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Abstract: When a new mechanical part is designed its configuration has to be tested for durability in different usage 
conditions (‘stress evaluation’). Before real test samples are produced, the model is checked analytically via 
3D Finite Element Simulation. Even though the simulation produces good results, in certain conditions these 
could be unreliable. As a result, validation of simulation results is currently a task for experts. However, this 
task is time-consuming and significantly depends on experts’ competence. To reduce the manual checking 
effort and avoid possible mistakes, machine learning methods are proposed to perform automatic pre-sorting. 
The paper compares several approaches to solve the problem: (i) machine learning approach, relying on 
geometric feature engineering, (ii) 2D convolutional neural networks, and (iii) 3D convolutional neural 
networks. The results show that usage of neural networks can successfully classify the samples of the given 
training set. 

1 INTRODUCTION 

When a new mechanical part is designed, it has to be 
tested for durability in different usage conditions 
(‘stress evaluation’). In order to save on time and 
expenses, the model is usually checked analytically 
before real test samples are produced. However, 
automated simulations sometimes deliver results that 
require expert knowledge for interpretation. 
Currently, experts validate if the results are reliable 
and detect the nonreliable ones (fig. 1, a). This is a 
time-consuming and prone to errors process.  

In case of finite element simulations (Reddy, 
2009), nonreliable results (“failures”) can arise from, 
for example: 
 Overlapping components in the imported CAD 

file, 
 Contact of different (rigid) components or 
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 Equal treatment of tensile and compressive stress. 
In order to reduce the manual checking efforts and 

also to avoid checking mistakes, training of machine 
learning models that allow automatic pre-sorting is 
proposed within the scope of this research study (fig. 
1, b).  

The challenge of this classification task is that the 
simulation results are given as unstructured 3D point 
clouds, so common frameworks for processing 
regular data, e.g. for image recognition, cannot be 
applied directly. That is why different problem 
specific approaches have to be studied. 

The research question considered in the paper is if 
the classification of reliability (automated validation) 
of the 3D finite element simulation results can be 
done using AI and which AI approaches can provide 
for acceptable results. 

The paper compares three approaches to solve the 
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Figure 1: The process of evaluating new product’s durability: current (a), desired (b). 

problem using different machine learning techniques: 
1) machine learning approach, relying on geometrical 
feature engineering, 2) 2D convolutional neural 
networks, and 3) 3D convolutional neural networks. 

The paper is strucutred as follows. The next 
section defines the problem at hand. It is followed by 
the state of the art review. Sections 4-6 repesent the 
AI training and classification results for the above 
mentioned techniques. The results are compared and 
discussed in section 7. The conclusions summarize 
the findings and outline the future research directions. 

2 PROBLEM DEFINITION 

The source data for the classification problem is 
stored in VTU mesh files (Kitware Inc., 2005) with 
different number of points per inch depending on the 
curvature of a particular fragment of the model (less 
points on smooth surfaces and more points for 
curves). An average number of vertices in a model is 
around 5000 but it differs significantly from model to 
model. Due to symmetry, models are given as 1/4 part 
or 1/2 part of a component. If the components had no 
symmetry properties, the model would have 
represented the whole part. 

The locations of the vertices of a sample are set 
before the simulation is conducted. The output of the 
simulation are so-called safety factor values for each 
vertex. This safety factor (SF) value is defined as the 
relationship between an allowable mechanical load 

and a given mechanical load. That means, the higher 
the SF, the more stable the simulated component is. 
That is why the SF is used as a metric to decide if a 
component fulfils the mechanical requirements of the 
development process. Therefore, the minimal SF 
value has to lie above a certain threshold. Validation of 
the reliability of this minimal SF is the problem at 
hand. In order to automate it, within the scope of this 
research work machine learning models have been 
developed to validate if this minimum is reliable or not. 
The reliability check is then applied iteratively: If the 
global minimum is not reliable, the second lowest local 
minimum is validated and so on until a reliable 
minimum is found. This SF minimum has to lie above 
the threshold to be mechanically stable. Otherwise, the 
construction needs to be re-engineered. 

In the dataset of this research study, the label 
refers to the global minimum, so only the global 
minimum is classified. Since the global minimum is 
the easiest to find and the patterns for classification 
are the same for other local minima, this study is 
focused on the classification of the global minimum. 

The the test set consisting of 814 simulation 
results was manually classified by an expert based on 
the evaluation of the reliability of the global 
minimum so that 304 samples were considered as 
reliable (“reliable samples”), and 510 samples as 
nonreliable (“nonreliable samples”). The nonreliable 
samples are split into 3 types of failures (failure 
modes): 142, 115, and 253 samples respectively. 
However, in the presented research only two labels are 

IN4PL 2020 - International Conference on Innovative Intelligent Industrial Production and Logistics

14



used: reliable and unreliable. Classification of samples 
into failure modes is still the subject of future research. 

3 STATE-OF-THE-ART REVIEW 

The considered task is rather unique, and no “of the 
box” solutions or methods have been found. As a 
result, the paper presents approaches for classifying 
models of 3D objects. One can read on advances in 
3D object classification in (Ahmed et al., 2018; 
Ioannidou et al., 2017). Based on these, all 
approaches to 3D object classification can be split 
into the following groups:  
 Architectures exploiting descriptors extracted 

from 3D data, 
 Architectures exploiting RGB data, 
 Architectures exploiting 3D data directly. 

 

The first group of approaches is not directly 
related to 3D object classification but follows the 
generic approach of feature selection and application 
of various models to the features and their 
combinations (L. Ma et al., 2018; Wahl et al., 2003). 
These models are less computationally expensive and 
are preferable for tasks where they can be applied 
successfully. However, they often cannot work well 
for distinguishing between some complex shapes. 

The second group of approaches is based on 
application of various techniques to generating 2D 
images out of 3D objects and their further 
classification. These approaches can also be split into 
two groups: (i) analysing various views, projections, 
and cuts, and (ii) analysing images with depth 
information. The advantage of these approaches is the 
possibility to use well-studied 2D classification 
techniques without the need to develop a new 3D 
model. However, extensive application of such 
techniques caused appearance of specialized multi-
view models (Su et al., 2015; Yavartanoo et al., 2019; 
Zhou et al., 2020). The cut-based approaches are most 
often used in medical domain since many medical 
data, for example, tomography results, were 
originally represented as cuts (Deng et al., 2018; Lu 
et al., 2018; Z. Ma et al., 2018), however they are 
applied in other domains as well (Qiao et al., 2018). 

Analysing images with depth information (often 
referred as RGB-D) is a very popular group of 
approaches. They also had the advantage of applying 
state-of-the-art 2D classification techniques to 
classifying 3D objects but developed into a separate 
group classification models (Feng et al., 2016; 
Schwarz et al., 2015). 

Direct analysis of 3D data can also be approached 

from different perspectives. Classification of meshes 
(Hanocka et al., 2019) and irregular point clouds 
(Charles et al., 2017; Y. Wang et al., 2019) are 
characterized by speed and absence of the need of 
computation-intensive pre-processing since usually 
engineering and design data (e.g., CAD models) are 
stored in this form. Approaches based on analysis of 
regular point clouds (voxel-based models) provide 
better results “out-of-the-box”, for the price of 
additional data pre-processing (Maturana & Scherer, 
2015). 

In the presented research one approach from each 
group was tested: classification based on geometrical 
feature engineering, 2D convolutional neural network 
(Resnet18) for depth images, and 3D convolutional 
neural network VoxNet. A number of models for 
irregular point clouds have also been tested, but so far 
their result were much worse than those presented so 
they are not considered in the paper.  

4 CLASSIFICATION BASED ON 
GEOMETRIC FEATURES 

4.1 Approach Description 

The first approach is to build a classification model 
that relies on geometrical feature engineering. As the 
definition of the error modes is connected to some 
geometric properties of the SF minimum point and its 
neighbourhood, a set of features was proposed 
describing the geometry of the neighbourhood of the 
SF minimum. In particular, the features describe the 
complexity of the SF minimum neighbourhood, 
including two interpretations of mesh complexity: 
1. Structural complexity, related to the number of 

nodes and faces in the mesh. 
2. Geometric complexity, describing how similar the 

surface is to a “simple” shape (e.g., plane). 
Structural complexity is quite easy to formalize 

and evaluate. We created two groups of features: 
cells_no_X (number of mesh cells in the SF minimum 
neighbourhood of the given radius in millimetres) and 
points_no_X (number of mesh nodes in the SF 
minimum neighbourhood of the given radius in 
millimetres). The corresponding features are 
calculated by intersecting the input mesh with a 
sphere of the particular radius positioned to the SF 
minimum point and finding the properties of the 
resulting mesh.  

It is not clear in advance what is the size of the SF 
neighbourhood that is the most informative to the 
reliability classification. In order to understand that, 
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each feature was generated w.r.t. different sizes of 
neighbourhood (sphere radiuses). For example, we 
created the features “number of nodes in 1 mm radius 
neighbourhood” (points_no_1), as well as in 2 mm 
(points_no_2), 3 mm (points_no_3) radius 
neighbourhoods and so on. It applies to all the 
features (representing both structural and geometric 
complexity). 

The notion of geometric complexity is not so 
straightforward to formalize. Therefore, several 
features were introduced. 

The first is the volume of the minimal oriented 
bounding box of the neighbourhood of the specified 
size (obb_volume_X). The intuition behind this 
feature is that flat or slightly bent surfaces have a 
bounding box with zero or close to zero volume, 
while for curved surfaces the bounding box will be 
(almost) close to a cube having relatively large 
volume. Minimal oriented bounding boxes are 
estimated with a help of trimesh library (Dawson-
Haggerty et al., n.d.). 

The second group of features is generalized 
variance of face normals (in the neighbourhood of the 
specified size – gen_var_X), estimated according to 
the following formula: 

ሺܺሻܸܩ ൌ
1
|ܺ|

ሺ ܺ െ തܺሻଶ
||

ୀଵ

, 

where ܺ – a set of vectors normal to mesh faces (each 
vector is 3-dimensional), and തܺ – is the mean normal. 

The next group of features is the neighbourhood 
convexity, estimated using the tangent plane, 
containing the minimum SF point. In particular, there 
are two groups of features, calculated using this tangent 
plane. Features convexity1_X are defined as the mean 
value of the plane equation for the neighbourhood 
points, while convexity2_X features are defined as the 
logarithm of the ratio of the number of points in the 
positive subspace w.r.t. the tangent plane, to the 
number of points in the negative subspace. 

The features of the next group are rooted in the 
notion of surface curvature. Specifically, we use the 
notion of discrete gaussian curvature measure as 
defined in (Cohen-Steiner & Morvan, 2003) and 
implemented in trimesh library. This gives two 
groups of features gauss_curv_X (the sum of the 
discrete gaussian curvature of the nodes in the 
specified neighbourhood) and gauss_curv_avgd_X 
(mean discrete gaussian curvature of the specified 
neighbourhood). 

All the described groups of features characterize 
the SF minimum neighbourhood of the given size in 
millimetres. The last group of features describe the 
closest possible neighbourhood of the SF minimum 

node, given by the mesh structure – nodes reachable 
from the SF minimum by one and two ‘hops’. This 
gives features edgeness_min_1nbr, 
edgeness_max_1nbr, edgeness_min_2nbr, and 
edgeness_max_2nbr. In the name of these features 
min and max correspond to minimal and maximal 
values of the cosine of the angle between the normal 
of faces situated in the given neighbourhood, and 
1nbr and 2nbr suffixes correspond to the 
neighbourhoods reachable in one and two hops from 
the minimum SF point respectively. The complete list 
of features is provided in the table 1. 

4.2 Feature Importance Analysis 

Feature importance analysis shows how informative 
each feature is in the process of classification. In this 
problem, the role of feature importance analysis is at 
least twofold: 
1. The features are very similar, they all try to 

capture convexity in some sense. Which one is 
better? 

2. What neighbourhood size is the most 
informative? This knowledge can help to keep the 
model small and thus to speed up the processing. 
Besides, understanding the size of the informative 
neighbourhood may help to select 
neighbourhoods used to train other ML methods. 

Table 1: The list of features. 

Feature Neighbourhood sizes, mm 
cells_no_X 10, 8, 6, 5, 4, 3, 2, 1 

points_no_X 10, 8, 6, 5, 4, 3, 2, 1 
obb_volume_X 10, 8, 6, 5, 4, 3, 2, 1 

gen_var_X 10, 8, 6, 5, 4, 3, 2, 1 
convexity1_X 5, 4, 3, 2, 1 
convexity2_X 5, 4, 3, 2, 1 
gauss_curv_X 5, 4, 3, 2, 1 

gauss_curv_avgd_X 5, 4, 3, 2, 1 
edgeness_min_1nbr - 
edgeness_max_1nbr - 
edgeness_min_2nbr - 
edgeness_max_2nbr - 
 
To estimate feature importance we used null 

importance method (Altmann et al., 2010; Grellier, 
2018) in conjunction with feature importance 
estimation procedures typical for the tree-based 
learning algorithms. 

The idea is as follows. The machine learning 
algorithm leveraged for reliability classification is a 
decision tree-based gradient boosting implemented in 
CatBoost library (Yandex, 2020b). Decision tree-
based learning algorithms have an internal ability to 
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estimate feature importance, i.e. the impurity measure 
(information or Gini) gain, which is obtained by the 
splits that use the particular feature (Y. Y. Wang & 
Li, 2008). Gradient boosting on decision trees 
implemented in CatBoost is not an exception, as it 
also estimates the importance of the input features by 
how on average the prediction changes if the feature 
value changes (Yandex, 2020a). However, feature 
importance estimation is not always indicative of the 
actual importance of the feature, especially in 
multidimensional spaces and in the presence of noise. 
The main problem is that it is usually is not clear what 
level of impurity gain corresponds to some real 
patterns in the data, and what gain can be learned even 
from the noise.  

The null importance method provides some kind 
of a ‘reference point’ in assessing the importance. The 
rationale behind the method is following. Let’s 
consider a slightly modified learning dataset, where 
feature f is replaced with its random permutation f*. 
A learning algorithm can be applied to the modified 
dataset and an importance of f* can be estimated in a 
usual way. Further, as we repeat this process several 
times, for each feature we can build an importance 
distribution (null importance distribution). That 
distribution essentially provides the required 
‘reference point’ – if sampling the importance of the 
feature f in its original ordering is likely to be sampled 
from this distribution then the feature is actually no 
more important than the random noise. On the other 
hand, if the importance of the feature in its original 
ordering is greater than the importance of most of the 
permutations of this feature, it actually carries some 
information about the target. This also gives a way to 
measure the importance, e.g., by considering the ratio 
of the importance of the original feature ordering to 
the 3rd quartile of the null importance distribution. 
Table 2 shows top 10 features estimated by the 
described procedure. It can be seen from the table that 

Table 2: Top 10 features according to the null importance 
method. 

Feature Importance 
convexity1_4 5.5 
convexity1_3 4.6 
convexity1_5 4.0 
convexity2_4 3.8 
convexity2_3 3.8 
convexity2_5 2.2 

obb_volume_2 1.8 
gauss_curv_avgd_2 1.3 

convexity2_2 0.97 
convexity2_1 0.95 

only 5 features have importance greater than the 3rd 
quartile of the null importance distribution. The most 
important features are various convexity indicators 
applied to the SF minimum neighbourhoods of the 
radius 3 mm and 4 mm. Smaller and larger 
neighbourhoods are not so important. 

5 CNN-BASED CLASSIFICATION 
OF DEPTH IMAGES 

The second approach is based on the representation 
of the 3D models as 2D depth images and further 
classification by a convolutional neural network. In 
certain sense this representation can be considered as 
surface model, where coordinates of an image point 
correspond to the coordinates of the surface point 
along two axes, and the depth colour can be 
considered as the coordinate along the third axis. 

Generation of the depth images has been done via 
the following procedure. First, the fragment of a 
given diameter around the analysed point (the point 
with the minimal SF, fig. 2, a and b). Experiments 
were carried out with radiuses of 2, 3, and 4 mm, 
however for simplicity 3 mm radius is considered in 
the descriptions below. 

Then, the fragment is rotated so that the normal of 
the analysed point would be oriented along axis Z 
(pointing to the viewer in fig. 2, c).  

In the presented example, one can see that in some 
complex shapes, there can be fragments obstructing 
the analysed point, and, as a result, it is not possible 
to see the shape around it. For this purpose, a 
procedure has been developed for removing such 
obstructing fragments. It consists of two steps: 
(1) remove all points whose normals are oriented to 
opposite direction (cosine between the normals of 
analysed point and checked point is negative); 
(2) remove all fragments that are not connected to the 
fragment containing the analysed point. The resulting 
fragment is shown in fig. 2, d.  

Finally, the depth map is built via measuring 
distances between the fragment and nodes of a 
224x224 grid located on a flat surface, which is 
perpendicular to the normal of the analysed minimum 
and positioned 3 mm away from it (fig. 3). The closer 
points are lighter (the points located 0 mm away from 
the grid are white), and the further points are darker 
(the points located 6 mm away from the grid are 
black). The resulting image is shown in fig. 2, e. 

Since CNNs are usually oriented to object 
recognition, they do not work very well with colour 
shades, but with borders. For this reason, the contrast 
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Figure 2: The process of generating depth image of 3D model. 

of the generated images was increased. However, it 
was done in such a way that the analysed point always 
coloured as 127 (“located” 3 mm away from the grid). 
At the same time closer and further parts are 
“zoomed” proportionally to the closest and furthers 
points (fig. 4). We understand that the procedure of 
increasing contrast produces a risk of losing 
information about curvature, however, this was not a 
case for the considered training set. 

Resnet18 was chosen as a classification model. 
Resnet18 is a 18 layers deep residual CNN for image 
classification (He et al., 2016). Experimentation 
showed that usage of pre-trained network did not give 
any advantage during training, so the network with 
randomly initialised weights was used. The following 
training parameters were applied for training: 
 Additional linear layer was added with sigmoid 

output at the network output for binary 
classification; 

 Error function: cross entropy; 
 Used augmentations (for training set only) are 

horizontal flip and 15 rotations by 22,5 degrees 
(31 augmentations for each sample); 

 Learning rate 1.0e-6 (no learning rate degrading); 
 Batch size: 32. 

 

Figure 3: Measuring distance between a surface and 3D 
object. 

The network was implemented in TorchVision 
library (Facebook Inc., 2020) ver. 0.6.0. One training 
procedure (1 fold and 50 epochs) on the Intel Xeon 
server with Nvidia Geforce 2080 RTX GPU took 
about 35 minutes. The training results are presented 
in fig. 5-7.  

For the comparison with other techniques, the 
following numbers of epochs have been chosen for 
each of the radius that let one to avoid overfitting: 
2 mm – 20 epochs (no more significant 
improvement), 3 mm – 14 epochs (further training 
causes overfitting), and 4 mm – 8 epochs (further 
training causes overfitting).  

 

 

Figure 4: Increasing the contrast of depth images. 

One can see that classification of samples with the 
radius of 2 mm produces the best results, however, 
there is a concern that in the future analysing such 
small fragments of the parts can produce false results.  

On the other side, fragments with the radius of 4 
mm are not classified well and the model becomes 
overfitted already after 10 epochs, with the loss 
function values being higher than those for smaller 
fragments. As a result, for future research the 
classification of fragments with radiuses of 2 and 3 
mm were selected.  

6 3D CNN-BASED 
CLASSIFICATION OF 
VOXELIZED MODELS 

The third implemented model is an adaptation of a 3D 
CNN to the reliability classification problem. The 
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Figure 5: Training results of Resnet18-based depth image classification of 2 mm radius fragments. 

 

Figure 6: Training results of Resnet18-based depth image classification of 3 mm radius fragments. 

rationale is that two-dimensional representation (even 
with the depth map) misses some details of the part 
(e.g., it cannot distinguish between solid and hollow 
parts), and 3D model makes the difference between 
the inside and outside of the part more obvious. It is 
self-evident, that 3D representation contains much 
more detail about an object. The reason why neural 
networks for processing 3D data receive relatively less 
attention is that in most cases there are just no accurate 
3D data. For example, in object detection problem, 3D 
representation typically should be constructed from 2D 
data or LiDAR data and this reconstruction is a 
problem itself. However, in the area of manufacturing 

(CAD/CAM systems) precise 3D models are available, 
which makes 3D neural networks (and 3D CNN, in 
particular) a reasonable choice. 
We have adapted VoxNet architecture described in 
(Maturana & Scherer, 2015). Original VoxNet is 
designed for object recognition problem and has 
softmax output layer (with the number of output units 
equal to the number of classes of objects). As 
reliability classification is binary classification 
problem, we changed the softmax output layer to a 
dense layer consisting of one unit with sigmoid 
activation function. We used the same input size as 
the original model: 32x32x32 (fig. 8). Overall, the  
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Figure 7: Training results of Resnet18-based depth image classification of 4 mm radius fragments. 

 

Figure 8: Example of a voxelized neighbourhood of a SF 
minimum. 

adapted VoxNet implementation has the following 
structure: 
 

1. 3D convolution layer with filter size 5, strides 2, 
normal padding and Leaky ReLU activation 
function with alpha 0.1.  

2. 3D convolution layer with filter size 3, strides 1, 
normal padding and Leaky ReLU activation 
function with alpha 0.1. 

3. 3D max pooling layer with pool size 2 and strides 
2. 

4. Reshape to flat vector (of size 6*6*6*32). 
5. Dense layer with 128 units and ReLU activation. 
6. Dense output unit with sigmoid activation. 

 

The network is trained with the Adam algorithm 
for minimization of binary cross-entropy as a loss 
function. 

The data preparation procedure is the following. 
The part model is rotated to align the direction of the 
normal at the point of the examined SF minimum with 
Z axis. Then, the neighbourhood of the examined SF 
minimum node is transformed into a voxel model 
32x32x32 so that the minimum SF point corresponds 
to the centre of the cube (voxel with coordinates [17; 
17; 17]). The size of each voxel is 0.1 mm3, therefore, 
a whole voxelized neighbourhood has dimensions 
3.2x3.2x3.2 mm. An example of a pre-processed 
network input is shown in fig. 8. While the position 
of the normal at SF minimum is determined by the 
pre-processing step, the part may still be rotated 
around Z axis resulting in different models and 
potentially different results. To achieve the invariance 
to this rotations, we used an augmentation scheme, 
according during the training voxelization of 16 
rotations of each model around Z axis were 
considered, and for each rotation, also one flipping. 
Therefore, each SF minimum point results in 32 
training samples. 

7 EVALUATION AND 
COMPARISON 

The dataset contains 814 mesh models (samples) with 
SF assigned to each vertex of the mesh. Sample label 
in the dataset is determined by the expert 
classification of the node with the lowest SF (global 
minimum) reliability. The dataset contains 304 
samples with reliable global minimum and 510 
samples with non-reliable global minimum. 

IN4PL 2020 - International Conference on Innovative Intelligent Industrial Production and Logistics

20



To evaluate the classification algorithms, the k-
fold cross-validation procedure has been carried out. 
In accordance with this procedure, the data set is 
divided into k subsets of approximately equal size, 
and k experiments are performed so that each of the k 
subsets is used once as the test set and the other k-1 
subsets are put together to form the train set. In our 
case the dataset has been split into 5 folds (k=5). The 
resulting train and test sets are presented in Table 3. 
During splitting the dataset, the following 
consideration was taken into account. Not all models 
of the dataset correspond to different components but 
to result of a different simulations, i.e. a different 
mechanical load case. As a result, some samples may 
correspond to the same component but have different 
SF values and different vertices with minimal SFs. 
This fact was taken into account during splitting. It 
turned out that different simulations of the same part 
tend to place minimum SF to similar locations of the 
part. Therefore, to prevent overfitting to a particular 
part, the folds were created in such a way, that the 
same part does not present both in the train and test 
sets (sometimes, this is referred to as “group K-fold 
validation”; in this case, the group is interpreted as 
simulation results of one component). 

The described above algorithms have been 
evaluated on the same set of folds. They include 
(1) CatBoost with all features, (2) CatBoost with top 

10 features, (3-5) Resnet18 for neighborhoods with 
radiuses of 2 mm, 3 mm, and 4 mm, and (6) VoxNet. 
We have also added the logistic regression as a base 
classification model for the comparison. 

To evaluate the algorithms two types of criteria 
were considered: performance, measured by training 
and prediction times; and prediction quality, 
measured by accuracy. However, it turned out that the 
accuracy values were quite high, so the absolute 
number of misclassified samples was also considered 
(it does not provide additional information compared 
to the accuracy, but slightly easier to read and 
interpret). The results of the evaluation are shown in 
Table 4. 

It can be seen, that all the models achieve quite 
good results in terms of accuracy. Logistic regression 
has a significant advantage in training time over the 
other models, but has the lowest accuracy. Taking 
into account, that training is not so frequent operation 
in the intended use cases of the model, and training 
times of deep learning models are also reasonable, 
this advantage is not very important. None of the 
explored feature-based models were able to achieve 
perfect classification, which is most likely related to 
the fact that proposed features didn’t describe 
significant aspects of the SF minimum 
neighbourhood necessary for such classification. 
Among the deep learning-based models, 3D CNN 

Table 3: Distribution of samples for folds used in the experiment. 

Fold 
Train set Test set 

“Reliable” 
samples 

“Unreliable” 
samples 

Total 
“Reliable” 

samples 
“Unreliable” 

samples 
Total 

1 258 391 649 46 119 165 
2 212 437 649 92 73 165 
3 246 405 651 58 105 163 
4 252 401 653 52 109 161 
5 248 406 654 56 104 160 

Table 4: Comparison of approaches to Validating Results of 3D Finite Element Simulation. 

Classification 
approach 

Errors on fold 
Mean training time, s

Mean prediction 
time, s 

Mean accuracy 
Mean # of 

errors 1 2 3 4 5 
Logistic regression 2 1 0 0 10 0.017 0.006 0.984 2.6 

CatBoost 0 4 0 0 0 1.58 0.008 0.995 0.8 
CatBoost 

(10 features) 
0 2 2 2 0 0.988 0.007 0.993 1.2 

Resnet18 (radius 
2) 

0 0 0 0 0 
800 (GPU, 20 

epochs) 
0.036 

(no GPU) 
1 0 

Resnet18 (radius 
3) 

0 0 0 0 0 
560 (GPU, 14 

epochs) 
0.036 

(no GPU) 
1 0 

Resnet18 (radius 
4) 

0 0 0 0 0 320 (GPU, 8 epochs)
0.036 

(no GPU) 
1 0 

VoxNet 0 0 0 0 0 9.6 (GPU, 3 epochs) 0.161 1 0 
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VoxNet can be considered the best, as it achieves 
perfect classification of the provided dataset and has 
significantly lower training time than other models. It 
supports the initial intuition that 3D CNN should be a 
reasonable choice as they fully exploit the 3D 
structure of analysed components. 

Based on the results, it was decided that further 
research should focus on the Resnet18 models for the 
radius of 2 and 3 mm and the VoxNet model. 

8 CONCLUSIONS 

The paper is aimed at application of AI techniques to 
reliability evaluation of 3D simulation results 
produced via 3D finite element simulation. It was 
found that such classification is possible by various 
3D model classification techniques, and some of them 
produce perfectly accurate results.  

Among the machine learning approach, relying on 
geometrical features, 2D depth image classification 
via Resnet18, and VoxNet-based classification of 
voxelized models, the latter two were selected for 
further analysis. 

Future research is planned to be aimed for two 
major aspects. First, currently only global SF minima 
were classified, whereas in reality, local minima need 
to be classified as well.  

Second, absolute sizes of components (and 
component fragments) were used for classification. 
However, there can be components with significantly 
different sizes and the appropriate sample radius may 
differ from the findings in this paper. Approaches to 
either scale models or choose the fragments according 
to the number of included vertices need to be studied, 
which might be more generic for varying component 
sizes.  
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