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Abstract: With the breakthrough of pervasive advanced networking infrastructures and paradigms such as 5G and IoT,
cybersecurity became an active and crucial field in the last years. Furthermore, machine learning techniques
are gaining more and more attention as prospective tools for mining of (possibly malicious) packet traces and
automatic synthesis of network intrusion detection systems. In this work, we propose a modular ensemble
of classifiers for spotting malicious attacks on Wi-Fi networks. Each classifier in the ensemble is tailored
to characterize a given attack class and is individually optimized by means of a genetic algorithm wrapper
with the dual goal of hyper-parameters tuning and retaining only relevant features for a specific attack class.
Our approach also considers a novel false alarm management procedure thanks to a proper reliability measure
formulation. The proposed system has been tested on the well-known AWID dataset, showing performances
comparable with other state of the art works both in terms of accuracy and knowledge discovery capabilities.
Our system is also characterized by a modular design of the classification model, allowing to include new
possible attack classes in an efficient way.

1 INTRODUCTION

Recent developments in wireless networking technol-
ogy have been key elements in the evolution of fu-
ture smart environments, and in the last few years
technology has deeply evolved to fulfil needs in dif-
ferent areas. Starting from enterprise wireless net-
works, considering also Internet of Thing (IoT) net-
works, the introduction of new smart services implied
the birth of new attack scenarios. Furthermore, in
this kind of communication environments, the com-
plexity of the adopted protocols and the high capac-
ity of the network infrastructure bring the need to de-
velop and employ new processing strategies for this
kind of Big Data. At this purpose, this field has been
deeply studied using computational intelligence ap-
proaches over the last two decades (Sperotto et al.,
2010; Bhuyan et al., 2014) following the new tech-
nological innovation in this area, from IoT (Roux
et al., 2018) to Software Defined Networking (Abhi-
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lash and Divyansh, 2018). The importance gained by
the IoT cybersecurity research field has furthermore
highlighted the importance of building Network In-
trusion Detection Systems (NIDSs) capable of work-
ing in an environment made of mobile heterogeneous
devices, connected by the IEEE 802.11 standard (Wi-
Fi). So, extending the focus also on the Physical and
Medium Access Control (MAC) levels, rather than
just network, transport or application levels, is needed
to fulfil the security gap in IoT and industrial sen-
sors networks (Roux et al., 2018; Anton et al., 2019).
For this purpose, in (Kolias et al., 2016) an extensive
study of possible Wi-Fi attacks in a real Small Office
Home Office (SOHO) environment has been carried
out, which included multiple workstations and smart
devices. The major contribution proposed in (Kolias
et al., 2016) is the publication of the Aegean Wi-Fi
Intrusion Detection (AWID) dataset, able to work as
an interesting test bed for new processing strategies
for network anomaly and intrusion detection.

In this work, we further study and develop com-
putational intelligence tools starting from a previous
recent work (Rizzi et al., 2020), in order to provide
advanced approaches for network attack classification
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and automatic knowledge discovery. The key points
that we target in this work are:

• an improved modular classification system able to
be automatically adapted to detect multiple kind
of attacks, potentially not exclusively in Wi-Fi
networks;

• an improved processing methodology with further
automatic knowledge discovery capabilities at the
training stage;

• a further study on different approaches to detect
and classify attacks based on single frame analy-
sis, hopefully to employ relatively cheap hardware
to gain maximum operational advantage.

Our proposed processing architecture is based on an
array of simple two-class classifiers, each one spe-
cialized in discriminating frames specifically forged
to be part of a specific attack against all other types
of frames. We further enhance the knowledge discov-
ery capabilities of the training phase by adopting a
genetic meta-heuristic procedure that not only selects
relevant features, but also tunes the hyper-parameters
of the employed clustering procedure and classifica-
tion algorithm in order to maximize the classification
accuracy and the knowledge discovery capabilities.
Lastly, we show that a remarkable accuracy can be
obtained in spotting malicious frames, while main-
taining a low false alarm rate. In particular, out of 14
attack classes, the proposed strategy is able to achieve
an accuracy level greater than 90% for 10 of them and
99% for 7 of them.

The rest of the paper is organized as follows. Af-
ter reviewing the related literature in Section 2, we
present the main characteristics of the AWID dataset
and outline the attacks in Section 3, along with the
pre-processing stage and the definition of the dissim-
ilarity measure adopted to quantify the dissimilarity
between data packets. An account of the machine
learning algorithms used for our system is given in
Section 4. The design of Wi-Fi attacks classifier is
outlined in Section 5. The experimental results are
presented in Section 6. Finally, conclusions and fu-
ture works are drawn in Section 7.

2 RELATED WORKS

The Big Data problem defined in the previous Sec-
tion has been deeply studied using machine learning
techniques as a mean to develop automatic anomaly
detection and attack classification tools. One of the
key advantages of machine learning techniques over
traditional approaches is that they do not demand
pre-made signatures of attack frames (Bhuyan et al.,

2014). In particular, in the field of IoT and enter-
prise Wi-Fi networks, multiple approaches have been
studied so far. Starting with the work of Kolias et al.
(Kolias et al., 2016), a deep study of Wi-Fi attacks in
WEP protected networks has been carried out in or-
der to correctly build a reference dataset to study dif-
ferent approaches to the intrusion detection problem.
The authors present the first attempt to perform net-
work traffic classification over the AWID dataset us-
ing machine learning techniques provided by the open
source software WEKA (Frank et al., 2016). Further-
more, authors provide a first analysis of key features
required for the classification problem.

In (Benzaı̈d et al., 2016) network traffic has been
analyzed at MAC level using artificial neural net-
works, suitably trained to detect address spoofing at-
tacks.

In (Guennoun et al., 2008; El-Khatib, 2010) an
approach based on k-means clustering and multilayer
perceptrons has been studied, used jointly with infor-
mation gain methods, achieving accuracy near 90%.
The dataset used in those works is not public.

Multiple machine learning algorithms have been
employed in (Agarwal et al., 2015) in order to detect
de-authentication Denial of Service attacks.

Particular focus has been given to the evil twin
attack and fake Access Point (AP) detection in (Taka-
hashi et al., 2010) and (Lanze et al., 2014), in order
to find anomalous network traffic using fingerprint-
ing techniques and to distinguish (real) hardware APs
from (fake) software ones.

In (Thing, 2017) a deep learning approach for
multi-class classification has been considered in order
to detect macro-classes of network traffic (legitimate
traffic, flooding, injection and impersonation attacks),
along with feature self-learning strategies by means
of a deep learning approach based on a stacked auto-
encoder with different activation functions.

In (Aminanto and Kim, 2017), the authors focus
on improving feature selection and detection of the
impersonation attacks by using a deep learning ap-
proach based on a stacked auto-encoder algorithm on
the AWID dataset. They exploit artificial neural net-
works to perform feature selection adopting a manual
threshold applied to the first hidden layer of an arti-
ficial neural network and a stacked auto-encoder ap-
proach to classify patterns.

In (Kolias et al., 2017), ant colony optimization
has been employed on a pre-processed AWID dataset,
aggregating features to preserve privacy in a central
node and find new ways to detect attacks. The au-
thors perform off-line traffic analysis by adopting a
MAC cumulative statistics approach studying frames
in pre-defined time windows. Effectiveness of the de-
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veloped algorithm is demonstrated in particular by the
interesting IF-THEN rule-based interpretability point
of view, for which has been described how rich of
information could be frames’ time windows to find
malicious frames.

In (Qin et al., 2018), the authors proposed an in-
trusion detection study based on a custom manual pre-
processing scheme based on the calculation of lin-
ear dependencies between features, with a features
selection stage using a two dimensional data clean-
ing approach. Finally, Support Vector Machines with
Gaussian radial basis function kernel are employed
for classification. This classification scheme realizes
an ensemble of binary classifiers in order to solve the
multi-class classification problem. In this work, the
authors used the AWID dataset by adopting the same
4-way labelling already used in (Thing, 2017).

Combined use of Kernel Density Estimation and
Hidden Markov Models through a tandem queueing
network model has been exploited in (Sethuraman
et al., 2019). Authors pre-processed a subset of the
AWID dataset, selecting features using a probabilis-
tic approach in order to obtain a network flows set
of patterns. The trained model is capable of obtain-
ing interesting performance. The interpretability of
computational intelligence models is the core of this
work, which stems from a previous study (Rizzi et al.,
2020). In the latter, we also exploited patterns’ fea-
tures extracted from a single MAC frame in order to
check its maliciousness, and associate it to specific
attack strategies. In this work, we further propose:

• a revised optimization process based on a new fit-
ness function which jointly considers a suitably
defined penalty function and the Youden’s J statis-
tic (also, informedness) as performance values;

• a new genetic code for the optimization proce-
dure, which includes the hyper-parameters for
both clustering and classification stages in order
to select, for each attack class, the best training
set resolution and the best setup parameters;

• a second lightweight genetic algorithm able to
adapt thresholds for false alarm management.

3 DATASET DESCRIPTION

In this work we make use of the AWID dataset to
check performance and evaluate the validity of the
proposed system. This dataset has been built by
capturing heterogeneous Wi-Fi traffic in a SOHO
network environment realized with multiple devices
(workstations, notebooks, smartphones, smart TVs),
along with a monitor node that passively captures net-

work traffic and an attack node equipped with Kali
Linux. The networking environment where attacks
are carried out consists of infra-structured Wi-Fi net-
works, i.e., Wi-Fi networks where stations commu-
nicate with an AP. The AP issues periodically a so-
called beacon message, announcing itself and a num-
ber of parameters and attributes useful for coordinat-
ing the access to the wireless channel. The whole net-
work is protected by the WEP security protocol. WEP
has been marked as obsolete due to various security
flaws, and replaced by the protocols specified in the
IEEE 802.11i standard. However, WEP has been cho-
sen for the AWID dataset to simplify the data set ac-
quisition and the construction of the ground truth in-
formation for intrusion detection system experimenta-
tion. Moreover, it is interesting to include attacks on
WEP to test the ability of the machine learning traffic
analyzer to detect those attacks as “anomalies” with
respect to plain network traffic. Indeed, some of the
attacks that have been carried out in the test bed net-
work can be used against WPA2 networks as well (see
Section 3.2). Regular traffic (that is, not affected by
any attack) has been generated by common applica-
tions, such as web browsing, file transfer, audio/video
streaming. Attacks have been realized by means of
the state-of-the-art aircrack-ng suite1, MDK32 and
other ad-hoc tools. Network traffic belonging to each
attack has been labeled with the related class.

The dataset used in this work is composed of three
parts:

• a single traffic trace which contains examples of
all attack classes, that we take to define the raw
training set S′tr;

• twelve trace files containing legitimate (‘normal’)
traffic, that we use as a first test set (Sts1);

• twelve trace files containing mixed normal and at-
tack traffic, that we use as a second test set, (Sts2).

The rationale behind this choice consists in the possi-
bility of highlighting classifiers’ performance in two
scenarios: one where no attack is in progress (only
normal traffic), against a second case where a mixed
situation is realized, with normal traffic interleaved
with attack traffic, belonging to different attack types.
A concise description of the attack macro-classes in
the AWID dataset is outlined in Sections 3.1–3.33,
with Table 1 summarizing the patterns distribution
for each class within the three different sets, whereas
in Sections 3.4–3.5 we describe the pre-processing
phase and the adopted dissimilarity measure between
MAC frames.

1https://www.aircrack-ng.org
2https://tools.kali.org/wireless-attacks/mdk3
3Further details can be found in (Kolias et al., 2016).
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3.1 Flooding

This kind of attacks exploits the lack of authentica-
tion and integrity check in control and management
frames (see (IEEE, 2016) for the detailed definition
of frame classes) that leads to frames with multi-
ple malleable fields. The strategy used to modify
frame’s fields characterize the specific attack and, de-
pending on the toolchain used, could lead to recog-
nisable values, for instance in terms of sequence
number, reason code or received signal strength.
Eight classes belong to the flooding family: bea-
con, de-authentication, disassociation, amok,
power saving, probe request, rts and cts.

3.2 Frame Injection

This family of attacks aims to forge frames exploiting
vulnerabilities of the WEP security protocol. Forged
frames could be used, for instance, to solicit responses
by victim stations in order to collect cryptographic
material exploitable to recover the keystream, or us-
ing the AP as an oracle and decrypt frames. This kind
of attacks are made possible thanks to security flaws
of WEP, which basically are linked to the malleabil-
ity of the enciphering and a lack of a real message
authentication code. Arp, chop chop and fragmen-
tation belong to this family.

3.3 Impersonation

Impersonation attacks make use of multiple of the
previously described vulnerabilities in order to setup
fake APs as a starting point for more complex attacks.
For instance, these attacks can adopt techniques typ-
ical of arp and fragmentation attacks to collect
cryptographic material. This family sees evil twin,
cafe latte and hirte attacks.

3.4 Pre-Processing

In this work we adopted a subset of the AWID dataset
in order to: suitably train the classification system
(S′tr), check its capabilities in term of false alarms
on a dedicated set made entirely of normal network
traffic (Sts1), and verify the accuracy on a mixed at-
tacks case (Sts2). The training set has been further
split in order to obtain a validation set Sval useful
for optimizing performance indices during the train-
ing phase. The applied pre-processing phase has been
split up in two parts: feature engineering and feature
normalization. The former aims to select the most
useful features from the raw data, whereas the lat-
ter is employed to avoid implicit weighting phenom-

Table 1: Patterns per class distribution in the three sets.

Class name S′tr Sts1 Sts2

normal 530785 35158851 47325477
amok 477 0 3856
arp 13644 0 500823

beacon 599 0 5498
cafe latte 379 0 16719
chopchop 2871 0 22879

cts 1759 0 38359
deauthentication 4445 0 33870
disassociation 84 0 34871

evil twin 611 0 27045
fragmentation 167 0 240

hirte 19089 0 433750
power saving 165 0 13551
probe request 369 0 10981

rts 199 0 13536

Total 565643 35158851 48481455

ena. Starting from the 156 attributes4 (e.g., MAC ad-
dresses, header flags, timestamp, ...) composing each
pattern in the AWID dataset, we have carefully cho-
sen a subset of 25, considered relevant for the purpose
of network intrusion detection following the same ra-
tionale behind our previous work (Rizzi et al., 2020).
This starting set of features are summarized in Ta-
ble 2, and are composed by either numerical, nominal
or boolean types. All considered numerical features
range between 0 and a maximum value that can be
derived from the IEEE 802.11 specifications (IEEE,
2016), hence each numerical feature f is normalized
as f (norm) = f/ fmax.

3.5 Dissimilarity Measure

Designing an appropriate dissimilarity measure for
the problem and data at hand is a key facet for the suc-
cess of any pattern recognition system. As for Table 2,
we consider patterns made up of numerical (integer-
or real-valued), discrete nominal and boolean fea-
tures. Numerical features are assumed to be normal-
ized in [0,1]. In this work, we adopt the following
dissimilarity measure, ad-hoc tailored to the hetero-
geneous pattern structure: let x and y be two generic
patterns, then if the ith feature is numerical we let

di(xi,yi) = |xi−yi| (1)

whereas if the ith feature is nominal or boolean, we let

di(xi,yi) =

{
1 xi 6= yi

0 xi = yi
(2)

4http://icsdweb.aegean.gr/awid/
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Table 2: List of considered features.

Attribute name Data type Description

frame.len Numerical Frame length
radiotap.dbm antsignal Numerical Received Signal Strength

wlan.fc.type Nominal Frame Type
wlan.fc.subtype Nominal Frame Subtype

wlan.fc.ds Nominal Distribution System status
wlan.fc.frag Boolean More Fragments

wlan.fc.pwrmgt Boolean Power management
wlan.fc.order Boolean Order flag
wlan.duration Numerical Duration

wlan.ra Nominal Receiver address
wlan.da Nominal Destination address
wlan.ta Nominal Transmitter address
wlan.sa Nominal Source address

wlan.bssid Nominal BSS ID
wlan.frag Numerical Fragment number
wlan.seq Numerical Sequence number

wlan.fcs good Boolean FCS correctness
wlan mgt.fixed.listen ival Numerical Listen Interval
wlan mgt.fixed.timestamp Numerical Timestamp

wlan mgt.fixed.beacon Numerical Beacon Interval
wlan mgt.fixed.reason code Nominal Reason code

wlan mgt.fixed.sequence Numerical Starting Sequence Number
wlan.wep.iv Nominal Initialization Vector
wlan.wep.icv Nominal Integrity Check Value

data.len Numerical Data Length

Class label String Ground truth metadata

Finally, if we allow each feature to be weighted in-
dependently by means of a binary weighting vector
w ∈ {0,1}n, the overall dissimilarity measure reads
as:

d(x,y) =
1
n

n

∑
i=1

wi ·di(xi,yi) (3)

where n is the number of considered features. Con-
sistently with the definitions given above, the dissim-
ilarity measure takes values in range [0,1].

4 ADOPTED CLASSIFICATION
SYSTEM

The computational intelligence approach proposed in
this work is composed by the following key compo-
nents, which will be independently described in Sec-
tions 4.1–4.3:

• a granulation strategy: in order to reduce the car-
dinality of the training set while maintaining use-
ful information, we employ a clustering algorithm
that groups patterns in clusters, each one identi-
fied by its representative pattern;

• a classification algorithm: which maps patterns
with labels according to a given strategy;

• a genetic optimization procedure: used to find a
subset of features per class and an optimal choice
of hyper-parameters for both the granulation strat-
egy and the classification algorithm.

4.1 Information Granulation by
Clustering

The training set includes redundant information, mak-
ing it difficult to train algorithms on it without per-
formance issues. At this purpose, we introduce an
information granulation strategy in order to reduce
the cardinality of the training data and to simplify the
training phase. We define an information granule as a
collection of entities arranged together thanks to their
similarity. So, from this point of view, a cluster, seen
as a set of similar patterns, is a typical example of in-
formation granule (Baldini et al., 2019). Thanks to
a clustering algorithm and by representing each clus-
ter according to a unique representative pattern, it is
possible to perform an information compression to re-
duce the cardinality of a data set, whilst preserving
most of the useful information.

To this aim, we adopted the well-known Basic Se-
quential Algorithmic Scheme (BSAS) (Theodoridis
and Koutroumbas, 2008), a free clustering procedure
where the number of clusters to find is not given a-
priori, being an output of the clustering procedure it-
self. The BSAS algorithm depends on the scale pa-
rameter θ, by which it is possible to set the resolu-
tion at which the dataset is analysed that, in turn, is
directly related to the compression ratio. Small val-
ues of θ yield a great number of small clusters, while
higher values for θ return fewer and larger clusters.
Basically, the BSAS algorithm scans the entire set
S′tr and alternatively assign each pattern to an exist-
ing cluster or to a newly initiated one, depending on
whether the distance with respect to already existing
clusters is greater than or less than θ. After all patterns
in S′tr have been scanned, a set of NP clusters emerges.
For each cluster C , its representative is set by the Min-
imum Sum of Distances (MinSoD) criterion (Martino
et al., 2017; Martino et al., 2019b), hence we select
the pattern y∈ C that minimizes the sum ∑x∈C d(x,y),
where d(·, ·) is the dissimilarity measure. Hereinafter,
let us denote Str the compressed version of S′tr.

4.2 K-Nearest Neighbours

The classification phase has been carried out using
the K-Nearest Neighbours (K-NN) (Cover and Hart,
1967) decision rule. Despite its limitations, it is eas-
ily customizable by means of a suitably defined dis-
similarity measure, possibly tailored to work with the
structured data at hand, as in this case.

The K-NN algorithm is defined by the set of
known patterns Str, an integer K and a dissimilarity
measure d(·, ·). Then, given a pattern to be classi-
fied, the label associated to it is assigned by consid-
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ering the most frequent labels among its K closest
neighbours according to d(·, ·). Note that K-NN, in
its plain version, does not include any training phase.
The set of patterns used to evaluate the nearest neigh-
bours is directly the set of patterns belonging to the
(compressed) training set Str. Hence, the complexity
of this decision rule is given by the cardinality of the
training data (i.e., NP = |Str|). In spite of its simplic-
ity, K-NN is an effective tool, usually providing good
performances, once a suitable dissimilarity measure
has been defined, at the cost of using the entire train-
ing set as a classification model. In our case, it is safe
to say that the use of the K-NN rule is strictly related
to the clustering procedure used to granulate the train-
ing set and to compress information.

4.3 Genetic Algorithm

Patterns in the (compressed) training set are charac-
terized by 25 features, each related to a given weight,
to which we add the granulation parameter and the
classification algorithm hyper-parameters. An ex-
haustive search in this space is obviously unfeasible
and an effective way to face an automatic feature se-
lection problem consists in adopting evolutionary op-
timization procedures, such as a genetic algorithm
(Goldberg, 1989), with the final goal of optimizing a
given fitness function. Each solution in the admissible
domain is represented by a data structure (called ge-
netic code) composed by 27 variables, summarized in
Table 3. Let G denote the size of the population (i.e.,
number of individuals), with the first population be-
ing randomly generated. The fitness of each individ-
ual is evaluated and the population is properly sorted
according to their fitness values. At each iteration, a
new generation is constructed according to standard
operators:

Elitism. best individuals are copied to the next gen-
eration;

Selection. s individuals are selected for mating with
probability r;

Crossover. random exchange of genes between the s
individuals previously selected;

Mutation. random flipping of genes;

Immigration. remaining G− ([αG] + s) individuals
are randomly defined in the next generation.

The evolutionary optimization is stopped when the
improvement of the fitness of the best individual be-
comes marginal. In our implementation, we set G =
50, α = 0.1, r = 0.2, q = 0.7.

5 ENSEMBLE OF BINARY
CLASSIFIERS FOR WI-FI
ATTACKS DETECTION

5.1 Training the System

The proposed architecture is sketched in Fig. 1. The
whole classification system is based on an ensemble
of binary classifiers, each one specialized in detect-
ing a given class. For this purpose, each classifier is
individually optimized by means of a first genetic al-
gorithm (Section 4.3) in order to find suitable hyper-
parameters (K, θ) and suitable relevant features (w,
see Eq. (3)) for each of the problem-related classes.
A second genetic algorithm will be responsible to op-
timize recognition thresholds to finally decide which
label has to be assigned to each pattern (Section 5.2).
This approach is useful in all those cases in which we
have multi-class classification problems with overlap-
ping decision regions that make patterns classification
difficult. Furthermore, this allows to carry knowledge
discovery on a class-aware basis, allowing to select a
tailored subset of useful features for each attack class.

M1(θ1, w1, Str(1))

Mp(θp, wp, Str(p))

W
T
A

(ωp, rp)

(ω1, r1)

Frames
in input

Figure 1: Proposed architecture: each model Mi, related
to the ith class, processes the input frame by considering
the weighting vector wi and the custom training set Str(i)
obtained through the granulation strategy setup with θi.

Table 3: Genetic code description.

Parameter Range

Max cluster radius θ [0,0.1]
Number of neighbours K [1,21]

Feature selector wi {0,1}

The fitness function of the genetic algorithm is
made of two main contributions: the informedness
(see Eq. (4)), a summary performance index, and the
penalty (see Eq. (5)), a correction factor useful to
avoid an extreme training set compression (i.e., risk
of removing useful information). The informedness
index represents the probability of an informed de-
cision, giving equal importance to false positive and
false negative values (Powers, 2011). Different mea-
surements that gives the same index value have the
same proportion of total misclassified results. This
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Figure 2: Proposed processing architecture for the training phase.

performance index is useful in operational contexts
where we have the vast majority of patterns repre-
senting normal traffic packets, so the high false alarm
rate could imply an heavy loss of network through-
put. Formally, we can introduce the informedness in-
dex (Youden, 1950), normalized as in (Martino et al.,
2019a; Martino et al., 2020a; Martino et al., 2020b),
with the following equation:

J =
Se +Sp

2
, J ∈ [0,1] (4)

where Se and Sp indicate sensitivity and specificity,
respectively. The penalty index, as instead, has been
introduced in order to effectively perform training set
compression without loosing excessive information.
This index will be significantly high in case the clus-
tering algorithm returns a number of representatives
for a given class lower than 2. Furthermore, the num-
ber of neighbours K must be chosen compatibly with
the quantity of representatives found. So we assign
a penalty value to each single class outcome of the
clustering algorithm applied to the training set, the
mean of that values will be subtracted from the clas-
sification performance within the fitness function for
each individual of the genetic algorithm. Mathemati-
cally, the penalty function is described by the follow-
ing equation:

P =
1
p

N

∑
i=1

e−(mi(θi)−1), P ∈ [0,1] (5)

where p is the number of classes, and mi(θi) is
the number of clusters found for class i, which de-
pends on the θi parameter for the granulation strategy.
Hence the fitness function, to be maximized on Sval ,
reads as:

f = J(wi)−P(θi), f ∈ [0,1] (6)

5.2 Contentions Resolution

Each binary One-Against-All classifier belonging to
the ensemble detects if a given pattern belongs to the
target class, so it could happen that multiple classi-
fiers mark with different labels the same Wi-Fi frame.
In order to properly evaluate the correctness of each

classifier, we adopt a Winner-Takes-All (WTA) strat-
egy based on the reliability measure analysis of the
output labels of each classifier. This analysis is per-
formed using a simple multi-class K-NN decision
rule, that processes each frame by considering the
output of each classifier. So each classifier, for each
pattern, returns the predicted label and the reliability
measure of its prediction. Mathematically, we used
the following definition as reliability measure:

R =

1
K ∑∀i∈W (1−di)− 1

K ∑∀i∈S (1−di)−
(
−K

2 −1
K

)
1−
(
−K

2 −1
K

)
(7)

where W and S are the sets of neighbours belong-
ing to the first and second most popular class, respec-
tively. This kind of measure:

• considers the purity of the neighbours set (i.e., the
number of patterns of the winner class) and their
distances di with respect to the test pattern;

• considers the number of patterns of the looser
class and their corresponding distances from the
classified pattern;

• lastly, takes values in the range [0,1].

Since we are adopting a feature selection mechanism,
each classifier will likely work on a different subspace
of the dataset. In order to fairly compare their outputs
in the WTA, we performed a further normalization of
the dissimilarity measure (formerly Eq. (3)). Hence,
for the jth classifier, we have:

d j(x,y) =
1
n

1
√n j

n

∑
i=1

wi ·di(xi,yi) (8)

where n j indicates the number of selected features by
the jth classifier.

5.3 False Alarm Management

NIDSs’ actions have an impact on the Quality of Ser-
vice of the network. One of the key parameters that let
us to evaluate NIDSs activity during attack prevention
is the false alarm rate. An excessive number of false
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alarms raised by the NIDS can be harmful both in the
cases of suspicious frames dropping and, from a secu-
rity analyst viewpoint, might lead to handling a large
volume of false alarms that need a proper counterac-
tion, according to the security policy. In this work, we
studied a solution able to reduce this problem based
on a dedicated binary classifier which targets the nor-
mal class and the evaluation of a reliability measure
for binary classifiers outputs (see Section 5.2). Nor-
mal network traffic classification is expected to be a
difficult task, since in the same set we consider highly
heterogeneous frames (for example, think about the
legit management and control frames or the dynamics
of the exchange of data frames between stations, de-
pending on the kind of network layer traffic brought).
At the same time, introducing an estimate of traffic
normality can add an important information to use
during the execution of the WTA rule. So, we basi-
cally add a new contender during this phase.

The false alarm management phase is split in three
steps:

1. introduce a dedicated binary classifier which tar-
gets normal frames;

2. apply a threshold τ on the reliability measure of
the output label of each classifier;

3. optimize these thresholds using a genetic opti-
mization procedure in order to let the ensemble
of classifiers to take decisions about labels.

This genetic procedure is based on the same standard
principles of the previous one, yet the genetic code
is defined as the vector of reliability thresholds as re-
turned by the classifier ensemble. The fitness corre-
sponds to the precision of each classifier.

6 TESTS AND RESULTS

At the end of the training procedure, the genetic algo-
rithm returns, for each label, an optimal set of features
and a suitable set of hyper-parameters for both clus-
tering and the classification algorithms. Conversely,
the second genetic optimization phase adapts relia-
bility measure thresholds to improve perfomance and
false alarms management. In Table 4 we summarize
the genetic codes found during the genetic optimiza-
tion procedures (K, θ, w and τ), along with other in-
dices such as informedness, precision, best fitness and
cardinality of the compressed training set, in order to
let us analyze results from different perspectives. In
Table 5 we have resumed results obtained using both
test sets Sts1 and Sts2.

As we can see, performance are interesting and we
can make some considerations. First of all, we con-

firm that almost all flooding attacks are easily iden-
tifiable on a per-frame basis. This is particularly true
for all those attacks based on management frames, for
which we can provide a precise feature set. As shown
in Table 4, we can find all key features automatically
selected by this system for this type of attacks (e.g.,
type, subtype, reason code). After all, this conclu-
sion is not true for flooding attacks based on control
frames like rts and cts. In fact, these attacks exploit
frames used for MAC, so they are very simple and not
identifiable without taking in consideration an analy-
sis based on a suitably ordered set of frames. Perfor-
mance indexes obtained on a mixed attack case (Sts2)
are confirmed also in a normal-only situation (Sts1),
demonstrating low false alarm rate (i.e., 1’s comple-
ment of the reported accuracy) capabilities for the
trained classification system.

Secondly, concerning attacks that aim to decrypt
the payload or retrieve the keystream itself, results are
similar to flooding attacks. When this kind of attacks
become part of more complex attack vectors, classifi-
cation performance drop since a flow-based analysis
approach is required.

The introduction of the reliability measure thresh-
old based on the normal One-Against-All classifier,
allows us to maintain low false alarm rates, paying the
price of lower classification accuracy since the rule to
assign an attack is much more severe.

Lastly, impersonation attacks are the most difficult
to classify due to the extremely similar behaviour to a
normal scenario. The accuracy obtained in these cases
is low and highly variable depending on the particular
test set.

An almost common key feature automatically se-
lected by the classification system during the training
phase is the received signal power strength, which is
measured by the wireless receiver of the monitor sta-
tion. In this manner, the training procedure is able to
take in consideration the spatial position of the trans-
mitter station, embedded in the received signal power
strength. On a single frame classification problem,
this could be the best feature able to help detect flood-
ing attacks based on rts and cts control frames, (ex-
cept for the classic MAC addresses dictionary, which
is not easily scalable).

We conclude this analysis by comparing, as much
as possible, results obtained in this work against other
recent works (see Table 6) on the same dataset, to the
best of our knowledge. Since those works employ
different AWID subsets, different class labels subsets
and different objective functions, performance com-
parison is only possible to a limited extent.

Methodologically speaking, one of the most im-
portant aspects developed in our work that others do
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Table 4: Optimization phase results for each classifier. Features in the rightmost column are ordered as in Table 2.

Class name θ |Str| K Best Fitness J Precision τ Selected Features (w)

amok 0.0029 28 5 0.8238 0.9967 0.8681 0.689 1110001010111111100110110

arp 0.0002 800 1 0.998 0.9985 1 0.934 1111111111111101110110111

beacon 0.0091 263 1 0.7751 0.997 0.9944 0.806 1101001011111111111110111

cafe latte 0.0049 8 1 0.8126 0.994 0.0263 0.75 1111111110111111101011111

chop chop 0.0104 800 1 0.7254 0.9534 0.9977 0.856 0010001110111111101110110

cts 0.0005 15 1 0.9393 0.9489 1 0.96 0111111111111101110010111

deauthentication 0.004 6 11 0.8169 1 0.997 0.045 1110000110001111101011110

disassociation 0.0009 22 5 0.8759 0.9999 1 0.983 0011101011111111100110111

evil twin 0.0047 3 5 0.5054 0.5271 0.0109 0.024 1100000010011111101010110

fragmentation 0.0002 107 7 0.8280 0.9971 1 0.656 1011111110001111110010110

hirte 0.0587 51 1 0.5213 0.9861 0.9923 0.732 1101111101111110100110111

power saving 0.0029 10 1 0.8636 0.9907 1 0.988 0100111100111110111010110

probe request 0.0028 2 1 0.8272 0.9999 1 0.91 1101100101111111110011111

rts 0.0002 6 1 0.9983 0.9988 1 0.965 1111111111111111111111111

Table 5: Mean accuracy obtained on the two considered test
sets.

Class name Sts1
Mean (Std)

Sts2
Mean (Std)

amok 0.9999 (0.0002) 0.9999 (1.25e-07)
arp 0.9270 (0.0634) 0.9176 (0.0042)

beacon 0.9825 (0.0131) 0.9989 (4.77e-07)
cafe latte 0.7911 (0.1092) 0.9169 (0.0012)

chop chop 0.9895 (0.0112) 0.9899 (0.0001)
cts 0.7582 (0.171) 0.5177 (0.0031)

deauthentication 1 (0) 0.9998 (5.02e-07)
disassociation 1 (0) 0.9997 (4.98e-10)

evil twin 1 (0) 0.9993 (1.98e-06)
fragmentation 1 (0) 0.9997 (2.66e-07)

hirte 0.3205 (0.1811) 0.7015 (2.9e-07)
power saving 0.6966 (0.1275) 0.8689 (0.0042)
probe request 1 (0) 0.9999 (5e-10)

rts 0.9599 (0.0576) 0.844 (0.0031)

not employ is an automatic algorithm setup and fea-
tures selection strategy based on a genetic algorithm
which detects relevant features in an attack-aware
fashion, returning interpretable information (genetic
codes). Furthermore, we employed two different sub-
set of the AWID dataset in order to perform an ex-
plicit evaluation of our system for false alarms man-
agement. Other than numerical results, the following
aspects hold: in (Thing, 2017), the overall accuracy is
greater than 98%, but with some caveats considering
the flooding attack class. Furthermore, they employ
an embedded self-learning approach via a deep neu-
ral network for feature selection, yet do not provide
an in-depth analysis. Results in (Aminanto and Kim,
2017) are rather comparable with the proposed ones.
In (Kolias et al., 2017), despite achieved accuracy is
77.8%, the output of the classification algorithm in-

cludes human-readable IF-THEN rules to perform fil-
tering activities. In our case, we do not provide ex-
plicit rules, but we find key features of each attack in
order to try to understand and characterize malicious-
vs-normal Wi-Fi flows. Finally, in (Qin et al., 2018),
the set of interesting attributes found with their tech-
nique is similar to these found in this work. Classi-
fication accuracy of injection attacks is comparable,
while impersonation and flooding attacks are recog-
nized hardly. Overall, the advantage of the proposed
approach, if compared in particular to deep learning-
based studies, rely on the fact that the obtained ge-
netic codes are easily human-understandable in terms
of key features found, clusters size and classification
algorithm setup, and summarize each attack class be-
havior. Furthermore, this approach provides a bet-
ter versatility of the training phase that can be cus-
tomized for each class of the classification problem,
making the overall structure modular with respect to
the problem-related classes: in fact, as new attacks
need to be modelled, one can simply add the corre-
sponding One-vs-All classifier to the ensemble, with-
out need to retrain the whole system. This not only
makes the training stage faster, but also makes the
proposed approach appealing towards low-cost hard-
ware.

7 CONCLUSIONS

In this work, we proposed a scalable and modular ar-
chitecture to detect attacks in Wi-Fi networks by an-
alyzing frames using a machine learning approach.
The proposed system is made of an ensemble of One-
Against-All classifiers each one targeting a specific
attack class, suitably trained and optimized using a
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Table 6: Performance comparison with related state-of-the-art works.

Related Works Dataset Size Classification Problem Method Feature Selection
Strategy

Performance
Index Performance (%)

(Kolias et al., 2016) Entire AWID dataset Both using macro-classes
and single attack labels Random Tree J48 Manual Accuracy 96.1982

(Aminanto and Kim, 2017) AWID subset
(∼2 millions patterns) 4 macro-classes Deep Learning Automatic Accuracy 92-98

(depending on class)

(Kolias et al., 2017) Entire AWID dataset Both using macro-classes
and single attack labels Ant Colony-based Both manual

and automatic Accuracy 77.8

(Thing, 2017) AWID subset
(∼2.4 millions patterns) 4 macro-classes Deep Learning Automatic Accuracy 98.6688

(Qin et al., 2018) AWID subset
(∼1.3 millions patterns) 4 macro-classes SVM Both manual

and automatic Accuracy 89-99
(depending on class)

(Sethuraman et al., 2019) Modified subset
of the AWID dataset 7 attack classes HMM and KDE Automatic Precision 92.28

(Rizzi et al., 2020) AWID subset
(∼84 millions patterns) 14 attack classes BSAS and K-NN

driven by GA
Both manual
and automatic Accuracy 92.446

(false alarm rate 12.1)

This work AWID subset
(∼84 millions patterns) 14 attack classes BSAS and K-NN

driven by GA
Both manual
and automatic Accuracy 91.1

(false alarm rate 5.9)

genetic algorithm.

This approach let us simplify the classification
problem by maximizing the training capabilities with
a smaller training set, leading to a reduced amount of
dissimilarity measure computations between patterns.
During the training phase, we optimize the granula-
tion strategy hyper-parameters (θ, in this case) for
each attack class, creating optimized training subset
of patterns. The very same optimization procedure
performs features selection in order to simplify data
processing by each classifier and to extract knowl-
edge about recurrent characteristics of each attack.
Correctness of knowledge discovery capabilities have
been evaluated by comparing results with attack tools
output (see Section 6). Furthermore, the proposed ap-
proach has been designed in order to have a natively
parallel design, easily employable on multi-threaded
architectures on general purpose multi-core systems,
or on a dedicated hardware implementation on FPGA
or ASIC circuits.

Intrusion detection is performed by analyzing net-
work traffic frame-by-frame, obtaining performance
values that show an average of more then 90% of
frames correctly classified, despite of the difficulties
to model the complex normal traffic process. With
respect to our previous system performances (Rizzi
et al., 2020), we have obtained comparable results in
terms of accuracy, while greatly improving the false
alarm rate (see Table 6). These results are comparable
with state-of-the-art works whilst providing the fur-
ther advantages explained before. To further improve
the reliability of the classifier and the knowledge dis-
covery capabilities, in particular for those attacks that
do not allow single frame analysis with such a high
success rate, higher complexity tools should be de-
veloped, that look through sequences of frames. In
future works we will study the impact of strategies
that let us represent Wi-Fi patterns in different math-
ematical spaces, able to enhance machine learning al-

gorithms capabilities to classify and cluster patterns
whilst maintaining white-box models that, if com-
bined with automatic features selection methods, are
able to output human readable filtering rules. Prelim-
inary works show that a subset of attacks is recog-
nizable more easily considering sequences of frames
conveniently collected and ordered.
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