
Bootstrapping a DQN Replay Memory with Synthetic Experiences

Wenzel Baron Pilar Von Pilchau1 a, Anthony Stein2 and Jörg Hähner1

1Organic Computing Group, University of Augsburg, Eichleitnerstr. 30, Augsburg, Germany
2Artificial Intelligence in Agricultural Engineering, University of Hohenheim, Garbenstraße 9, Hohnheim, Germany

Keywords: Experience Replay, Deep Q-Network, Deep Reinforcement Learning, Interpolation, Machine Learning.

Abstract: An important component of many Deep Reinforcement Learning algorithms is the Experience Replay that
serves as a storage mechanism or memory of experienced transitions. These experiences are used for training
and help the agent to stably find the perfect trajectory through the problem space. The classic Experience
Replay however makes only use of the experiences it actually made, but the stored transitions bear great
potential in form of knowledge about the problem that can be extracted. The gathered knowledge contains
state-transitions and received rewards that can be utilized to approximate a model of the environment. We
present an algorithm that creates synthetic experiences in a nondeterministic discrete environment to assist the
learner with augmented training data. The Interpolated Experience Replay is evaluated on the FrozenLake
environment and we show that it can achieve a 17% increased mean reward compared to the classic version.

1 INTRODUCTION

The concept known as Experience Replay (ER)
started as an extension to Q-Learning and AHC-
Learning (Lin, 1992) and developed to a norm in
many Deep Reinforcement Learning (RL) algorithms
(Schaul et al., 2015; Mnih et al., 2015; Andrychow-
icz et al., 2017). One major advantage is its ability
to increase sample efficiency. Another important as-
pect is, that algorithms like Deep Q-Network (DQN)
are even not able to learn in a stable manner without
this extension (Tsitsiklis and Van Roy, 1997). This
effect is caused by correlations in the observation se-
quence and the fact that small updates may signifi-
cantly change the policy and in turn alternate the dis-
tribution of the data. By uniformly sampling over the
stored transitions, ER is able to remove these corre-
lations as well as smoothing over changes in the data
distribution (Mnih et al., 2015).

Most versions of ER store the real, actually made,
experiences. For instance the authors of (Mnih et al.,
2015) used vanilla ER for their combination with
DQN, and also (Schaul et al., 2015) who extended
vanilla ER to their Prioritized Experience Replay, that
is able to favour experiences from which the learner
can benefit most. But there are also approaches that
are filling their replay memory with some kind of
synthetic experiences to support the learning pro-

a https://orcid.org/0000-0001-9307-855X

cess. One example is the Hindsight Experience Re-
play from (Andrychowicz et al., 2017) that takes a
trajectory of states and actions aligned with a goal and
replaces the goal with the last state of the trajectory to
create a synthetic experience. Both, the actual experi-
enced trajectory, as well as the synthetic one are then
stored in the ER. This approach helps the learner to
understand how it is able to reach different goals. This
approach was implemented in a multi-objective prob-
lem space and after reaching some synthetic goals the
agent is able to learn how to reach the intended one.

Our contribution is an algorithm that is targeted
to improve (Deep) RL algorithms that make use of
an ER, like e.g. DQN, DDPG or classic Q-Learning
(Zhang and Sutton, 2017), in nondeterministic and
discrete environments by means of creating synthetic
experiences utilizing stored real transitions. We can
increase sample efficiency as transitions are further
used to generate more and even better experiences.
The algorithm therefore computes an average value
of the received rewards in a situation and combines
this value with observed follow-up states to create so
called interpolated experiences that assists the learner
in its exploration phase.

The evaluation is performed on the FrozenLake
environment from the OpenAI Gym (Brockman et al.,
2016).

This approach investigates only discrete and non-
deterministic environments and the averaging is a
rather simple method as well, but the intention is

404
von Pilchau, W., Stein, A. and Hähner, J.
Bootstrapping a DQN Replay Memory with Synthetic Experiences.
DOI: 10.5220/0010107904040411
In Proceedings of the 12th International Joint Conference on Computational Intelligence (IJCCI 2020), pages 404-411
ISBN: 978-989-758-475-6
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

to gain first insights in this highly interesting field.
We can reveal promising potentials utilizing this very
simple technique and this work serves as a basis to
build up further research on.

The paper is structured as follows: We start with
a brief introduction of the ER and Deep Q-Learning
in section 2 and follow up with some related work in
section 3. In section 4 we introduce our algorithm
along with a problem description and the Interpola-
tion Component that was used as an underlying archi-
tecture. The evaluation and corresponding discussion
as well as interpretation of the results is presented in
section 5. Section 6 is the conclusion and presents
ideas for future work.

2 BACKGROUND

In this section, we introduce some background knowl-
edge.

2.1 Experience Replay

The ER is a biological inspired mechanism (McClel-
land et al., 1995; O’Neill et al., 2010; Lin, 1992; Lin,
1993) to store experiences and reuse them for training
later on.

An experience is defined as: et = (st ,at ,rt ,st+1)
where at denotes the start state, at the performed ac-
tion, rt the corresponding received reward and st+1
the following state. To perform experience replay, at
each time step t the agent stores its recent experience
in a data set Dt = {e1, . . . ,et}.

This procedure is repeated over many episodes,
where the end of an episode is defined by a terminal
state. The stored transitions can then be utilized for
training either online or in a specific training phase.
It is very easy to implement ER in its basic form and
the cost of using it is mainly determined by the stor-
age space needed.

2.2 Deep Q-Learning

The DQN algorithm is the combination of the clas-
sic Q-Learning (Sutton and Barto, 2018) with neural
networks and was introduced in (Mnih et al., 2015).
The authors showed that their algorithm is able to play
Atari 2600 games on a professional human level uti-
lizing the same architecture, algorithm and hyperpa-
rameters for every single game. As DQN is a deriva-
tive of classical Q-Learning it approximates the opti-
mal action-value function:
Q∗(s,a) = max

π
E
[
rt +γrt+1 +γ

2rt+2 + . . . |st = s,at = a,π
]

(1)

However DQN employs a neural network instead of
a table. Equation (1) displays the maximum sum of
rewards rt discounted by γ at each time-step t, that
is achievable by a behaviour policy π = P(a|s), after
making an observation s and taking an action a. DQN
performs an Q-Learning update at every time step that
uses the temporal-difference error defined as follows:

δt = rt + γmax
a′

Q(st+1,a′)−Q(st ,at) (2)

(Tsitsiklis and Van Roy, 1997) showed that a
nonlinear function approximator used in combina-
tion with temporal-difference learning, such as Q-
Learning, can lead to unstable learning or even diver-
gence of the Q-Function.

As a neural network is a nonlinear function ap-
proximator, there arise several problems:
1. the correlations present in the sequence of obser-
vations,
2. the fact that small updates to Q may significantly
change the policy and therefore impact the data distri-
bution, and
3. the correlations between the action-values Q(st ,at)
and the target values r+ γmaxa′Q(st+1,a′) present in
the td-error shown in (2).

The last point is crucial, because an update to Q
will change the values of both, the action-values as
well as the target values, that could lead to oscillations
or even divergence of the policy. To counteract these
issues, two concrete actions have been proposed:
1. The use of an ER solves, as stated above, the
two first points. Training is performed each step on
minibatches of experiences (s,a,r,s′) ∼ U(D), that
are drawn uniformly at random from the ER.
2. To remove the correlations between the action-
values and the target values a second neural network
is introduced that is basically a copy of the network
used to predict the action-values, but it is freezed for
a certain interval C before it is updated again. This
network is called target network and is used for the
computation of the target action-values. (Mnih et al.,
2015)

We use the target network as it was presented
above and extend the classic ER with a component
to create synthetic experiences.

3 RELATED WORK

The classical ER, introduced in section 2.1, has been
improved in many further publications. One promi-
nent improvement is the so called Prioritized Expe-
rience Replay (Schaul et al., 2015) that replaces the
uniform sampling with a weighted sampling in favour

Bootstrapping a DQN Replay Memory with Synthetic Experiences

405

of experience samples that might influence the learn-
ing process most. This modification of the distribu-
tion in the replay induces bias and to account for this,
importance-sampling has to be used. The authors
show that a prioritized sampling leads to great suc-
cess. This extension of the ER also changes the de-
fault distribution, but uses real transitions and there-
fore has a different focus.

Another publication (De Bruin et al., 2015) inves-
tigates the composition of experience samples in the
ER. They discovered that for some tasks it is impor-
tant, that transitions, made in an early phase, when
exploration is high, are important to prevent overfit-
ting. Therefore they split the ER in two parts, one
with samples from the beginning and one with actual
samples. They also show that the composition of the
data in an ER is vital for the stability of the learn-
ing process and at all times diverse samples should be
included. Following this results we try to achieve a
broad distribution over the state space utilizing syn-
thetic experiences.

(Stein et al., 2017; Stein et al., 2018) use interpo-
lation in combination with XCS Classifier System to
speed up learning in single-step problems by means
of using previous experiences as sampling points for
interpolation. The used component for interpolation
is part of this work and discussed in more detail in
section 4.3.

4 INTERPOLATED EXPERIENCE
REPLAY

In this Section we present the FrozenLake problem
and introduce our algorithm to solve it. We also intro-
duce the Interpolation Component (IC) that serves as
architectural concept.

4.1 Problem Description

“FrozenLake” is one example of a nondeterminis-
tic world in which an action at ∈ A realised in a
state st ∈ S may not lead consistently to the same
following state st+1 ∈ S. FrozenLake is basically
a grid world consisting of an initial state I, a final
state G and frozen, as well as unfrozen tiles. The
unfrozen tiles equal holes H in the lake and if the
agent falls into one of such, he receives a reward of
-1 and has to start from the initial state again. If
the agent reaches G he receives a reward of 1. The
set of possible actions A consists of the four cardi-
nal directions A = {N,E,S,W}. The environment is
nondeterministic, because the agent might slide on

the frozen tiles which is implemented through a cer-
tain chance of executing a different action instead of
the intended one. The environment is discrete, be-
cause there is a discrete number of states the agent
can reach. The environment used for evaluation is
the “FrozenLake8x8-v0” environment from OpenAI
Gym (Brockman et al., 2016).

If an action is chosen that leads the agent in the
direction of the goal, but because of the slippery fac-
tor it is falling into a hole, it also receives a neg-
ative reward and creates the following experience:
et = (st ,at ,−1,st+1). If this experience is used for a
Q update it misleadingly shifts the state-action value
away from a positive value. We denote the slippery
factor for executing a neighbouring action as cslip, the
resulting rewards for executing the two neighbouring
actions as rright

t and rleft
t and the reward for executing

the intended action as rint
t and can then define the true

expected reward for executing at in st as follows:

rexp
t =

cslip

2
· rright

t +
cslip

2
· rleft

t +(1− cslip) · rint
t (3)

Following (3) we can define the experience that takes
the state-transition function into account and that not
confuses the learner as follows:

eexp
t = (st ,at ,r

exp
t ,st+1) (4)

The learner will converge its state-action value
Qπ(st ,at) after seeing a lot of experiences to:

Qπ(st ,at) = Q∗(st ,at) = rexp
t + γmax

a′
Q∗(st+1,a′)

(5)
We define the set of all rewards that belong to the ex-
periences that start in the same state st and execute the
same action at as:

Rt :=
{

rn ∈ {r|(s,a,r,s′)∈Dt∧a= at∧s= st}
}

(6)

In our work we utilize stored transitions from the re-
play memory to create synthetic experiences with an
averaged reward ravg

t that is as close as possible to
rexp

t . Following (6) we can define these interpolated
experiences as:

ravg
t =

∑r∈Rt r
|Rt |

(7)

eavg
t = (st ,at ,r

avg
t ,st+1) (8)

with
eavg

t ≈ eexp
t (9)

The accuracy of this interpolation correlates with the
amount of transitions stored in the ER, starting in st
and executing at . As a current limitation so far, be-
cause we need a legal follow-up state st+1, it is cru-
cial for the environment to be discrete (in a continu-
ous world we would have infinite states st). Otherwise

NCTA 2020 - 12th International Conference on Neural Computation Theory and Applications

406

we had to interpolate or predict this following state or
else the state-transition function as well and this could
harm the accuracy of the interpolated experience.

4.2 Algorithm

Our algorithm triggers an interpolation after every
step the agent takes. A query point xq∼U(S) is drawn
at random from the state space and all matching ex-
periences:

Dmatch := {et ∈ Dt |st = xq} (10)

for that holds that their starting point st is equal to the
query point xq, are collected from the ER. Then for
every action a ∈ A all experiences that satisfy at = a
are selected from Dmatch in:

Da
match := {et |et ∈ Dmatch∧at = a} (11)

The resulting transitions are used to compute an aver-
age reward value ravg

t and a synthetic experience eavg
t

for every distinct next state:

st+1 ∈ {s′|(st ,at ,rt ,s′) ∈ Da
match} (12)

is created. This results in a minimum of 0 and a max-
imum of 3 synthetic experiences per action and sums
up to a maximum of 12 synthetic transitions per in-
terpolation depending on the amount of stored tran-
sitions in the ER. As with the amount of stored real
transitions, that can be seen as the combined knowl-
edge about the model, the quality of the interpolated
experiences may get better, a parameter cs int is intro-
duced, that determines the minimum amount of stored
experiences before the first interpolation.

4.3 Interpolation Component

Stein et al. introduce their IC (Stein et al., 2017) that
this work uses as underlying basic structure for its in-
terpolation tasks.

This IC serves as an abstract pattern and con-
sists of a Machine Learning Interface (MLI), an In-
terpolant, an Adjustment Component, an Evaluation
Component and the Sampling Points (SP). If the MLI
receives a sample it is handed to the Adjustment Com-
ponent, there, following a decision function, it is
added to or removed from SP. If an interpolation is re-
quired, the Interpolation Component fetches required
sampling points from SP and computes, depending on
an interpolation technique, an output. The Evalua-
tion Component provides a metric to track a so-called
trust-level as a metric of interpolation accuracy.

We replaced the SP with the ER. It is realized by
a FiFo queue with a maximum length. This queue
represents the classic ER and is filled only with real

Interpolated Experience Replay

real experiences synthetic experiences

sier

ser ssynthetic

Figure 1: Intuition of Interpolated Experience Replay mem-
ory.

experiences. To store the synthetic transitions another
queue, a so-called ShrinkingMemory, is introduced.
This second storage is characterized by a decreasing
size. Starting at a predefined maximum it gets smaller
depending on the length of the real experience queue.
The Interpolated Experience Replay (IER) has a total
size, comprising the sum of the lengths of both queues
as can be seen in fig. 1. If this size is reached, the
length of the ShrinkingMemory is decreased and the
oldest items are removed, as long as either the real
valued queue reaches its maximum length and there
is some space left for interpolated experiences or the
IER fills up with real experiences. This decision was
made because it is expected, that near convergence
the learner benefits more from actual experiences than
from synthetic transitions spread over the state space.
This approach includes a minimum size for the inter-
polated storage, but this was not further investigated
in this work and is left for future work.

The IER algorithm as described in section 4.2 is
located in the Interpolant, and, as stated above, exe-
cuted in every step.

For the IER, we need to be able to find all expe-
riences e in D that matches a randomly chosen first
state. To make this efficient we use a dictionary that
maps state-action pairs to their associated average re-
wards and distinct next states of all seen transitions.
The dictionary is updated after every transition the
agent makes.

To evaluate the quality of computed interpolations
in future work, a metric could be designed to be used
in the Evaluation part of the IC.

5 EVALUATION

5.1 Experimental Setup

For evaluation purposes, a linear regression in form of
a neural network is used. This decision was felt be-
cause we use one input node for each state, that gives
an overall amount of 64 input nodes. Neural networks
have the ability to generalize over neighbouring areas,
but using the architecture described above, this seems
to have no effect because every state has its own input
node. We therefore decided to reduce complexity by

Bootstrapping a DQN Replay Memory with Synthetic Experiences

407

Table 1: Overview of hyperparameters applied for the
FrozenLake8x8-v0 experiment.

Parameter Value
Learning rate α 0.0005

Discount factor γ 0.95
Epsilon start 1
Epsilon min 0.05

Update target net interval τ 300
Size of Experience Replay ser 100k

Size of IER sier 100k
Start Learning at size of IER 300

Minibatch size 32

not using hidden layers. The observed results can be
transferred to a more complex neural network (DQN),
as a first step we sticked to the presented approach.
One output node for every possible action was used,
that results in 4 output nodes. Vanilla ER was selected
as a baseline and compared with the IER approach
presented in section 4. Preliminary experiments re-
vealed the hyperparameters given in table 1, that are
shared for all experiments. Furthermore, different ca-
pacities for storing synthetic experiences ssyntehtic in
combination with different warm-up phases, i.e., val-
ues for cs int , are investigated. As exploration tech-
nique a linearly decaying ε-greedy was used, and dif-
ferent durations texpl tried. The different constella-
tions of the individual experiments are shown in ta-
ble 2. We measure the average return over the last
100 episodes to obtain a moving average that indi-
cates how often the agent is able to reach to goal in
this time. Each experiment was repeated for 20 times
and the results are reported as the mean values and the
observed standard deviations (±1SD) over the repeti-
tions.

Each configuration was tested against the baseline
and the differences have been assessed for statistical
significance. Therefore, we first conducted Shapiro-
Wilk tests in conjunction with visual inspection of
QQ-plots to determine whether a normal distribution
can be assumed. Since this criterion could not be con-
firmed for any of the experiments, the Mann-Whitney-
U test has been chosen. All measured statistics, com-
prising the corresponding p-values for the hypothesis
tests are reported in table 4.

5.2 Experimental Results

Fig. 2 depicts the results of the best three IER con-
figurations as given in table 4. Experiment 1 and 2
were run for 1000 episodes. Experiment 3 for 1300
episodes, because of the longer exploration phase
compared to the previous experiments. It can be ob-
served, that the baseline approach (DQN using vanilla

Table 2: Overview of the individually conducted experi-
ment constellations.

experiment texpl ssyn cs inter

1 500 episodes

20k
250
500

1,000

100k
250
500

1,000

2 750 episodes

20k
250
500

1,000

100k
250
500

1,000

3 1,000 episodes

20k
250
500

1,000

100k
250
500

1,000

ER) stays below the IER approach (green line) and the
latter one is converging on a higher value alongside a
steeper increase, that indicates faster learning. This
effect is even more distinct in the experiments with
shorter exploration phases (experiments 1 and 2).

Figure 3 reports the results of all experiments. The
plots reveal, similar to fig. 2, that the IER approach
outperforms the baseline. All the tested IER configu-
rations perform similarly well, with only marginal de-
viations. It turns out that the choice of ssyn and cs int
only has little to no effect. Because the IER algorithm
performs better than the baseline, and this effect is
even bigger in the scenarios with shorter exploration
phases, it can be used to decrease the time needed for
exploration.

In fig. 4 the size of the IER can be seen. As the
choice of cs int does not have a huge effect on the
amount of interpolated experiences compared to the
maximum size we plotted only the graphs for the con-
figurations of the best results. The crossed curves rep-
resent the amount of stored interpolated experiences
and the dotted curves the amount of stored real expe-
riences. The red curve depicts the baseline and the
amount of real transitions is slightly above the IER
variants in all three experiments. Taking into account
that, first, an episode ends after the agent has, either
reached the final state, fell into a hole or reached the
maximum time limit, and, second, the IER agents per-
formed better, it seems that the baseline agent learned
to avoid falling into a hole, but does not reach the fi-
nal state as often as the other agents. This explains
the higher amount of experiences. Fig. 4a shows that

NCTA 2020 - 12th International Conference on Neural Computation Theory and Applications

408

Table 3: Summary of results.

experiment ssyn cs int Mean ±1SD p-value p-value
Shapiro-Wilk Mann-Whitney-U

1

0 0 0.3772 ±0.3121 1.9085e-33

20,000
250 0.43 ±0.3277 2.0967e-34 1.2702e-19
500 0.4324 ±0.3297 6.5603e-35 6.6317e-22

1,000 0.4416 ±0.3396 2.8203e-34 2.4728e-23

100,000
250 0.4287 ±0.3364 3.611e-35 3.2159e-22
500 0.4168 ±0.3266 9.4551e-35 1.4136e-13

1,000 0.4261 ±0.3282 3.0105e-35 9.3601e-21

2

0 0 0.2385 ±0.2807 8.7954e-35

20,000
250 0.2877 ±0.3126 1.9496e-33 1.6066e-06
500 0.2911 ±0.3105 5.4785e-33 1.9508e-06

1,000 0.2653 ±0.309 9.4381e-35 1.3255e-02

100,000
250 0.2785 ±0.3018 5.5895e-33 1.7829e-04
500 0.2782 ±0.3155 1.555e-34 2.7468e-03

1,000 0.2734 ±0.3026 7.4416e-34 1.0413e-03

3

0 0 0.0885 ±0.1347 5.9146e-38

20,000
250 0.1194 ±0.1618 3.9763e-35 3.1267e-09
500 0.1236 ±0.1642 1.1407e-34 6.4606e-09

1,000 0.1215 ±0.161 8.5940e-35 1.0439e-09

100,000
250 0.1198 ±0.1716 1.901e-36 2.5456e-03
500 0.1229 ±0.1666 3.8836e-35 3.5305e-03

1,000 0.116 ±0.1602 1.5933e-35 6.5812e-04

(a) Experiment 1. (b) Experiment 2. (c) Experiment 3.

Figure 2: The best results among all conducted experiments. The solid red line represents the classical ER serving as baseline
to compare with. The dashed green line shows the average reward of the IER approach. The blue line depicts the decaying
epsilon. The lines for IER and the baseline represent the repetition averages.

(a) Experiment 1. (b) Experiment 2. (c) Experiment 3.

Figure 3: All experiments with all perturbations of texpl , ssyn and cs int . The dashed lines show the results of the single
experiments. The blue line depicts the decaying epsilon. The x-axis represents the episodes and the y-axis the average reward
of all 20 repetitions.

Bootstrapping a DQN Replay Memory with Synthetic Experiences

409

(a) Experiment 1. (b) Experiment 2. (c) Experiment 3.

Figure 4: The size of the IER represented by the amount of real and synthetic experiences. cs int was chosen from table 4.
The crosses represent the amount of synthetic and the dots the amount of real experiences. Brown show the size of the IER
with ssyntehtic = 100,000 and orange with ssyn = 20,000. The red curves represent the baseline. The x-axis marks the episode
length and the y-axis the amount of stored experiences.

Table 4: Best IER configurations found during the parame-
ter study.

experiment ssyn cs int
1 20,000 1,000
2 20,000 250
3 100,000 1,000

the ratio of experiences at the end of the exploration
phase is in favor of the synthetic ones in the case of
ssyn = 100,000. Fig. 4b shows that the ratio changed
but is still in favor of the synthetic transitions and
fig. 4c shows that at this time the ratio is in favor
of the real experiences. If we look at the graphs for
ssyn = 20,000, then all ratios are in favor of the real
examples, but also not that far away from a ratio of
50/50 in experiment 1 and 2. This seems to be a good
choice as the best results were achieved with a choice
of ssyn that is close to an equal distribution of interpo-
lated and real transitions. This should be investigated
further.

6 CONCLUSION AND FUTURE
WORK

We presented an extension for the classic ER used
in Deep RL that includes synthetic experiences to
speedup and improve learning in nondeterministic
and discrete environments. The proposed algorithm
uses stored, actually seen transitions to utilize the ex-
perience of the model that serve as basis for the calcu-
lation of synthetic (s,a,r,s) tuples by means of inter-
polation. The synthetic experiences comprise a more
accurate estimate of the expected long-term return a
state-action pair promises, than a real transition does.
So far the employed interpolation technique is a sim-
ple equally weighted averaging that serves as an ini-

tial approach. More complex methods in more com-
plex problem spaces have to be investigated in the
future. The IER approach was compared to the de-
fault ER in the FrozenLake8x8-v0 environment from
the OpenAI Gym and showed an increased perfor-
mance in terms of a 17% increased overall mean re-
ward. Several configurations for the maximum size
of the stored synthetic experiences, different warm-up
times for the interpolation, as well as different explo-
ration phases were examined, but revealed no remark-
able effect. Nevertheless, a ratio of 50/50 for real and
synthetic experiences in the IER seems promising and
needs further research.

As the algorithm creates a synthetic experience
for every action and every follow-up state there is a
huge amount of transitions created that could be de-
creased in a way that takes further knowledge into ac-
count. An example would be that only those actions
are considered, that the actual policy would propose
in the given situation. Or only for that follow-up state
that has the most (promising) stored experiences in
the storage. Also, further investigation of the compo-
sition regarding the IER seems interesting, since, as
stated above, the ratio of the stored transitions might
have an effect. As the evaluation was limited to the
FrozenLake environments provided by OpenAI Gym,
the proposed algorithm could be tested on more com-
plex versions that differ in size and difficulty. Also a
continuous version with a greatly increased state and
action space is required for deeper analysis.

As of yet, the proposed approach is limited to dis-
crete and nondeterministic environments. We plan to
develop the IER further to solve more complex prob-
lems (increased state and action space) as well. To
achieve this, a solution for the unknown follow-up
state is needed, that could also be interpolated or even
predicted by a state-transition function that is learned
in parallel. Here the work from (Jiang et al., 2019)

NCTA 2020 - 12th International Conference on Neural Computation Theory and Applications

410

could serve as a possible approach to begin with. A
yet simple, but nevertheless more complex problem,
because of its continuity, that is beyond the domain
of grid worlds is the MountainCar problem. Other,
more complex interpolation techniques have to be ex-
amined to adapt our IER approach in this environ-
ment. And at last, the impact of interpolated experi-
ences on more sophisticated experience replay mech-
anisms such as Hindsight ER and Prioritized ER have
to be investigated as well.

REFERENCES

Andrychowicz et al. (2017). Hindsight experience replay. In
Advances in Neural Information Processing Systems
30, pages 5048–5058. Curran Associates, Inc.

Brockman, G. et al. (2016). Openai gym.
De Bruin, T., Kober, J., Tuyls, K., and Babuška, R. (2015).

The importance of experience replay database com-
position in deep reinforcement learning. In Deep re-
inforcement learning workshop, NIPS.

Jiang, W., Hwang, K., and Lin, J. (2019). An experience re-
play method based on tree structure for reinforcement
learning. IEEE Transactions on Emerging Topics in
Computing, pages 1–1.

Lin, L.-J. (1992). Self-improving reactive agents based on
reinforcement learning, planning and teaching. Ma-
chine Learning, 8(3):293–321.

Lin, L.-J. (1993). Reinforcement learning for robots us-
ing neural networks. Technical report, CARNEGIE-
MELLON UNIV PITTSBURGH PA SCHOOL OF
COMPUTER SCIENCE.

McClelland, J. L., McNaughton, B. L., and O’Reilly, R. C.
(1995). Why there are complementary learning sys-
tems in the hippocampus and neocortex: insights
from the successes and failures of connectionist mod-
els of learning and memory. Psychological review,
102(3):419.

Mnih et al. (2015). Human-level control through deep rein-
forcement learning. Nature, 518(7540):529.

O’Neill, J., Pleydell-Bouverie, B., Dupret, D., and
Csicsvari, J. (2010). Play it again: reactivation of wak-
ing experience and memory. Trends in Neurosciences,
33(5):220 – 229.

Schaul, T., Quan, J., Antonoglou, I., and Silver, D. (2015).
Prioritized Experience Replay. arXiv e-prints, page
arXiv:1511.05952.

Stein, A., Menssen, S., and Hähner, J. (2018). What about
Interpolation? A Radial Basis Function Approach to
Classifier Prediction Modeling in XCSF. In Proc. of
the GECCO, GECCO ’18, page 537–544, New York,
NY, USA. Association for Computing Machinery.

Stein, A., Rauh, D., Tomforde, S., and Hähner, J. (2017).
Interpolation in the extended classifier system: An ar-
chitectural perspective. Journal of Systems Architec-
ture, 75:79–94.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement learn-
ing: An introduction. MIT press.

Tsitsiklis, J. N. and Van Roy, B. (1997). An analysis of
temporal-difference learning with function approxi-
mation. IEEE Transactions on Automatic Control,
42(5):674–690.

Zhang, S. and Sutton, R. S. (2017). A deeper look at expe-
rience replay. CoRR, abs/1712.01275.

Bootstrapping a DQN Replay Memory with Synthetic Experiences

411

