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Abstract: In Grammatical Evolution (GE) individuals occupy more space than required, that is, the Actual Length of 
the individuals is longer than their Effective Length. This has major implications for scaling GE to complex 
problems that demand larger populations and complex individuals. We show how these two lengths vary for 
different sizes of population, demonstrating that Effective Length is relatively independent of population size, 
but that the Actual Length is proportional to it. We introduce Grammatical Evolution Memory Optimization 
(GEMO), a two-stage evolutionary system that uses a multi-objective approach to identify the optimal, or at 
least, near-optimal, genome length for the problem being examined. It uses a single run with a multi-objective 
fitness function defined to minimize the error for the problem being tackled along with maximizing the ratio 
of Effective to Actual Genome Length leading to better utilization of memory and hence, computational 
speedup. Then, in Stage 2, standard GE runs are performed restricting the genome length to the length 
obtained in Stage 1. We demonstrate this technique on different problem domains and show that in all cases, 
GEMO produces individuals with the same fitness as standard GE but significantly improves memory usage 
and reduces computation time. 

1 INTRODUCTION 

Evolutionary Algorithms have gained a lot of 
popularity to automatically generate programs, 
especially Koza’s Genetic Programming (GP) (Ryan, 
1998). Although powerful, GP has some restrictions, 
specifically the use of single types. This issue has 
been tackled by several other grammar-based 
flavours of GP, the most commonly used of which is 
Grammatical Evolution (GE) (Ryan, 1998), which 
employs linear binary strings to generate programs in 
any arbitrary language using a Backus-Naur Form 
(BNF) Grammar. 

The computational complexity of an Evolutionary 
Algorithm depends to a large extent on the 
complexity of the fitness function. Genetic Algorithm 
(GA) tries to obtain optimal values for the objective 
function by either maximizing or minimizing a 
solution to the problem. However, there is also the 
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issue of space complexity, which is typically caused 
by large individuals or populations, or both. This can 
lead to poor utilization of memory which in turn 
increases computational time. We address this by 
using a Multi-Objective Approach based system, 
GEMO which minimizes error and maximizes 
memory utilization. 

Many researchers have explored the idea of multi-
objective optimization using fitness, size and 
diversity as objectives. In a multi-objective 
optimization approach, the idea of non-dominated 
solutions along with Pareto optimal individuals is 
considered to achieve all the specified objectives. 
Pareto fronts have been used to obtain a set of 
individuals that can optimize multi-objective Genetic 
Algorithms (Deb, 2001). Efforts have also been made 
to improve the multi-objective optimization 
algorithms by redefining search and selection criteria. 
(Eddy, 2001) has used a distinct point metric and 
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cluster metrics as defined by (Wu, 2000) to optimize 
multi-objective problems. The distinct point indicates 
the number of unique individuals in the solution space 
whereas cluster metric measures the number of 
unique individuals in the cluster, which is calculated 
by dividing the number of individuals with the 
number of distinct individuals. Bleuler et al (Bleuler, 
2008) considered fitness of solution and program size 
as two objectives and applied a bi-objective 
optimization using a Pareto-based method in which 
individuals with a smaller code size were preferred 
over similar performing individuals.  

GE presents an extra challenge due to disconnect 
between Actual and Effective Lengths; individuals 
with short Effective Lengths don’t necessarily result 
in short Actual Lengths. Indeed, Section 4 
demonstrates that the Actual Lengths grow at a higher 
rate than Effective Lengths which leads to poor 
memory usage. 

2 GRAMMATICAL EVOLUTION 

GE is a combination of a GA and GP. Programs or 
phenotypes are evolved through the process of 
mapping using a variable length genotype (also 
referred to as chromosome) and a formal grammar 
which is written in BNF (Backus, 1963) (Neill, 2003). 
A chromosome consists of binary strings (or genes) 
of certain length (number of binary digits) where each 
gene is a variable or parameter under consideration. 
The entire length of an individual is known as the 
Actual Length while the number of codons used to 
generate phenotype is referred to as the Effective 
Length (Nicolau, 2012). If the Effective Length is less 
than the Actual Length then the remaining unused 
codons, the tail of the genome, are not used in 
deriving expressions.  

However, if an individual does not have enough 
codons to map to a valid phenotype structure, then the 
mapping process terminates, and the individual is 
considered to be invalid. Alternatively, to mitigate 
this issue, GE can use the concept of wrapping, which 
re-uses the same genome sequence, in an attempt to 
completely map an individual. The number of times 
an individual is wrapped is referred to as the 
Wrapping Factor (WF). 

To demonstrate this concept, consider the 
following grammar. As with all BNF grammars, it 
can be defined as the tuple <S, N, T, P>, where T is 
the set of terminals, i.e., items that can appear in 
syntactically valid programs, N is a set of non-
terminals, i.e. intermediate constructs that don’t 
appear in syntactically valid programs and P is a set 

of production rules that maps the non-terminals into 
terminals. S is the start symbol, from which all 
individuals grow from; in this case, it is the non-
terminal <algo>. 
 

<algo>  ::=  <var><op><algo> | <var> 

<op>     ::=   + | - | * | / 

<var> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |  9

Grammar 1: Simple Arithmetic Calculator. 

The above grammar consists of 3 non-terminals 
(<algo>, <op> and <var>) which are used to map 
fourteen terminal symbols (0, 1, ... 9, +, -, *, /). 

The Effective and Actual Length required in four 
different scenarios of mapping in GE are shown in 
Table 1. Memory utilization can be defined as the 
ratio of Effective Length to Actual Length. In all the 
scenarios, the maximum length of the genome needs 
to be defined carefully, as too large an Actual Length 
results in a waste of memory (Scenario 1) while too 
short of an Actual Length results in genomes that are 
unable to map program structures completely 
(Scenario 2). Although wrapping can be applied 
(Scenario 3) to address this issue, the process of 
mapping becomes trapped in infinite loops failing to 
evolve an individual completely (Scenario 4). 

Table 1: Actual Length and Effective Length under 
different scenarios of mapping using Grammar 1. 

Scenario 
Input 

Genome 
String 

generated 

Actual 
Lengt

h 

Effectiv
e 

Length

Sufficient 
Genome 
Length 

(4, 13, 8, 
4, 14, 23, 

20, 5) 
3 + 4 8 5 

Insufficient 
Genome 
Length 

(6, 13, 9, 
4, 27, 15, 
20, 12) 

Invalid 
Phenotype 

8 n/a 

Insufficient 
Genome 
Length 

with 
Wrapping 

(6, 13, 9, 
4, 27, 15, 
20, 12) 

3 - 7 * 2 - 9 8 11 

Infinite 
loop 

problem in 
Wrapping 

(4, 14, 5, 
2, 19, 23)

Invalid 
Phenotype 

6 n/a 

Inappropriate definition of genome lengths can 
lead to poor memory usage and computational 
overhead; for example, some of the experiments in 
Section 6 demonstrate that for some problems less 
than 15% of the Actual Length is used for mapping 
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in standard GE. To make matters even worse, this 
usage degrades over time, so the longer a run is, the 
worse the situation gets. 

3 PROBLEM DOMAINS 

We examine three different problem domains: Time 
Series Analysis (Ryan, 2020), Symbolic Regression 
and a Boolean Logic Problem.  

3.1 Autoregression 

 Autoregressive Time Series Forecasting is a type of 
regression model, linear for this case, which is used 
to predict a variable based on a linear combination of 
input values. The general form of the equation is 
described as: 
 

Y = A0 + A1 * X1 + A2 * X2 (1)
 
This method is employed on the time series data 

where a number of input variables are taken as 
observations from previous time steps called lagged 
variables. To predict the value for the next time step 
(t+1), the problem can be formulated by considering 
the values of previous time steps as: 

 
X(t+1) = B0 + B1* X(t-1) + ....  + Bn * X(t-n) (2)

 
As the regression model forecasts data from the 

same input variable, it is referred to as 
AutoRegressive Time Series Forecasting.  

   y                    =   < intercept > + < expr >

< expr >         ::=  (< expr > + < expr >) | 
                              (< expr > - < expr >) | 
                              (< constant > * < var >) 
< constant >  ::= 0.< num > | -0.< num > 
< intercept > ::= < num >.< num > | 
                            -< num >.< num > 
< num >         ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 
                             < num >< num1 > 
< num1 >      ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 
< var >          ::= X.shift(< lag > + 1) 
< lag >           ::= < num > 

Grammar 2: Grammar for AutoRegression. 

Grammar 2 generates values for each of 
<intercept>, <constant> and <lag>. The 

<intercept> generates a value which is not a function 
of time while <constant> derives smoothing 
coefficients for lag variables ranging between -1 to 1. 
The <lag> variable is the input value to the forecaster 
as a function of time. We examine four 
AutoRegressive datasets, which we term AR1 (Daily 
Dublin Waste), AR2 (Hourly Riders), AR3 (Daily 
Temperature) and AR4 (Monthly Dublin Waste). 
Each of these uses Root Mean Square Error as its 
error metric. 

1
      (3)

3.2 Symbolic Regression 

We also examine two classic GP Symbolic 
Regression problems, namely the Vladislavleva4 
(Ryan, 1998), generally considered to be at the higher 
end of the difficulty range, and the infamous Quartic 
Polynomial problem, which we include to 
demonstrate the impact of GEMO even on easy 
problems. We have used grammar as mentioned in 
(Ryan, 1998) for experimentation. The error metric 
for these problems is defined in Table 2.  

Table 2: Error Metric and Domain for Symbolic Regression 
Problems. 

Problem Error metric Domain

Vladislavleva
4 

Mean Square Error 

1
 

0.05 to 
6.05 

Quartic 
Polynomial 

Mean Average Error 

1
 

-1 to 1 

3.3 Boolean Logic 

The third domain we examine is Boolean Logic 
which takes true or false as an input. For this domain, 
we choose the 11-Multiplexer problem as employed 
by Koza (Ryan, 1998) and use their grammar for 
experimentation. Error metric used in this case is 
Hamming Error as defined in equation 4.  

!       (4)
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4 MEMORY AND RUNTIME 
ANALYSIS 

Figure 1 shows the effect of varying population size 
on the Effective and Actual Genome Lengths on AR1. 
We noticed that in all experiments, regardless of 
domain, there appears to be something of a steady 
state value for Effective Length, which is independent 
of the population size, while the Actual Length 
increases with population size leading to higher space 
complexity. The computational complexity (CC) for 
EAs can be established in terms of evolutionary 
parameters as:  

 
CC = (WF *GL * UI * G) (5)

 
Where WF is Wrapping Factor, GL is Genome 

length, UI is the number of unique individuals, and G 
is the number of generations. This indicates that the 
computational complexity is directly proportional to 
the length of genome as shown in equation 5. 
Considering WF, UI and G to be constant for an 
experiment, CC of GE program is upper bounded by 
GL shown in equation 6. 

 
CC = O(GL) (6)

 
Notice that in the plot below, both Actual and 

Effective Lengths drop after the first generation. This 
is due to the difficulty which GE often encounters 
with invalid individuals in the first generation, as 
noted by (Ryan, 2003). 

 
Figure 1: Effect of Varying Population Size on Effective 
and Actual Genome Length on Problem AR1. 

Memory utilization is 13%, 29% and 32% 
respectively; it either remains constant or degrades at 
later generations, as the algorithm evolves, which 
leads to increase in computation time. The maximum 

memory utilization for standard GE is less than 33%, 
which means more than two-thirds of the memory is 
wasted, which makes it difficult to scale GE platform 
to complex problems.  

Therefore, it is essential to define an appropriate 
length of genome to reduce memory wastage and 
computational complexity of an algorithm without 
affecting its objective fitness. 

5 GEMO 

GEMO applies a multi-objective approach as shown 
in Figure 2 to optimize error metric and memory 
utilization. 

1. Fitness Function 1: Minimize the error 
metric given for a specific problem as 
discussed in section 3.  

2. Fitness Function 2: Maximize the memory 
utilization which is the ratio of effective to 
Actual Length as described in equation 7. 

 
maximize (Effective Length / Actual 

Length) 
   (7)

 

 
Figure 2: Methodology diagram for GEMO system (FF1: 
Fitness Function 1, FF2: Fitness Function 2). 

GEMO uses two dimensional pareto vectors, 
where each objective refers to the pareto variable in 
one of the dimensions. Since this is a multi-objective 
optimization problem, it tries to optimize all of the 
objectives which could be contradictory and hence, a 
trade-off needs to be considered while selecting 
individuals to satisfy each objective. The Pareto-
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optimal individuals are calculated using the crowding 
distance value of a solution, which provides an 
estimate of the density of individuals surrounding that 
particular solution. The set of solutions are sorted 
according to each objective function, and crowding 
distance is calculated as the average distance of its 
two neighbouring solutions. To promote diversity in 
the set of solutions, individuals with the highest and 
lowest objective fitness are always selected. 

Since, GEMO tries to minimize error metric and 
maximize memory utilization, pareto fronts are sorted 
in descending order in terms of given error metric and 
for the same error, it is sorted in ascending orders for 
the memory utilization. We then select individuals 
with the low error and maximum memory utilization 
as optimal solutions. The genome lengths obtained 
from these optimal solutions are passed as a 
parameter to Standard GE to restrict the length of 
genome.   

Note that this doesn’t guarantee that we will find 
the absolutely minimally sized genome that can 
generate useful solutions but, as Section 6 
demonstrates, the memory savings are still enormous. 
There has also been some work (Ryan, 2003) that 
shows that GE sometimes relies on having unused 
tails to aid evolution, meaning that if we restrict it too 
much, we might hamper its progress. The size of the 
genotype suggested this way is subsequently 
validated in Section 7.2 through statistical tests by 
taking the amount of wrapping into consideration. 

6 EXPERIMENTAL RESULTS 

The evolutionary parameters used in all experiments 
in this paper are  
{ Population Size: 250, 500, 1000; Maximum Number 
of Generations: 100; Crossover Type: Single Point; 
Crossover Probability: 0.95; Mutation Type: Int Flip 
Codon; Mutation Probability: 0.01; Selection Type: 
Tournament; Initialization Method: Position Independent 
Growth; Initial Depth: 7; Maximum Depth: 10; Number 
of Runs: 100. }. 

Position independent growth (Fagan, 2016) is 
used to initialize the population with a maximum tree 
depth of 10, with an initial maximum depth of 7. 
Tournament selection (Fang, 2010), followed by 
single point crossover with probability of 0.95 and 
integer flip codon mutation with probability of 0.01 
are incorporated in the framework. The above values 
are selected, since optimal results were achieved 
within Standard Runs of GE using this set of 
configuration and hence served as a benchmark for 
our framework. All the experiments are carried out 

using PonyGE2 (Fenton, 2017). Recall that GEMO is 
a two stage process. The same parameters are used in 
both stages; the first stage is run once, to determine 
the length of individual to use. The second stage is 
run 100 times to obtain statistically valid results. 
Section 7.1, contains some experiments 
demonstrating that the use of a single run in the first 
stage is reasonable. 

6.1 Selection of Pareto-Optimal 
Solutions 

Figure 4.a illustrates pareto fronts solutions for the 
error metric and memory utilization (ratio of 
Effective to Actual Length) obtained for each 
generation Individuals having least regression error 
(X axis, to the left) and highest memory utilization 
(Y-axis, to the top). The individual with the lowest 
regression error (4410) and the highest memory 
utilization of 1.0 is selected as a pareto-optimal 
solution indicated through dark brown colour. 

Figures 4.b, plot the Effective Length of pareto 
individuals obtained in 4.a. The Effective length of 
the pareto-optimal solutions is selected as optimal 
genome length for that particular problem. If 
solutions with multiple genome lengths are obtained, 
individuals with least effective length are preferred. 
We report these as (fitness, effective_length) tuples. 
The optimal Effective Length of 21 indicated 
through dark brown colour is selected from optimal 
pareto fronts obtained in Figure 4.a. 

6.2 Fitness Performance – AR1 

We look in detail at the performance of GEMO on 
AR1.  

 

Figure 3: Left: Comparison of Fitness Vs Generations for 
unrestricted genome length and optimal solutions on AR1. 
Right: Comparison of the ratio of Effective to Actual 
Length and Fitness vs Generations for unrestricted genome 
length and optimal solutions. 
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                                    (a) AR1                       (b) AR1 

Figure 4: Results for GEMO for AR1. Graph on the left indicate the ratio of Effective Length to Actual Length vs Fitness. 
The number of generations is indicated by a color map; notices that later generation are on the left of the graph; this is because 
of the Pareto plot which has fitter individuals closer to the origin. These individuals are then replotted using the graph on the 
right hand side to identify the shortest Effective Length. We report these as (fitness, effective_length) tuples, and obtain 
pareto-optimal individuals (4410, 21) for AR1.  

Table 3: Results for Single and Multi-Objective Optimal solutions for AR1, AR2, AR3, AR4, Quartic Polynomial, 
Vladislavleva4, 11-Multiplexer averaged over 100runs (UL: Unrestricted Length, OL: Optimal Length obtained from GEMO 
stage 1). There is no statistically significant difference in any fitness results. 

Dataset AR1 
(Kilograms)

AR2 (Number 
of Riders) 

AR3
(Degree 
Celsius)

AR4 
(Kilograms)

Quartic 
Polynomial 

(X4+X3+X2+X)

Vladislavleva4 

	∑
  

11-
Multiplexer

Number of 
Instances 1,000 18,290 3,652 136 10,000 10,000 2,048 

Method UL OL UL OL UL OL UL OL UL OL UL OL UL OL

Effective 
Length 69 14.49 23.61 10.91 14.45 11.68 14.71 10.3 8.49 2.68 74 6.68 394.05 33.76

Actual Length 512 21 212 16.22 105.34 19.98 111.43 21.32 340.09 35.36 252 12.83 1214.85 76.38

Decrease in 
Actual Length - 24.38X - 13.07X - 5.27X - 5.2X - 9.6X - 19.64X - 15.3X

Memory 
Utilization 

(in percentage) 
13.47 69 11.14 67.33 13.72 58.5 13.2 48.3 2.43 7.57 29.45 52.06 32.47 42.83

Utilization 
Improvement - 5.12X - 6.04X - 4.26X - 3.66X - 3.37X - 1.76X - 1.31X

Computation 
Time (seconds) 92 79.32 139 103 96 80 104 79 9.65 7.69 40 22 54 13 

Speedup - 1.15X - 1.34X - 1.2X - 1.31X - 1.25X - 1.81X - 4.15X

Mean Best 
Fitness 4428 4447 28.11 28.11 0.51 0.52 18,061 18,432 0.02 0.12 0.028 0.027 617 645

Standard 
Deviation 11 4 13.67 11.39 0.54 0.49 3,024 2,673 0.05 0.057 0.0031 0.0007 49 35 

 
Crucially, the computation time to obtain the 
solutions for AR1 with minimal regression error is 
less with genome length restricted to 21 when 
compared to unrestricted length genome and exhibits 

69% memory utilization as compared to 13.8% for 
unrestricted as shown in Figure 3. Table 3 shows that 
the Optimal Length Genome individuals achieve 
similar accuracy when compared to individuals with 

GEMO: Grammatical Evolution Memory Optimization System

189



Unrestricted Genome Length in terms of Best, Mean 
and Worst Case Fitness values, but has a lower 
standard deviation resulting in the optimal value 
being achieved more consistently. In each of the other 
three cases the overall fitness was either the same 
(AR2 or AR3) or better (AR4), while the experiments 
employing GEMO always use significantly less 
memory (between 3.6 and 6 times less) and run faster 
as shown in Table 3. 

6.3 Fitness Performance Results – 
Symbolic Regression and Boolean 
Logic 

In addition to the Vladislavleva4 we also considered 
the simple Quartic Polynomial problem. The results 
are shown in Table 3; in each of the cases, GEMO 
performed essentially the same in terms of fitness (no 
statistically significant difference) but did so with 
substantially less memory and in less time; moreover, 
the memory that was used is utilized better, as noted 
in the Memory Utilization row. 

These results show that the Quartic Polynomial 
problem used 9.69 times less memory and showed a 
speed up of 1.25, while in Vladislavleva4, the decrease 
in memory required was 19.64 times less, with a speed 
up of 1.76. Similarly, with the 11-Multiplexer 
experiments, the memory utilization improvement was 
15.3 and the speed up 4.15. Notice that the optimal 
length identified by the GEMO for each of these 
problems is, in fact, substantially longer than the 
required Effective Length, since it doesn’t have 100% 
memory utilization while Standard GE run is being 
performed. This is due to the stochastic nature of GE. 
However, this indicates that simply imposing a 
reasonable constraint on GE (where reasonable in this 
case means long enough to accommodate the genome 
needed) has a large impact on memory usage. It also 
suggests that further optimization in GEMO could 
yield even better results. 

7 ANALYSIS 

We perform two different analyses on the GEMO. As 
noted above, the first stage of GEMO uses just a 
single run; Section 7.1, below, describes experiments 
to test the variance across multiple runs to ascertain 
how reasonable an approach this is. The following 
section determines if the lengths determined by Stage 
1 are too short, by performing an analysis of the 
impact of removing wrapping.  

7.1 Variability of Stage 1 

Due to the heuristic nature of GE, we performed 
multiple runs of GEMO, and compared results of 
Mean Efficient Length with that of a single run of 
GEMO and no statistically significant difference was 
observed on the used datasets.  

7.2 Sufficiency of Lengths Obtained 

To validate whether the obtained set of genome 
length is sufficient or not, we ran another set of 
experiments in which individuals were allowed to 
evolve by taking the Wrapping factor into 
consideration. This will establish if we genuinely 
have discovered usable genome lengths, or if GE is 
simply exploiting the wrapping operator to make it 
appear as though we have. We conduct statistical 
significance tests which allow us to support or reject 
a claim being made at different significance levels. As 
all significance tests begin with a null hypothesis H0, 
the null hypothesis of samples from two populations 
with and without wrapping is formulated as shown 
below: 
 

Null Hypothesis H0: There is no statistical 
difference between Mean Best Fitness of Datasets 
with wrapping and without wrapping. 

Table 4: Number of times the Null Hypothesis is rejected 
at significance level 0.01, 0.05, 0.1 out of 100 trials. 

Problems 
Significance Level 

0.01 0.05 0.10

AR1 1 4 11 

Vladislavleva4 7 14 26 

Quartic Polynomial 7 18 27 

11-Multiplexer 6 15 22 

 
The number of times null hypothesis rejected out 

of 100 trials for a sample size of 30 is shown in Table 
4 for a significance level (alpha) of 0.01, 0.05 and 
0.10. It can be seen that on average, the fitness values 
evaluated without considering wrapping factor are 
equal to the fitness values evaluated considering 
wrapping factor at alpha equal to 0.01, 0.05 and 0.10 
respectively.  

Hence, we fail to reject the null hypothesis for all 
of the problems listed in Table 4. Therefore, it can be 
stated GEMO does not rely on wrapping and that the 
length it produces is optimal and does not force GE to 
resort to wrapping. 
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8 CONCLUSIONS 

Optimal use of resources and low computation time 
is an important aspect for any framework. We have 
introduced Grammatical Evolution Memory 
Optimization, GEMO, a multi-objective based 
framework for memory optimization. It defines 
memory utilization as one of the objectives to explore 
individuals with genome length that maximizes 
memory utilization along with its low error metric. 
The result obtained from GEMO is used to constrain 
the maximum length of the genome in an otherwise 
standard GE run. GEMO was tested on three 
benchmark domains, including Time Series 
Forecasting, Symbolic Regression and Boolean 
Logic. Experimental results validated that GEMO had 
statistically similar fitness results, but it exhibited 
significant increase in memory utilization, as well as 
a decrease in computational overhead. The system 
also ruled out the possibility that wrapping is the 
reason for GEMO succeeding with shorter genomes 
by conducting experiments both with and without 
wrapping and no statistically significant difference 
was observed.  

We can safely conclude that this strategy will be 
useful for large, multidimensional datasets where we 
can be sure of optimizing memory and speedup. 
However further experimentation needs to be carried 
out in future to check their viability for small datasets. 
The results further showed that the maximum Actual 
Lengths suggested by GEMO were, in general, longer 
than they needed to be. Future work will explore this 
to see if it is feasible to expand the framework to 
produce shorter maximum genome, maximum 
utilization of memory and to establish the cost/benefit 
trade off of spending more time on this part of the 
search. 
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