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Abstract: Text mining and text classification are gaining more and more importance in AI related research fields. Re-
searchers are particularly focused on classification systems, based on structured data (such as sequences or
graphs), facing the challenge of synthesizing interpretable models, exploiting gray-box approaches. In this
paper, a novel gray-box text classifier is presented. Documents to be classified are split into their constituent
words, or tokens. Groups of frequent m tokens (or m-grams) are suitably mined adopting the Granular Com-
puting framework. By fastText algorithm, each token is encoded in a real-valued vector and a custom-based
dissimilarity measure, grounded on the Edit family, is designed specifically to deal with m-grams. Through
a clustering procedure the most representative m-grams, pertaining the corpus of documents, are extrapolated
and arranged into a Symbolic Histogram representation. The latter allows embedding documents in a well-
suited real-valued space in which a standard classifier, such as SVM, can safety operate. Along with the
classification procedure, an Evolutionary Algorithm is in charge of performing features selection, which is
able to select most relevant symbols – m-grams – for each class. This study shows how symbols can be fruit-
fully interpreted, allowing an interesting knowledge discovery procedure, in lights with the new requirements
of modern explainable AI systems. The effectiveness of the proposed algorithm has been proved through a set
of experiments on paper abstracts classification and SMS spam detection.

1 INTRODUCTION

With the rapid evolution of Web-based Internet and
mobile applications, an exponential growth of un-
structured data in the form of web pages occurs.
Thus, social network sites, microblog textual sources,
IM sources, electronic papers and books have become
very challenging problems. Among these, text min-
ing - which means obtaining high-level information
from natural language text excerpts - and text cat-
egorization (TC) - meaning assignment of a given
text document to a class - can be considered. Text
mining is by now a really wide research area at
the intersection with Data Mining, Artificial Intelli-
gence, Natural Language Processing (NLP), Informa-
tion Retrieval (IR), Knowledge Management and Dis-
covery, corpus-based Computational Linguistics and
other Computer Science related disciplines (Feldman
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et al., 2007). Text categorization or text classifica-
tion (TC) is a sub-discipline that exploits Machine
Learning for solving a supervised learning problem,
where documents in a corpus are provided together
with well-suited labels, reflecting the meaning of the
category or topic in which the document falls.

In the context of information overload (too much
information, beyond the most relevant data) (Buck-
land, 2017), driven by Big Data applications, it is ex-
tremely useful having automatic procedures able to
deal with a huge amount of unstructured text data, for
summarization, knowledge discovery or classification
purposes.

On the other hand, natural language can be consid-
ered as a communication system, defined and work-
ing at the interface between biology and social inter-
actions (Kwapień and Drożdż, 2012). Natural lan-
guage arises from information processing and inte-
gration performed by different brain areas, hence pro-
duced by a real-world complex system. Moreover,
language has a hierarchical structure. A higher level
of language organization is formed by clauses and
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sentences which are the most important units of in-
formation transfer. In the case of written language,
information levels are organized in a hierarchy of en-
tities (characters, words, sentences, paragraphs, chap-
ters, documents, concepts and so on) (Kwapień and
Drożdż, 2012). This makes the problem of modeling
and mining text data more challenging, even from the
scientific point of view.

Heeman, from its own hand, some years ago
pointed out how text documents possess a well-
defined granular structure that can be divided in a
high-level structure and a low-level one (Heeman,
1992). While the high-level structure relies on the or-
ganization of a given document, the low-level struc-
ture reflects the hierarchical structure of the lan-
guage including characters, words, phrases, concepts,
clauses, sentences, paragraphs (Jing and Lau, 2009).
While words are the ground of semantic richness,
groups of words or sentences can be considered, at
a more advanced level of the hierarchy, as a basic
unit dealing with concepts, that are notoriously en-
tities richer than words.

The natural granular structure of text leads to find
better representation and processing paradigms solv-
ing related downstream language modeling problems.
Moreover, most of the techniques developed in Com-
putational Linguistics try to grasp the meaning of text
pieces with statistical measures on suitable text repre-
sentations, hence finding regularities and recurrences
within text data (Mikolov et al., 2013b). Granular
Computing (GRC) dates back to 2008 (Apolloni et al.,
2008) and provides a well-suited approach to repre-
sent text data through the notion of “information gran-
ules”, that are complex information entities which
arise in the process of data abstraction and knowl-
edge formation. Information granules are collections
of entities that originate at the numeric level and are
arranged together due to their similarity, functional
or physical adjacency, indistinguishability, coherency,
etc. (Yao, 2006)(Martino et al., 2018). The granular
processing paradigm allows to exploit the structure
of a data source, providing a multilevel hierarchical
view. Hence, this methodology leads to work to the
right hierarchical level represented by the structure of
the information granule (Martino et al., 2017). For
example, in text data the m-gram decomposition can
be seen as a text granulation procedure whose output
are small pieces of text or phrases. In TC problems
the GrC approach can help in finding regularities in
text data, building a performing classification system
able also to accomplish knowledge discovery tasks.

This paper deals with a TC system grounded on
the GrC approach that provides an interesting and
novel text embedding technique. The first step con-

cerns the text corpus granulation, randomly extracting
a suitable number of m-grams, i.e. information gran-
ules, of a given size. A per-class clustering procedure
is then performed providing a proper hard partition
of the space generated over a suitable numerical rep-
resentation of the m-grams, obtained, in turn, trough
a neural word embedding technique, performed on
each token within the m-gram. Hence, the informa-
tion granule is represented as a variable-length or-
dered word-vector, lying in a rich semantic space.
In this work word-vectors are obtained through fast-
Text (Bojanowski et al., 2016). The relatively new
fastText model among the variety of word embedding
techniques not based on the transformer architecture
(Vaswani et al., 2017) is found to perform better on
several language modeling tasks (Ritu et al., 2018).

As a further novelty, the adopted dissimilarity
measure within the clustering procedure is a custom-
based Edit distance, whose substitution cost is the Eu-
clidean distance between word-vectors. The last dis-
similarity metric allows measuring the dissimilarity
even between m-grams – as a set of word-vectors – of
different length. Once obtained the cluster model, the
m-gram representatives are interpreted as symbols of
a proper alphabet. The alphabet is used to estimate the
statistical distribution of symbols in a given test doc-
ument, through a proper membership rule. In other
words, this approach leads to represent each docu-
ment in a corpus as a Symbolic Histogram (SH) (Rizzi
et al., 2012), a real-valued vector of fixed length
useful for feeding standard Machine Learning algo-
rithms. The text mining GrC system consists, finally,
in an evolutionary optimization procedure in charge
of both finding the (sub-)optimal hyper-parameters of
the system and performing a wrapper-like features se-
lection over symbols of the SH representation. The
last optimization allows obtaining a simpler docu-
ment representation that is computationally efficient
and more interpretable. Specifically, a comparison
between two features selection approaches is made
by deciding at which step of the work-flow to bina-
rize the features selections weights, since they are
encoded in the GA as real-valued genes. Moreover,
the obtained symbols, that are small phrases, can be
used for interpreting the decision rule generated by
the learning system in assigning a class label, opening
to the knowledge discovery paradigm. Experiments
are conducted on different datasets. The first dataset is
a corpus of scientific paper abstracts for various topics
pertaining some published famous journals in English
language. The second one is a corpus of SMS adopted
for spam detection. Classification performances to-
gether with the extracted concepts underlying the m-
grams demonstrate the effectiveness of the GrC ap-
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proach in text mining and classification.
This paper is organized as follows.
In section 2 is carried out a deeper explanation

about the GrC TC system along with each work-
flow step. The experimental setup, results and per-
formance evaluations are reported and discussed in
section 3. Finally, conclusions are drawn in section
4.

2 THE GRANULAR COMPUTING
TEXT CATEGORIZATION
SYSTEM

2.1 A Quick Overview

This work aims at synthesizing a learning algorithm
for TC relying on NLP techniques, grounded on the
GrC approach, within the context of Text Mining. A
textual dataset D = {ti}n

i=1 composed by n documents
ti is preprocessed, achieving a granular tokenization
based on the GrC paradigm. The GrC model is gen-
erated by a per-class clustering process allowing to
define a suitable robust embedding procedure repre-
senting documents in Rk̃ through the SH approach.
In other words, we seek a suitable mapping M start-
ing from the document (unstructured) space D to real-
valued k̃-tuples, that is M : D→ Rn×k̃.

The overall documents corpus D is partitioned in
three disjoint sets, namely the training set ST R, the
validation set SVAL and the test set ST S.

Hence, during the learning phase document em-
bedding vectors in ST R can be fed to a standard clas-
sification algorithm, such as νSVM (Schölkopf et al.,
2000), where both the selection of hyper-parameters
and a wrapper feature selection procedure can be op-
timized by evolutionary meta-heuristics, driven by
the classification performances obtained on the val-
idation set SVAL as fitness function. Feature selec-
tion has been chosen as a profitable procedure for the
most relevant m-grams selection, both for improving
classification performances and the knowledge dis-
covery outcome. The global optimization capabili-
ties of Evolutionary Algorithms are exploited through
a wrapping approach, at a computational cost that is
worth the final result. In particular, it is used a GA that
encodes the cluster membership threshold adopted to
build the embedding (of which we will provide further
details), the SVM classifier hyper-parameters and the
features selection weights as its genes. The work-flow
is briefly synthesized as follows.

In line with the GrC paradigm, a set of information

units called m-grams1 is extracted from the dataset.
Each m-gram η is an ordered m-tuple of words (short
phrases), that is η = [w1,w2, ...,wm], whose maxi-
mum and minimum size is a meta-parameter set in
advance. Let the complete per-class set of m-grams
be χω, where ω is the generic class label. It is worth
to note that for a large document corpus the cardinal-
ity |χω| is combinatorial, thus a sub-sampling is per-
formed through a uniformly random extraction proce-
dure, where only a sub-set of cardinality ϑ · |χω| ,ϑ ∈
[0,1] is extracted and successively used.

These information granules create the knowledge
base for the construction of the embedding that is
the ground for the downstream classification proce-
dure. Furthermore, the adoption of m-grams, as a
set of words, together with the granular approach, al-
lows building an interpretable model that behaves as
a gray-box model.

The m-gram set is the information basin for the
per-class k-medoids-based clustering process, which
in general needs a suitable dissimilarity measure
to group objects. To this aim, the Edit Distance
(Navarro, 2001) is defined between two given se-
quences of words, not necessary of the same lenght.
In this work, words are appropriately converted into
real-valued vectors through a word embedding pro-
cess, based on pre-trained Artificial Neural Networks
(ANNs), eliciting a semantic relation between under-
lying word representations. It is worth to note that
since the k-medoids clustering algorithm selects the
most representative m-grams – medoids interpreted as
symbols of a suitable alphabet Λ – pertaining each
cluster among the m-grams set, the set of word-based
medoids for the generic cluster is useful for perform-
ing knowledge discovery tasks beside the overall clas-
sification process.

Hence, the clustering procedure allows partition-
ing the m-gram representation space in k clusters
Cs,s = 1,2, ...,k (for each class ω ∈ Ω), so that each
document t ∈D can be represented by the SH, count-
ing the occurrences in t of each symbol in the alpha-
bet. Specifically, this procedure constitutes the em-
bedding of an unstructured object – through the map-
ping M . Therefore, a text document is transformed in
a k̃-tuple of real numbers ready to be fed to the clas-
sification algorithm, in charge of solving a supervised
learning problem.

A wrapper-like features selection procedure is
then performed by a GA, where some genes repre-
sent feature selection weights and, according to their
values, m-grams related to the corresponding symbols

1In the following we use m to denote the m-grams
(instead of n) emphasizing the specific dimension herein
adopted, specified in the experimental section.
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in Λ are deleted following a suitable rule. Thence, the
new (reduced) SH is passed to the νSVM classifier.
The resulting classification performances on a vali-
dation set is considered as the GA fitness function,
driving the evolution of GA population until a suit-
able stopping condition is reached. As a result, the
TC procedure is optimized and, consequently, a suit-
able model of the text corpus is learned. In the fol-
lowing we will provide deeper details on the various
building-blocks of the proposed system.

2.2 The Symbolic Histogram
Construction

The SH encloses the information needed by the
νSVM classifier as it represents the m-grams dis-
tribution for a given pattern (document). In other
words, for a generic document, pertaining to a class
ω ∈ Ω, the SH is an array of (normalized) counters
c= [c1,c2, ...,ck]∈Rk, each one related to an alphabet
symbol λs ∈ Λω,s = 1,2, ...,k, that measure the oc-
currence frequency of the m-grams pertaining a given
generic document t. In this work we build an alphabet
for each class, therefore the total alphabet

⋃
ω∈Ω Λω

is of dimension k̃ = |Λω| · |Ω|, where the first term in
the second member is the cardinality of the alphabet
for each class ω, while the second term indicates the
number of available classes. In the following we omit
the subscript ω if not strictly necessary.

The assignment is performed by a suitable method
that relies on selecting the nearest over k represen-
tatives and checking if the m-gram vector represen-
tation falls within a threshold τ. The procedure is
called “minDist” and it is specified in Algorithm 1
pseudocode.

We indicate a generic m-gram (numerical) repre-
sentation for the i-th m-gram ηi as a suitable map-
ping Φ, whose nature will be specified further, such
as Φ(ηi).

Firstly, the Edit Distance, – indicated by edit(·) in
the following – between each m-gram representation
Φ(η)t,i from the generic document t and each symbol
λs of the alphabet Λ is measured and arranged into
the distance vector dΦ(η)t,i . Once the minimum value
d j,min = min(dφ(η)t,i) is estimated, it is compared to
the cluster threshold τ (the same for all clusters). If
and only if dmin

j is lower than τ the value in the counter
vector ct of size k is incremented, at the index j =
argmin j dmin

j . In detail:

∀λs ∈ Λ, s = 1, ..,k dφ(η)t,i = edit(λs,φ(η)t,i),

ct( j) =
{

ct( j)+1 d j,min < τ

ct( j) otherwise, (1)

where ct( j) is the counter variable for the docu-
ment t at position (index) j.

Thus, the m-grams pertaining to the document t
that belong to each cluster are tracked by calculating
their occurrence number, following the procedure re-
ported in the Algorithm 1.

The procedure is performed for each document
t of the dataset D so that a counter matrix C can
be defined, where documents t are arranged as rows
while alphabet symbols λ as columns, where each en-
try ci,s, i = 1,2, ..,n, s = 1,2, ...,k is the number of
occurrences of symbol λs in a document ti. Finally,
the C matrix collects the SH cti for each document
providing an algebraic representation of the underly-
ing unstructured text object. As concerns the normal-
ization procedure, each column of the counter matrix
C is divided by the maximum value reached on each
column, that is: cnorm

i,s =
ci,s

max(c:,s)
, i = 1,2, ..,n, s =

1,2, ...,k, where c:,s is the s-th column vector of ma-
trix C.

Algorithm 1: The minDist algorithm.
Require: the dataset D , the m-grams in each document t, the threshold τ,

the alphabet Λ

Ensure: the SH matrix C
1: procedure MINDIST(DATASET,Λ,τ)
2: for t-document in dataset do
3: for m-gram i in t do
4: for λs in Λ do
5: dφ(η)t,i ← edit(λs,φ(η)t,i)

6: end for
7: d j,min←min(dφ(η)t,i )

8: if d j,min < τ then
9: ct ( j)← ct ( j)+1
10: else
11: ct ( j)← ct ( j)
12: end if
13: end for
14: end for
15: end procedure

2.3 The M-Gram Representation

In the last decade, a series of new techniques
grounded on shallow and deep ANN models have
been developed, such as skip-gram with negative sam-
pling (SGNS)(Goldberg and Levy, 2014; Mikolov
et al., 2013a), known generally as the word2vec algo-
rithm. These techniques rely on a suitable windowing
procedure and the ANN is in charge of providing a
vector-based representation of words while solving a
suitable language task (i.e. guessing words around a
target word in the window) in an unsupervised fash-
ion. Some recent findings claim that the word2vec
words representation derives from an implicit matrix
factorization related to the HAL family representation
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(Levy and Goldberg, 2014).
These by now popular word representation models

ignore words morphology by associating a vector per-
word. Therefore, some relevant semantic information
could be ignored by learning algorithms, with a con-
sequent lack of performance on downstream language
modeling or classification tasks.

An alternative words representation model –
adopted here – is fastText (Bojanowski et al., 2016). It
is based on information units named n-grams2 that are
a set of sub-words. The procedure increases the effec-
tiveness by incrementing data granularity. Thence, a
single word becomes a set of n-tuples of characters. In
the example below, the word “where” is represented
by its n-grams of size 3, with two suffix and prefix
extreme: <wh, whe, her, ere, re>.

Therefore, it is possible to define the dictionary
Gw ∈ {sub w1,sub w2, ....,sub wg} as the set of n-
grams for the generic word w.

In this way, morphological information about the
words are taken into account. With reference to what
mentioned above, a learning algorithm could be more
effective in grouping apparently very different words
with the same root by computing the semantic infor-
mation lead by the root n-gram. Moreover, a rare
word could be linked to others on the base of sim-
ilar n-grams. Data granularity, ruled by the size of
the n-grams, is a crucial parameter to set, since the
learning algorithm performance is strictly related to
it. Thereby, the word representation consists in the
numeric encoding of words assigning similar vectors
to words with similar (distributional) meaning. As we
will see, it can be adopted a pre-trained word embed-
ding leading to transfer learning tasks or the word-
vector representation can be learned on a given train-
ing set.

Hence, in this paper, a given m-gram η(m) =
[w1,w2, ...,wm] is extracted from t ∈D . Then, a map-
ping for each word wi is obtained trough fastText, such
as F : wi→Ru, where u is the size of the real-valued
vector which encodes the single word (this is a pa-
rameter fixed at training time). Thus, the entire m-
gram η(m) is a matrix of encoded words. In particular,
it is mapped with an ordered set of apposed column
vectors obtained by the mapping F acting on each
constituent words, generating a matrix φφφη ∈ Ru×m.
The mapping is represented as Φ : [w1,w2, ...,wm]→
Ru×m, that is Φ(η(m)) = φφφ ∈ Ru×m.

In this way, unlike the original approach, each m-
gram is a sequence of words instead of some kind of
averaged vector that can lead to a information loss.

2Here for n-grams we intend pieces of sub-words and
not a group of contiguous words, such as for the approach
adopted in the current work.

2.4 The Custom-based Edit
Dissimilarity Measure

The clustering procedure adopted for the SHs con-
struction needs a suitable dissimilarity measure as a
kernel for partitioning an input dataset. In this work
we adopt a suitable modified version of the well-
known Edit distance.

According to the classic Edit dissimilarity mea-
sure, the minimum cost between two words is com-
puted as a sequence of Edit operations, i.e. substi-
tutions, insertions and deletions, needed to transform
one word into the other. In this simple case, a word is
a string and the object of manipulation are its charac-
ters. In this work, the information unit is not a single
word (as a sequence of characters) but the m-gram as a
sequence of vectors (each representing a single word)
and different m-gram sizes are generally set to achieve
a good granularity exploration.

The custom approach presented here is designed
to achieve this goal: to compare m-grams of different
sizes providing a dissimilarity measure for the cluster-
ing process. Through the fastText model each token
in a m-gram is encoded in a real-valued vector whose
dimension is u. Hence, it is possible to extend the
Edit distance to the m-gram numerical representation
given by φφφη ∈ Ru×m – see Sec. 2.3.

Given two m-gram representations φφφη1
and φφφη2

of
length m1 =

∣∣φφφη1

∣∣
col

and m2 =
∣∣φφφη2

∣∣
col

, the generic
entry φφφη[i] is the i-th column vector of φφφη correspond-
ing to a suitable word w.

Here, the custom substitution cost between the
two given word-vectors within the m-grams represen-
tation, x = φφφη1

[i1] and y = φφφη2
[i2], belonging to dif-

ferent sequences, is the Euclidean distance dcost(x,y),
computed as follows:

dcost(x,y) =
‖x−y‖2√
|u|

=

√
∑

u
i=1(xi− yi)2√
|u|

, (2)

where
√
|u| is a normalization factor.

2.5 The Classification Algorithm

The SH representation of a given set of documents,
both for ST R and SVAL, consists of counter matrices
C ∈ Rn×k̃ . The C matrices – conceived as data ma-
trices in the classification contest – have documents
as rows and (normalized) counters for symbols as
columns – see Sec. 2.2. Once obtained the above
described SH representation, the vector-based docu-
ments mapping can be classified through any standard
learning algorithm able to process real-valued tuples.
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Algorithm 2: The custom-based Edit dissimilarity measure
algorithm.
Require: The two m-grams representations to compare φφφη1

and φφφη2
, the

m-grams legths m1 and m2

Ensure: The Edit dissimilarity measure d
1: procedure CUSTEDITDIST(φφφη1

, φφφη2
, m1 , m2)

2: for i1 from 0 to m1 do
3: d[i1,0] := i1
4: end for
5: for i2 from 0 to m2 do
6: d[0, i2] := i2
7: end for
8: for i1 from 1 to m1 do
9: for i2 from 0 to m2 do
10: if φφφη1

[i1−1] = φφφη2
[i2−1] then

11: d← 0
12: d[i1, i2]← d[i1−1, i2−1]
13: else
14: d← dcost (Euclidean distance)
15: a← d[i1−1, i2]
16: b← d[i1, i2−1]
17: c← d[i1−1, i2−1]
18: d[0, i2]← min(a,b,c)
19: end if
20: end for
21: end for
22: return d[m1,m2]

23: end procedure

In this work, we use a νSVM with RBF kernel adopt-
ing the LibSVM library (Chang and Lin, 2011).

The νSVM hyper-parameters ν∈ [0,1] and γ∈R+

rule the amount of outlier patterns and the size of the
RBF kernel, respectively. The former is related to
the degree of classifier generalization (lower values
could cause over-fitting) and the latter is defined as
K(x,x′)= exp(−γ · ||x−x′||2) where x and x′ are real-
valued data patterns that belong to the input space,
that in turn, foresees a different dimension compared
to the arrival (kernel) space (that is infinite). The
hyper-parameters ν and γ are encoded as genes of the
wrapper GA as detailed in the next section.

2.6 Wrapper-based Features Selection
and Hyper-parameters
Optimization

The GA-Wrapper is in charge of achieving the opti-
mal classification performances thanks to an evolu-
tionary procedure, which catches the best values of
the νSVM hyper-parameters (ν and γ), the threshold
τ for the SH construction and the set of real-valued
figures in the weight vector v, which is used in the
features selection procedure. The dimension of the
weights vector is dim(v) = k̃.

With the purpose of achieving an appropriate gen-

eralization level, the model is trained using the k̄-fold
cross-validation. The dataset is partitioned in k̄ dis-
joint subsets, which, in turn, are equally divided in a
training set ST R and a validation set SVAL. The clas-
sifier hyper-parameters are separately optimized for
each of the k̄ subsets.

In other words, the clustering procedure and the
consequent alphabet Λ definition are completed once
for all, before the evolutionary optimization proce-
dure. In line with the k̄-fold cross-validation tech-
nique, the same generic GA individual is provided
to all the k̄-folds. For each k̄-fold, after the fea-
tures selection (described at the end of this subsec-
tion), a new classification model is defined and the
related error rate ε

(k̄)
f is evaluated on the S k̄

VAL, that is

ε
(k̄)
f = 1−α

(k̄)
f , where α

(k̄)
f is the accuracy obtained as:

α =
number of correct predicted patterns
total number of predicted patterns

. (3)

The subscript f stands for “fold”.
The overall error rate ε for the classification task

is the average of the ε
(k̄)
f values, that is:

ε =
1
k̄

k̄

∑
i=1

ε
(i)
f . (4)

The final objective function – to be minimized – for
the overall optimization scheme is given by:

J = β · ε+(1−β) · ∑vr

k̃
. (5)

The last expression (5) is a convex linear combina-
tion of the total (average) error rate and a structural
complexity measure, which accounts for the number
of selected features (i.e., the number of alphabet sym-
bols).

It is worth to note that, despite the increasing com-
plexity of the learning procedure, the k̄-fold cross-
validation scheme leads to better generalization capa-
bilities. The GA performs the evolutionary optimiza-
tion until the stopping condition is reached, returning
the best individual.

As concerns the feature selection, it involves the
counter matrices C of both ST R and SVAL. We re-
mark that the C matrices have documents as rows and
symbols as columns. According to the weights en-
coded in the GA as genes, the columns c:, j of both
the counter matrices are deleted if their indices cor-
responds to the indices of null weights in the weight
vector v = [v1,v2, ...,vk̃]:

c:, j =

{
c:, j v j = 1
0 v j = 0. (6)
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It is worth to note that the weights in v are real-valued
when they are processed by the GA and then they are
binarized with the following operation:

v j =

{
v j v j ≥ θ

0 v j < θ,
(7)

where θ is a threshold computed as θ = 1
k̃
, that is the

reciprocal of the number of weights.
Such a choice about the genes encoding leads to

better GA performances , thanks to an higher granu-
larity of the genes values.

3 SIMULATION SETTINGS AND
RESULTS

3.1 The Dataset

The first experimented dataset, namely the “Abstract”
dataset, consists of a collection of scientific paper
abstracts, published on famous journals in English.
More precisely, it counts 460 abstracts distributed
over the following four balanced classes (115 doc-
uments per-class): Anatomy, Information Theory,
String Theory and Semiconductors. A further ex-
periment is conducted adding documents for another
class, namely Smart Grids. Tab. 1 reports the main
statistics related to the corpus adopted for the experi-
ments.

The second dataset consists of a corpus of 5574
SMS labeled as spam and ham with 81175 tokens.
It is used for spam detection tasks. Further details
can be found in (Almeida et al., 2011; Asuncion and
Newman, 2007).

3.2 Experimental Setup

Before performing experiments, the text data has been
pre-processed. As concerns the “Abstract” dataset,
in this work, uppercase characters have been trans-
formed in lowercase ones (capitalization) and stop
words stored in a pre-defined list have been elimi-
nated. Stop words are words without a semantic con-
sistency, like the definite article the in the English
language. The remaining words are then normalized,
that is transformed in their simplest form (normaliza-
tion). In the experiments with the “Abstract” dataset
lemmatization is adopted. The last pre-processing
phase is the tokenization step, where each document
is mapped in a set of tokens (the m-grams) represent-
ing the document itself.

Instead, for the “SMS” dataset only the lowercas-
ing pre-processing is performed, with no stop word

elimination and retaining the punctuation, which is in-
cluded in the tokens just like letters. The motivation
resides in the fact that part of the discriminative in-
formation is contained in the punctuation and special
characters.

The experiments have been conducted with some
pre-defined conditions. Since clustering is performed
once per-experiment, the granularity level (i.e. the
number of clusters) k is fixed and set to 10. As
concerns the m-grams extractor, the size m = 1 (uni-
grams), m = 2 (bi-grams) and m = 3 (tri-grams) are
considered. The undersampling rate ϑ is fixed and set
to 0.1. We remark that the number of the complete list
of m-grams can be huge, thus the undersampling rate
ϑ is used to reduce the computational burden, by con-
sidering only a relative percentage of the m-grams for
each class. The numbers of m-grams per-class after
the uniform random undersampling for the “Abstract”
dataset are: 1284 for “Anatomy”, 1775 for “Informa-
tion Theory”, 995 for “String Theory”and 1563 for
“Semiconductor”.

For the “Abstract” dataset, the fastText word em-
bedding model is pre-trained on 1 million words, with
an embedding dimension of u = 300. We introduced
even a special parameter that allows considering only
the dictionary words which have an occurrence fre-
quency of at least equal to ψ, that, in the current ex-
periments, has been set to 5. Instead, for the “SMS
dataset”, the word embedding is computed directly on
the SMS corpus, specifically on the training set. This
leads to better classification performances.

The parameter β in the objective function (5) is
set to 0.8 giving more importance to the classification
error than to the sparsity parameter. For the evolu-
tionary optimization, it is used a kind of elitism that
brings ahead the two fittest individuals. The dimen-
sion of population is set to 50 individuals and the fit-
ness evaluation can be carried out in parallel fashion,
on a many-core workstation.

The current investigation grounds firstly on the
comparison between two evolutionary feature selec-
tion strategies, specifically on the “Abstract” dataset.
In the first one, the weights related to the features se-
lection are encoded as real-valued GA genes, which
are binarized before each time the fitness function is
evaluated. This online binarization (namely the Ap-
proach A) is performed for every single individual and
for each generation. In the second one, the weights
for features selection are yet encoded as real-valued
GA genes, but they are binarized at the end of the
optimization process, that is after the last generation.
We call this procedure “post-processing binarization”
(Approach B).

A second investigation is conducted with the aim
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Table 1: “Abstract” dataset statistics: total number of words (# words), minimum and maximum number of words per docu-
ment (#minWords and #maxWords), average number of words per document µwords and the variance of the number of words
per document σ2

words. The statistics concern the input dataset raw (before pre-processing), the dataset after pre-processing and
after the word embedding procedure with fastText.

# words # minWords # maxWords µwords σ2
words

Dataset Raw 52201 14 342 113.48 3229
Preprocessed Dataset 28151 10 200 61.19 965
fastText 26825 9 193 58.31 876

of measuring the generalization capability on the
SMS spam detection task adopting what we found as
the best feature selection strategy.

For robustness purposes, experimental results re-
lated to the current multi-class classification problem
are averaged on 5 run of the optimization procedure
with different seeds for the pseudo-random number
generator.

Classification performances are generated through
the evaluation of the confusion matrix obtained on the
test set ST S. Specifically, the proposed figure of merits
are the Accuracy, the Precision, the Speci f icity, the
Sensitivity, the F1 Score and the In f ormedness com-
puted as: In f ormedness= Speci f icity+Sensitivity−
1.

3.3 Experimental Results

Main results are reported in Tab 2 for the “Abstract”
dataset without the Smart Grids class. The Accuracy
average values for Approach A are greater than the
ones for Approach B, even if it is not true for the vari-
ance values. Moreover, the same holds for all perfor-
mance indicators. According to that, it can be stated
that Approach A leads to a more effective solution
than Approach B, although less robust. Nevertheless,
even if figures in variance for Approach A are greater
of one order of magnitude than the ones for Approach
B (except of Speci f icity), they are reasonably and
enough exiguous to assert their scarce relevance in the
overall classification performance. Thus, Approach A
performs better than Approach B.

A more accurate observation of the results can re-
veal some interesting considerations about the differ-
ence between the two approaches.

In Tab. 2 it can be seen that the difference be-
tween the Precision average value on one hand and
the same figure for Speci f icity and Sensitivity on the
other hand is greater in Approach B. Specifically, a
larger gap between these two values is possible when
the model classifies more True Negatives than True
Positives. In addition, with reference to Precision and
Sensitivity, a larger gap between these two values is
possible when the model classifies more False Posi-
tives than False Negatives. What just said is true for

Table 2: Measures of performances for the first “Abstract”
dataset (without the Smart Grids class) obtained with the
two genes binarization approaches. Results are averaged on
5 runs of the optimization procedure with different seeds for
the pseudo-random number generator. Variance is reported
in brackets.

Perf. Indicator Approach A Approach B

Accuracy
0.9293

(0.0010)
0.9066

(0.0002)

Precision
0.9668

(0.0022)
0.9259

(0.0006)

Speci f icity
0.9884

(0.0003)
0.9739

(0.0001)

Sensitivity
0.9696

(0.0012)
0.9578

(0.0007)

F1Score
0.9678

(0.0013)
0.9356

(0.0000)

In f ormedness
0.9580

(0.0021)
0.9217

(0.0003)

Table 3: Measures of performances for the second “Ab-
stract” dataset (with the Smart Grids class) obtained with
the two genes binarization approaches. Results are aver-
aged on 5 runs of the optimization procedure with different
seeds for the pseudo-random number generator. Variance is
reported in brackets.

Perf. Indicator Approach A Approach B

Accuracy
0.9130

(0.0009)
0.9061

(0.0003)

Precision
0.9660

(0.0011)
0.9750

(0.0013)

Speci f icity
0.9913

(0.0000)
0.9935

(0.0000)

Sensitivity
0.9569

(0.0028)
0.9478

(0.0022)

F1Score
0.9621

(0.0005)
0.9661

(0.0006)

In f ormedness
0.9479

(0.0024)
0.9413

(0.0019)

both the approaches but figures hint that in follow-
ing Approach B there is a greater gap between True
Negatives and True Positives and a greater gap be-
tween False Positives and False Negatives, than for
Approach A.

Similar consideration can be done for the experi-
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Table 4: Alphabet symbols (a.k.a. representative m-grams) extracted from the best performing experiment (the first “Abstract”
dataset). In blue the selected symbols by the feature selection procedure.

Anatomy Information Theory String Theory Semiconductor

”first” ”case” ”first” ”type” ”first” ”time” ”effect” ”present” ”work”
”another” ”present” ”first” ”control” ”latter” ”well” ”current”
”first” ”case” ”many” ”another” ”theory” ”area” ”application” ”one”
”potential” ”treatment” ”patient” ”information” ”process” ”method” ”open” ”string” ”theory” ”various” ”type” ”semiconductor”
”point” ”patient” ”result” ”show” ”propose” ”field” ”theory” ”string” semiconductor” ”effect”
”patient” ”type” ”2” ”management” ”system” ”string” ”theory” ”photoexcited” ”semiconductor” ”analysis”
”multivessel” ”method” ”information” ”show” ”string” ”semiconductor” ”device” ”aim”
”just” ”3” ”day” ”one” ”develop” ”model” ”string” ”field” ”theory” ”concept” ”present”
”disease” ”heart” ”analysis” ”method” ”information” ”perturbatively” ”up” ”second” ”metal” ”semiconductor”
”myocardial” ”infarction” ”revascularization” ”system” ”information” ”entropy” ”present” ”paper” ”field” ”semiconductor”

ments performed on the “Abstract” dataset increased
with the Smart Grids class, whose results are reported
in Tab. 3.

As concerns the knowledge discovery task, in Tab.
4 the selected symbols for each class for the best
performing experiment (Accuracy 0.9293) with Ap-
proach A (“Abstract” dataset without the Smart Grids
class) are reported . m-grams highlighted in blue are
the ones selected during the feature selection phase.
As concerns the classes Semiconductor and Anatomy
all symbols are retained. Documents which belongs
to Anatomy do not contain the word “anatomy” or
its derived words. Maybe, as a consequence, the al-
gorithm needs as much information as possible to
classify documents in this class. On the other side,
Semiconductor has many contextual words, roughly
equally relevant for classification.

For the Information Theory class several symbols
are discarded, such as first type, result show
purpose, management system, while it is retained
system information entropy, that is meaning-
ful for its membership class. For the class
String Theory the discarded symbols are generic
m-grams, such as present paper field, theory
area application, while they are retained, for ex-
ample, string field theory. At least in this ex-
ample, the system seems to prefer, among m-grams
containing the tokens theory and field, the ones
where these tokens are closed to the word string,
that it is found meaningful for the underlying class.

In Tab. 5 are reported the performances obtained
with the Approach A for the “SMS” dataset. The sys-
tem reach good results in terms of Accuracy (0.9505)
with an high Precision (0.9592) and In f ormedness
(0.7138). This demonstrates that the proposed ap-
proach is in charge of solving an instance of spam
detection problem. But what is really interesting con-
sists of the selected symbols, especially for the spam
class – see Tab. 6. In fact, the m-gram selected by
the evolutionary feature selection wrapper are words
remarkably related to spam or adv., such as the uni-

gram subsciber, or the bi-grams customer care or
only 10p. This allow to conduct an in depth analysis
of what is discriminative for each class even varying
the granulation level, for example, setting more alpha-
bet symbols in the SH synthesis.

Table 5: Performance measures for the “SMS” dataset ob-
tained with the approach A. Results are averaged on 5 runs
of the optimization procedure with different seeds for the
pseudo-random number generator. Variance is reported in
brackets.

Acc. Prec. Spec. Sens. F1Score In f ormed.

0.9502 0.9592 0.7294 0.9843 0.9716 0.7138
(0.0000) (0.0000) (0.0014) (0.0000) (0.0000) (0.0013)

Table 6: Alphabet symbols (a.k.a. representative m-grams)
extracted from the best performing experiment (“SMS”
dataset). In blue the selected symbols by the feature se-
lection procedure.

ham spam

”&” ”gt” ”subscriber”
”without” ”customer” ”care”
”city” ”nokia” ”plus”
”party” ”&” ”Ã¢” ”Â£”
”probably” ”take” ”the”
”great” ”personal” ”future” ”reply”
”made” ”fun” ”9.05E+09”
”.” ”makes” ”great”
”chennai” ”only” ”10p
”you” ”actually” ”spanish”

4 CONCLUSIONS

The current work represents the endeavor of build-
ing a TC system able to reach good recognition per-
formances and at the same time able to provide an
interpretable model, in which classification rules are
even comprehensible for the final user with no expe-
rience in the Machine Learning field. The paradigm
adopted is the one provided by GrC, where an ap-
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propriate granulation of the text in m-grams, along
with a neural word embedding representation of the
single tokens, allows to build a real-valued embed-
ding of documents (the SH approach). This proce-
dure yields a supervised learning problem to solve
through a standard Machine Learning algorithm, like-
wise νSVM. The appealing of the current work is
twofold. On one hand, there is the possibility of mea-
suring the dissimilarity between a word-vector repre-
sentation of m-grams of different lengths by means
of a custom-based dissimilarity pertaining to the fam-
ily of Edit distances. From the other, the entire pro-
cessing pipeline allows building a gray-box model en-
abling the users to understand how the core classi-
fier takes decisions, outputting a series of meaning-
ful symbols, such as small sequences of words re-
lated to the class label. An evolutionary strategy along
with the tuning of the classifier hyper-parameters is
used for a wrapper-like feature selection, where fea-
ture weights (genes pertaining to the overall chromo-
some), originally casted as real-valued vectors, are
binarized in two different ways, that is in an online
and an off-line fashion. The first approach outperform
clearly the second on the conducted experiments. The
satisfying recognition performances together with the
remarkable possibility to have additional information
for knowledge discovery tasks, let us be confident in
further developments of the described system. As
concerns the GrC model, it is possible to adopt even
an external text corpus (e.g. Wikipedia) eliciting a
kind of focused transfer-learning procedure. The de-
cision rule “minDist” experimented here can be sub-
stituted with other proper rules, making more robust
the process of construction of the SH, hence improv-
ing the alphabet symbols synthesis. Finally, as con-
cerns the dissimilarity measure between information
granules (i.e. m-grams), other dissimilarity measures
can be experimented, in order to provide a good se-
mantic background to the system, such as the plain
Euclidean distance between equal-sized m-grams or
more general Edit distances such as the multidimen-
sional Dynamic Time Warping. In the last case,
longer m-grams can be used pushing the boundary to-
wards more explainable AI systems.
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