839 
8 0.1143047 

As one can see, in Table 1 the average minimum 
value is less than 0.0002, but for 2nd, 3rd and 7th faults 
the risk estimation for the common state was not 
stable. This point will be proved by the risk 
estimation visualization below. The results in Table 2 
show us, that some faults cannot be predicted by the 
model trained on other faults, at least here is no risk 
increase at the ∆ interval before the test fault. 

Since it is hard to differentiate result only by the 
table values, let us visualize the risk estimation for all 
the considered problems. Figures 1-8 represent the 
risk modeling results in case of different fault cases 
used as test. 

If we compare Figures and Tables, we can see 
that some faults are predicted, since we see the 
increase of the risk near the fault time. This increase 
happens earlier, than it is being expected: not in ∆ 
interval prior to the fault. It means that the problems 
of this nature require specific metric. Metric which 
one can use to estimate if the risk prediction 
adequacy is a problem itself. In this study we put 
forward a hypothesis that the fault is expected during 
the similar time interval prior to the fault. In the 
further work we will consider another option of 
metric calculation and comparing the modeling 
results. 
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Figure 1: Fault risk estimation in case of the 1st fault left for 
the test. 

 

Figure 2: Fault risk estimation in case of the 2st fault left for 
the test. 

 

Figure 3: Fault risk estimation in case of the 3rd fault left for 
the test. 

 

Figure 4: Fault risk estimation in case of the 4th fault left for 
the test. 

 

Figure 5: Fault risk estimation in case of the 5th fault left for 
the test. 

 

Figure 6: Fault risk estimation in case of the 6th fault left for 
the test. 
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Figure 7: Fault risk estimation in case of the 7th fault left for 
the test. 

 

Figure 8: Fault risk estimation in case of the 8th fault left for 
the test. 

Now we consider the second validation scheme 
in which we use only one third of observations for 
train, leaving the rest of the data for the test. For the 
same model used we get the results that is presented 
in Figure 9. 

 

Figure 9: Risk estimation for the case when we use the 
observations before some date as train and leave another 
data as test. 

This experiment shows us, that the system 
predicts some of the faults, but it also shows some 

risk increase when there is common process. Of 
course, that could happen, because we used only 30% 
of data for the train, but even that amount of data is 
enough to demonstrate that the proposed approach is 
promising. We can see that some of the test faults 
caused the risk increase and we also see that this 
increase is greater than the one happens by mistake. 
To demonstrate the risk estimation right before the 
fault, we selected only ∆  intervals and give it in 
Figure 10 for train and test. 

 

Figure 10: ∆-interval risk estimations. 

In this chapter we examined proposed approach 
on solving the real-world biomass and residue fuels 
energy station problem. This approach is useful for 
analysis of the fault cases and the estimation of the 
risk. We considered two different cross-validation 
schemes and both schemes demonstrated promising 
results. 

4 CONCLUSIONS 

In this study we proposed the auxiliary risk feature 
and used it as a target variable for solving fault 
prediction problem. This variable represents the 
degree of how close the current situation is to the 
fault: the higher the risk is, the closer system is to the 
fault. To construct this variable, we used the fault 
datetime and the specific time parameter – the time 
prior to the fault, when we expect the risk to grow. 
Another part of the approach is to provide errors in 
risk estimation before the faults being more valuable 
for the model learning, than the errors on all the other 
intervals, on which the uncertainty is higher. The 
weigh parameter values should be tuned so it would 
provide the suitable balance between errors of both 
types: predicting high risk, when system runs 
normally, and predicting no risk, when there is high 
risk of the fault. This balance should be determined 
by the business needs and out of the scope of this 
study. 
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The proposed approach was applied to solve the 
fault detection problem for a CFB process based 
power plant burning various type of biomasses. 
These systems are expected to benefit from this kind 
of risk estimation system, so that one could be able 
to detect possible process disturbances in advance to 
buy time for remedial actions aimed at preventing a 
critical system failure that may eventually lead to a 
load limitation or an unexpected shutdown. This 
work confirm that data-driven risk estimation can be 
integrated into digital services to successfully 
manage plant operational changes and support plant 
prescriptive maintenance. This was demonstrated 
with data from a commercial circulating fluidized 
bed firing various biomass and residues but is 
generally applicable to other production plants. 
Moreover, data-based, digital predictive tools are 
expected to play a growing role in the future service 
business within the energy production sector as 
customers are expecting better availability and 
predictability combined with requirement to burn 
cheaper and challenging fuels. The considered 
approach is useful in revealing the similarities and 
differences for the faults and, thus, it is useful for 
further monitoring of the system state and for fault 
prediction. 

As a modeling approach we utilized the deep 
neural networks and the results shown in Tables 1 
and 2 and on Figures 1-10 demonstrates that the 
model gives promising results.  

We continue the research by applying another 
class of models and using the lagged inputs. Since the 
process is continuous and generally its state can be 
characterized by the states in the previous 
observation points, the promising option would be to 
use the convolutional and recurrent neural networks. 

The future studies involve developing specific 
metric that would help to compare the model 
accuracy more precisely. That would allow making 
automatic modeling system. Another part of the 
future studies is related to the risk time interval 
identification since it could be different for all the 
cases. Parameter estimation problem can be reduced 
to the global optimization problem, that is combined 
with modeling, so we will be able to find the risk 
parameters and corresponding models 
simultaneously. 
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