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Abstract: The minimum set cover problem (MSCP) is one of the first NP-hard optimization problems discovered. The-
oretically it has a bad worst case approximation ratio. As the MSCP turns out to appear in several real world
problems, various approaches exist where evolutionary algorithms and metaheuristics are utilized in order to
achieve good average case results. This work is intended to revisit and compare current results regarding the
application of metaheuristics for the MSCP. Therefore, a recapitulation of the MSCP and its classification into
the class of NP-hard optimization problems are provided first. After an overview of notable approximation
methods, the focus is shifted towards a brief review of existing metaheuristics which were adapted for the
MSCP. In order to allow for a targeted comparison of the existing algorithms, the theoretical worst case com-
plexities in terms of the big O-notation are derived first. This is followed by an empirical study where the
identified metaheuristics are examined. Here we use Steiner triple systems, Beasley’s OR library, and intro-
duce a new class of instances. Several of the considered approaches achieve close to optimal results. However,
our analysis reveals significant differences in terms of runtime and shows that some approaches may even have
exponential runtime.

1 INTRODUCTION

The set cover problem is one of the first NP-complete
decision problems found by Karp (1972). Thus, a so-
lution is easy to verify but difficult to find. The corre-
sponding optimization problem is NP-hard. The goal
of the decision problem is to answer the question if
there are k sets among a given list of sets S1,S2, ...,Sm
that cover all the elements of

⋃m
i=1 Si. Hence the ob-

jective of the optimization problem is to find the mini-
mal k to achieve this. The minimum set cover problem
(MSCP) can be described formally as follows:

min |M|

s.t.
⋃

S∈M

S =
m⋃

i=1

Si

Si ⊆ {1,2, ...,n}
M ⊆ {S1,S2, ...,Sm}

(1)

The MSCP occurs in many different domains.
Cormode et al. (2010) have identified use cases in
information retrieval, operations research, machine
learning as well as planning and data mining. The

objective of Gotlieb and Marijan (2014) is to find a
minimal test suite at specification level.

Within this work we want to give a didactic
overview about the MSCP, corresponding approxima-
tion algorithms and we conduct a comparison about
some of the state of the art metaheuristics. For the
latter we derive the worst case iteration cost. We can
show that there can be problematic edge cases for cer-
tain algorithms that lead to an exponential runtime.
Further, we compare some of the introduced meta-
heuristics on three different benchmark suites.

In Section 2 we give an overview about related
work. In Section 3 we introduce various metaheuris-
tics for the MSCP and in the following section we in-
tensively benchmark the aforementioned approaches
(Section 4). We close the paper with a summary and
conclusion (Section 5).

2 RELATED WORK

In complexity theory NP-hard optimization problems
have been segregated in various subclasses. No-
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table are approximable (APX), polynomial-time ap-
proximation schemes (PTAS) and fully polynomial-
time approximation schemes (FPTAS) (Williamson
and Shmoys, 2011).
For these classes the relationship FPTAS ⊆ PTAS ⊆
APX holds if P 6= NP. Not every NP-hard optimiza-
tion problem is one of these classes, such as the mini-
mum set cover problem (Alon et al., 2006). Hence we
cannot improve the approximations quality arbitrary
whilst still having a polynomial runtime like in PTAS
or FPTAS and we do not have a fixed approximation
ratio like in APX. Thus it is one of the more diffi-
cult NP-hard problems. Further, Dinur and Steurer
(2014) proofed that the MSCP cannot be approxi-
mated to (1− o(n))ln(n) given P 6= NP. Thus for
every approximation algorithm for the MSCP there
exists a problem instance such that the calculated so-
lution is at least about ln(n) times the optimal value,
given P 6= NP. As these results are about worst case
approximation ratios there is still research for an ap-
proximation algorithm that might have good results
on the average.

There exists a greedy algorithm for the MSCP.
It starts with an empty collection of sets and al-
ways takes the set next that covers the most elements
which are not yet covered by the greedy’s collec-
tion (Williamson and Shmoys, 2011). The MSCP can
also be approximated using an ILP (Williamson and
Shmoys, 2011). Mannino and Sassano (1995) have
designed a branch and bound algorithm that can find
optimal solutions but may have an exponential run-
time.

3 METAHEURISTICS

Metaheuristic approaches like evolutionary algo-
rithms have the advantage that they are not limited to
a certain set of problems. Hence there have been sev-
eral attempts to create approximation algorithms for
the MSCP using such approaches.

We also want to analyse the runtime of each con-
sidered algorithm during this paper. For this various
ways are possible such as running the algorithm for a
fixed number of iterations (and measuring the the ac-
tual duration) (Yu et al., 2014) or deriving the runtime
in terms of the Landau notation (until convergence)
(Jungnickel, 2007). As usually there is no guarantee
that a metaheuristic converges and a reasonable num-
ber of publications prefer to run an algorithm for a
fixed number of iterations, we decided to analyse the
worst case cost of an iteration in terms of the Lan-
dau notation. However, we additionally examine the
actual runtime later on.

3.1 SEIP

Simple evolutionary algorithms with isolated popula-
tion (SEIP) are a rather new family of algorithms. It is
a population based approach that starts with an empty
one. At the beginning an initial solution such as the
zero vector 0 is chosen and inserted into the popula-
tion. After that a loop is entered. In each iteration an
instance of the population is drawn at random. Then
it is copied and mutated. Next, the mutated instance is
compared to the ones in the population. If there is an
instance superior to the mutated one, it is not inserted.
Otherwise the mutated instance is inserted and all in-
stances inferior to the mutated one are deleted. The
superior relation is specific to the problem. The loop
is exited if a stopping criterion is met, e. g. no itera-
tions are left (Yu et al., 2010).

We encode solutions as binary vectors of dimen-
sion m where the i-th entry corresponds to Si and a one
indicates that the solution uses the set. For the MSCP
a solution x is superior to y if and only if it covers the
same number of elements but uses fewer sets. In our
implementation we use a bitwise mutation. Hence we
flip each bit with a probability of 1

m and we stop after
a certain number of iterations. The cost of one SEIP
iteration is O(m+ |P|) where P denotes the popula-
tion. P has a maximum size of n+1. Thus, the worst
case runtime of an iteration is O(n+m).

3.2 Artificial Immune Systems

Artificial immune systems (AIS) are population based
heuristics inspired by the immune systems of verte-
brates. The population is extended from time to time
and the AIS tries to identify bad solutions among the
population and deletes them (as an immune system
tries to eliminate pathogens).

Joshi et al. (2014) designed an AIS called germi-
nal centre artificial immune system (GCAIS) for the
MSCP. GCAIS allows infeasible solutions in its popu-
lation. The initial population consists of the zero vec-
tor 0. In every iteration all members of the population
are mutated (flipping individual bits with a probabil-
ity of 1

m ). Afterwards the mutated population and the
original one are merged. Then all elements of the new
population that are dominated by other solutions of it
are deleted. A solution is said to dominate another
one if and only if it either covers more elements and
costs the same (or less) or if it covers the same (or
more) amount of elements and costs less. The muta-
tion of the population can also be parallelized in order
to reduce the runtime.

The mutation of single element costs O(m) and
thus the mutation of the population costs O(|P|m).
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The size of the population can get large on certain
problem instances. Rosenbauer et al. Rosenbauer
et al. (2020) showed that the population size might
grow exponentially and that the merge step can be
computed in O(|P|+ n). The initialization of the al-
gorithm costs O(m) and in summary the cost of an
iteration is O(|P|m+ n). Hence the population size
has a major impact on the runtime.

3.3 GSEMO

The global simple evolutionary multi-objective opti-
miser (Giel and Wegener, 2003) is similar to GCAIS
as it maintains a population of non-dominated solu-
tions during each iteration. In contrast to GCAIS it
only mutates one member of the population instead
of all. This solution is drawn uniformly at random
and mutated the same way. If it is dominated by any
solution of the population then it is not inserted. Upon
insertion of a non-dominated solution, the population
is searched for dominated solutions and these are re-
moved. Thus GSEMO also is similar to SEIP as they
only differ in the way they regard a solution as supe-
rior.

GSEMO may also be parallelized. In order to do
so µ populations are introduced. On each population
an instance of GSEMO is run. Whenever an instance
encounters a solution to be inserted to its population,
it decides with a probability p if it sends the found
solution to all the other populations. The recipients
then also update their populations according to the re-
ceived solution. For the sake of simplicity we call this
variant GSEMO.

GSEMO is also similiar in terms of its runtime to
GCAIS. The initialization cost is O(µm), the muta-
tion cost is O(m) per solution, and the insertion costs
O(m) if the same table approach is used. Thus an it-
eration costs worst case O(µ2m) (if every population
sends a mutated solution).

3.4 Genetic Algorithms

Genetic algoritms (GAs) are a framework of popu-
lation based algorithms that roughly consist of the
three operators: selection, crossover and mutation
(Holland, 1992). Solutions are interpreted as chro-
mosomes of an individual. The selection operator
chooses a solution from the population. The GA uses
it to choose two individuals. Via the crossover oper-
ator the two individuals are combined to get two new
ones called the children. The children are changed
probabilistically using the mutation operator. After-
wards, the GA tries to insert the children into the
population but its capacity is limited. Hence some-

times individuals must be removed from the popula-
tion. This approach is repeated until a stopping crite-
rion is met and the best solution found is returned.

Beasley and Chu (1996) used a binary tourna-
ment selection for their GA which draws two individ-
uals from the population at random and takes the one
with the least used sets. They further use a one-point
crossover operator. It creates a new child by drawing
a random integer i from {1,2, ..,m}. For the first child
the first i entries of x and the last m− i of y are used
and for the second the first i entries of y and the last
m− i of x are used.

The mutation operator of Beasley and Chu (1996)
inverts bits with a certain probability that is inverse
monotone to the iteration. As a GA is not guaran-
teed to produce a feasible solution, they also intro-
duced a greedy heuristic to make infeasible solutions
valid. If the population becomes too big, random so-
lutions with a cost above average are deleted to keep
it in bounds. The selection costs constant time, the
crossover and mutation O(m). The greedy repair op-
eration costs O(n2m) and the deletion costs O(|P|).
Hence one iteration costs O(n2m+ |P|).

Beasley and Chu (1996) also developed a method
to initialize the population in order to only generate
feasible solutions. They iterate over every element to
be covered and choose one set at random from the sets
that can cover the element. This costs worst case O(n)
if one saves a list for every element that contains the
indexes of the sets that cover it. The newly created so-
lution is feasible, but may contain redundant sets. In
order to delete redundant sets from the solution, they
draw each used set exactly once uniformly at random
and check if its elements are covered by other sets of
the solution. If so, then the set is deleted from it. This
check costs worst case O(nm2). Hence, overall the
creation of one element costs O(n+ nm2) = O(nm2)
time and the creation of the population O(|P|nm2).

3.5 Simulated Annealing

Simulated annealing (SA) is an analogy to physics
which unlike the previous methods is not population
based and not an evolutionary algorithm. The analogy
reproduces a hot material that is cooling down. Dur-
ing the cooling the metal atoms have enough time to
get into an optimal state by ordering and getting in a
stable structure. This process is translated into a lo-
cal search method. Therefore, a temperature function
T (·) is created that decreases over time. The method
starts at an initial solution and then tries to jump to
another solution in its neighbourhood. The new solu-
tion is accepted if it is better (in terms of its cost). If
not, it is only accepted with a probability based on the

Metaheuristics for the Minimum Set Cover Problem: A Comparison

125



temperature function (Kruse et al., 2015).
We use the SA approach of (Minotra, 2008). The

initial solution can be created by the greedy algorithm
and there are some degrees of freedom for the neigh-
bourhood operator. The neighbourhood operator that
we use drops sets at random. This might lead to an
infeasible solution that can be repaired using a greedy
algorithm. Afterwards a small search for redundant
sets is done to keep the solution as small as possible.
The neighbourhood operator costs O(m) and the re-
pair of the solution O(n2m). So overall one iteration
costs O(n2m) in the worst case.

Minotra (2008) used the following temperature
function:

T (t) = γ
tTinitial (2)

where Tinitial is the starting temperature and γ is a real
number between zero and one.

3.6 Particle Swarm Optimization

Particle swarm optimization is a population based
metaheuristic originally developed to solve continu-
ous problems and not discrete ones such as the MSCP.
Balaji and Revathi (2016) designed one for the latter
which they call JPSO. It creates the initial solutions
of its particles the same way as the genetic algorithm
of Beasley and Chu (1996), which costs as mentioned
before O(|P|nm2).

In contrast to the traditional PSO the JPSO algo-
rithm does not calculate a direction based on several
solutions. A particle pi decides at random if it ei-
ther moves its current solution vi towards a random
solution x, the best solution of its neighbourhood Li,
the global best solution g or towards its own best so-
lution bi. The target solution is called the attractor.
These moves have an analogy to jumps of frogs, thus
are called jumps and hence the name jump particle
swarm optimization. Each jump has the same proba-
bility of 0.25. The current solution is merged with the
attractor. If the newly generated solution is superior
to its own best solution, the best solution of the neigh-
bourhood, or the global one then these are updated.

The merge operator first draws a random number
r between 0 and the number of used sets by the parti-
cle’s current solution vi. Then we either delete a ran-
dom set from vi or add a random set from the attrac-
tor. Each event has the same probability of 0.5. This
is repeated r times and costs O(m). During this op-
eration the solution might lose its feasibility. Hence
it is repaired greedily if necessary which additionally
costs us O(n2m). After this greedy repair the solution
might contain redundant sets. Thus, the repair method
further iterates over all used sets and checks if its ele-
ments are covered by other sets and removes it if so.

This can be done in O(nm). Thus the cost of a jump
is O(n2m). The overall update of a particle depends
on the used neighbourhood operator and random so-
lution generator. Hence one iteration costs worst case
O(|P|(n2m+max{rand,neigh})), where rand is the
cost of the generation of a new solution and neigh is
the cost of the neighbourhood operator.

It is worth to mention that Balaji and Revathi
(2016) do not state how they generate a new random
attractor. For our later implementation we assumed
that they take the same method as for their population
generator. Furthermore they do not describe how to
choose the neighbourhood of a solution.

3.7 Chemical Reaction Optimization

Chemical reaction optimization (CRO) is a rather new
metaheuristic that is still topic of ongoing research
in terms of run time efficiency (Stegherr et al., 2019)
and on what problems it performs well (Lam and Li,
2012). Similar to GAs it can be seen as a frame-
work of algorithms that has to be adjusted to the spe-
cific problem. There already exists a CRO version for
the MSCP which has been successfully tested on the
benchmark suite of Beasley (Yu et al., 2014) such as
the algorithm of Balaji and Revathi (2016).

CRO is a population based approach and each
member of the population represents a molecule.
Each molecule has a potential energy and a kinetic
energy. The former is the cost of the solution the
molecule holds and the latter describes its willing-
ness to change to a worse solution. The method also
holds a central buffer of energy that can exchange en-
ergy with the molecules. The entire process resembles
more or less a chemical reaction in a box. A molecule
can collide with the boxes’ wall and might change its
structure. This on-wall collision searches the neigh-
bourhood of the molecule’s solution for a new one and
changes it according to a certain probability that de-
pends on the molecule and its buffer’s energy. This in-
troduces a form of random search to CRO. Molecules
can also decompose into two new molecules that are
partially based on the previous one which also repre-
sents a form of search.

Based on the quality of the two new solutions and
their energy levels, they are either accepted into the
population or not. If so, the original molecule gets
destroyed. Furthermore two molecules can collide
and form a new one. This process is called synthe-
sis and has a similar objective like the crossover step
in a GA. It combines two solutions in order to get an
improved one. Similar to the preceding operators, the
acceptance of the new molecule depends on the solu-
tion’s quality and the energy levels. CRO takes an-
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other analogy to chemical reactions as two molecules
can collide and bounce away. This is achieved once
more by using a neighbourhood operator to perform
local search. This operation is called inter-molecular
collision. The four operators are called in a loop un-
til a stopping criterion is met. For example, Yu et al.
(2014) used a fixed amount of iterations. We keep
it at this abstract level as a detailed description can
be found in Lam and Li (2012) and as we focus on
the MSCP and not CRO in general in this paper. We
focus more on the adaptations of the neighbourhood
operator, how the population is initialized, and how
infeasible solutions are turned into feasible ones (Yu
et al., 2014).

Yu et al. (2014) use vectors of dimension n to en-
code a solution. They enumerate all elements and
there the i-th entry indicates by which set the i-th ele-
ment is covered. A new solution is created by iteration
over every element that must be covered. If the i-th
element shall be covered then it is detected by which
sets it can be covered. One out of these is drawn at
random using a uniform distribution. A generation of
a new solution can thus be achieved in O(nm).

The neighbourhood operator first deletes the set
from the cover which has the worst efficiency among
all used ones. The efficiency of a set in a solution is
the number of occurrences in the solution, which can
be calculated in O(n). After the set of worst efficiency
is removed the solution might become unfeasible as it
can contain uncovered elements, which can be veri-
fied in worst case O(n). In order to regain feasibility
the operator chooses new sets to cover those elements.
The i-th set is drawn with the following probability:

si

∑
m
k=1 sk

(3)

where si is the number of elements that the i-th set
can cover among the yet uncovered elements. The
distribution can be calculated in O(nm). Such a repair
attempt has to be done in the worst case O(n) times.
When a set is drawn the solution’s entries are updated
by it. This approach is repeated until the solution is
feasible again. So in the worst case the neighbour-
hood operator costs O(n2m).

The CRO framework has a decomposition opera-
tor that tries to create two molecules from one. This
is done by copying the original molecule twice and
performing the neighbourhood operator on each copy
ten times. Thus the decomposition also costs O(n2m).
The synthesis operator takes two solutions x, y and
combines them into a new solution z. Here they are
combined by choosing entries from each one uni-
formly at random.

This combination costs O(n) and, due to the rep-
resentation, no repair method is necessary. For the

weighted case the probability distribution is once
more adapted to the set’s cost. The collision opera-
tors do not need to be discussed further as they only
rely on the neighbourhood operator. The complexity
of both is dominated by the neighbourhood operator.
Hence both cost O(n2m). Overall, an iteration of CRO
costs worst case O(n2m).

4 EVALUATION

The introduced GA, JPSO, GSEMO, GCAIS and
CRO algorithms have all been tested on Beasleys
benchmark suite by their creators. They all performed
at least reasonably well, but to our knowledge some
of them have never been compared with each other.
Yet when the MSCP is studied, one should always
keep the theoretical bad worst approximation rate in
mind. Hence we perform our experiments also on
other MSCP datasets in order to see if the mentioned
algorithms create as good results on those as well or if
their algorithmic design is overfitted to Beasley’s data
sets1.

Even though we already examined the introduced
metaheuristics using the big O notation, we also mea-
sure the actual runtime of each algorithm and use it to
compare the methods. Thus, we also take a closer
look at the actual runtime of the algorithms which
is sometimes not considered during the experimen-
tal evaluation of metaheuristics for MSCP (Yu et al.,
2014; Joshi et al., 2014; Yu et al., 2010). We think that
this is of major importance as the goal of approximat-
ing a NP-hard problem is to find a feasible solution
of reasonable quality in a reasonable amount of time.
Another approach is to measure the number of itera-
tions until an algorithm converges (Joshi et al., 2014;
Balaji and Revathi, 2016) which we measure as well.

4.1 Experimental Setup

Each experiment is run a hundred times. We stop the
execution of an algorithm if either a time budget of
one hour is expired or the the algorithm’s best solution
does not improve other 2000 iterations.

In our JPSO version we use thirty particles and use
the 5 nearest neighbours for all neighbourhood oper-
ations. As metric we use the L1 norm. For the SA we
set γ to 0.975 and start with an initial temperature of
256. The GA has a population size of 200. For the re-
maining parameters of CRO we used the setting of Yu
et al. (2014). SEIP and GCAIS do not need any addi-
tional parameters. We parameterize GSEMO similar

1https://https://github.com/LagLukas/mscp
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to Joshi et al. (2014) and use 30 populations and a
send probability of 30

nm . We confirmed the quality of
the aforementioned parameters in a preliminary study
that we leave out due to spatial restrictions.

4.2 Steiner Triple Systems

Steiner triple systems are regarded as tough instances
of the MSCP (Fulkerson et al., 2009). Hence there
have also been various publications about approxi-
mation algorithms that were tested on this class of
instances (Mannino and Sassano, 1995; Wen-Chih
Huang et al., 1994). Fulkerson et al. (2009) stated
that Steiner triple systems of size 27 and 45 are hard
thus we consider these instances2.

The results of each introduced algorithm are dis-
played in Table 1. The tables show the average, best
approximation ratio, number of iterations and the ac-
tual runtime of each considered method. Here GCAIS
and the GA produced optimal solutions. The other
methods vary in their results and are achieving ap-
proximation ratios between 1.1 and 1.6. JPSO can-
not improve the initial solutions of its particles for
the Steiner triple system of size 27 (as it already con-
verges after 2001 iterations).

The runtime results expose, similar to the theo-
retical examination, huge differences in terms of run-
time. JPSO has by far the highest runtime and SEIP
the lowest. The experiment also reveals that a pure
evaluation of the number of iterations until an algo-
rithm converges is ambiguous as JPSO has the small-
est amount of used iterations, but the highest runtime.

Further, the results show the weakness of GCAIS
in terms of its runtime that we discussed in our the-
oretical analysis: if the sets are rather disjoint and
of equal size, then the population can become rather
huge which leads to a high runtime. The latter is
the case for Steiner triple systems which explains that
GCAIS has such a high runtime compared to for ex-
ample CRO or the GA.

Additionally we performed statistical tests to ver-
ify if the considered algorithms vary in terms of their
iterations, durations and approximation ratios. Our
null hypotheses are that they all behave the same way
for these magnitudes. We applied Friedman tests to
test these hypotheses which all had p-values lower
than 10−9 which we regard as significant. Thus sta-
tistical tests state that the algorithms differ regarding
the aforementioned magnitudes.

2The experiment’s data is from here: http://mauricio.
resende.info/data/index.html

4.3 Bad Case for the Greedy Algorithm

When the set cover problem is studied, often the
greedy algorithm is also introduced. There is a known
class of MSCP instances that are tough for the greedy
algorithm. In those the method has an approximation
ratio of log2(n)/2 which is more or less the worst case
scenario. As many of the introduced approximation
methods have a greedy component we also use those
examples.

The example can be constructed as follows. Let
k be an integer bigger than zero. We construct sets
S1,...,Sk that are pairwise disjoint. Sk holds 2k ele-
ments. S j holds the elements {2 j +1,2 j +2, ...,2 j+1}
for j > 1 and S1 = {1,2}. We construct two addi-
tional sets M1 and M2. M1 contains all even numbers
and M2 all odd numbers. Hence we want to cover a
total number of 2k+1−2 elements and M1 and M2 are
the biggest sets. Further, half the elements of every S j
are in M1 and the other half in M2. The greedy algo-
rithm first takes either M1 or M2 and then S j, S j−1,...,
S1 instead of the optimal solution consisting of M1
and M2.

For our benchmarking we create several such sys-
tems for one instance. To create one instance we draw
a k from {2,3,4,5} at random and create the corre-
sponding set system. We repeat this 5 times and each
system is disjoint to get our overall instance. Thus,
we make it hard for greedy based approaches to break
out of a bad solution to the known optimal one.

Table 2 shows the results on those randomly cre-
ated instances (summarized as random instance). We
put all in one table as the problems share the same in-
ner structure and all have the same optimal value of
10. In this case only the GA is capable of finding op-
timal solutions and the optimal solutions were already
in its population from the start. GCAIS, GSEMO,
SEIP, and SA also seem to have rather good solutions
(their best solutions use 12 instead of 10 sets). Al-
gorithms such as CRO and JPSO that are relying on
greedy heuristics achieve rather worse solutions com-
pared to the aforementioned algorithms (due to the
design of the problem class). JPSO is also not able to
improve the initial solutions of its particles.

Once more JPSO has the highest runtime and
SEIP the lowest. The runtime of GCAIS differs a
lot on this problem class compared to the Steiner
triple systems. In this problem class the available sets
highly differ in size which may lead to a smaller pop-
ulation (as it is easier to find a solution that dominates
another one).

Here we also performed Friedman tests to verify
if the algorithms differ in terms of their iterations, du-
ration and approximation ratios. Once more we could
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Table 1: Experimental results for Steiner triple systems of size 27 and 45. It contains average values ±σ for the iterations,
approximation ratios and runtime (in seconds). The best values of each column are marked bold and the worst are in italics.

Steiner 27 iterations duration avg. iteration duration avg. approx. ratio best
CRO 2126.0 ± 53.0 1.048 ± 0.16 0.00049 ± 7e-05 1.644 ± 0.07 1.556
GA 2558.0 ± 478.0 4.342 ± 1.109 0.00172 ± 0.00305 1.078 ± 0.091 1.0

GCAIS 2102.0 ± 22.0 474.271 ± 86.936 0.22574 ± 0.0563 1.0 ± 0.0 1.0
GSEMO 3608.0 ± 1073.0 20.952 ± 8.107 0.00586 ± 0.00077 1.111 ± 0.091 1.0

JPSO 2001.0 ± 0.0 701.123 ± 130.386 0.35039 ± 0.08644 1.433 ± 0.082 1.333
SA 2649.0 ± 839.0 14.047 ± 5.01 0.00537 ± 0.02241 1.433 ± 0.063 1.333

SEIP 4768.0 ± 1250.0 0.666 ± 0.242 0.00014 ± 3e-05 1.167 ± 0.131 1.0
Steiner 45 iterations avg. duration avg. iteration duration avg. approx. ratio best

CRO 2166.0 ± 41.0 2.485 ± 0.62 0.00115 ± 0.00038 1.727 ± 0.119 1.6
GA 2847.0 ± 767.0 25.979 ± 5.508 0.00943 ± 0.01905 1.2 ± 0.144 1.0

GCAIS 2631.0 ± 454.0 1951.188 ± 320.956 0.74636 ± 0.23683 1.033 ± 0.035 1.0
GSEMO 4810.0 ± 2115.0 53.366 ± 28.564 0.01106 ± 0.00182 1.28 ± 0.076 1.133

JPSO 1833.0 ± 121.0 3594.182 ± 15.282 1.9693 ± 0.63859 1.64 ± 0.064 1.533
SA 3678.0 ± 1176.0 88.132 ± 37.294 0.02327 ± 0.00612 2.16 ± 0.126 2.0

SEIP 7197.0 ± 1473.0 2.362 ± 0.706 0.00033 ± 3e-05 1.247 ± 0.063 1.133

Table 2: Experimental results for the bad cases for the greedy algorithm. It contains average values ±σ for the iterations,
approximation ratios and runtime (in seconds). The best values of each column are marked bold and the worst are in italics.

rand iterations avg. duration avg. iteration duration avg. approx. ratio best
CRO 2076.0 ± 53.0 1.084 ± 0.405 0.00052 ± 0.00021 2.0 ± 0.0 2.0
GA 2001.0 ± 0.0 2.635 ± 0.919 0.00132 ± 0.00346 1.163 ± 0.084 1.0

GCAIS 2302.0 ± 252.0 5.346 ± 1.357 0.00236 ± 0.00027 1.288 ± 0.06 1.25
GSEMO 2648.0 ± 200.0 9.208 ± 2.573 0.0035 ± 0.00021 1.288 ± 0.06 1.25

JPSO 2001.0 ± 0.0 492.657 ± 113.087 0.24621 ± 0.06516 2.013 ± 0.092 1.875
SA 2297.0 ± 514.0 9.221 ± 4.08 0.00403 ± 0.00175 1.3 ± 0.065 1.25

SEIP 5813.0 ± 1258.0 1.049 ± 0.388 0.00018 ± 4e-05 1.45 ± 0.222 1.25

observe p-values lower than 10−9. Thus the statistical
tests support the claim that the algorithms differ in the
aforementioned magnitudes.

4.4 Beasley’s OR Library

Beasley’s OR library is another source for MSCP in-
stances that has been used to benchmark approxima-
tion algorithms (Balaji and Revathi, 2016; Yu et al.,
2014; Joshi et al., 2014). Thus we also took a look
at some of its MSCP instances (the scpe1 to scpe5 in-
stances and scpclr10 to scplr13 instances). Due to the
spatial limitations of this paper we only briefly sum-
marize (Table 3) and discuss our results.

The scpclr instances have rather small and disjoint
sets. Thus there we could observe the same problems
in terms of runtime for GCAIS as once more its pop-
ulation explodes. On the other hand the scpe class
does not have this structure and thus GCAIS has a
much lower runtime. JPSO once more had the highest
runtimes and SEIP the lowest runtimes on both prob-
lem classes. In terms of their approximation ratios we
could verify the results of Balaji and Revathi (2016);
Joshi et al. (2014) that often had optimal or close to

optimal solutions. SA fails to produce solutions of
reasonable quality for the scpclr instances.

We also performed Friedman tests which were
once more significant (p-values lower than 10−9) and
thus the algorithms behave differently on these in-
stances.

5 CONCLUSION

In this work we gave a didactic overview about the
minimum set cover problem (MSCP) from various
perspectives. We took a special focus on metaheur-
sitics. We discussed the worst case iterational cost
and evaluated the approaches on various benchmark-
ing problems.

We could observe that some approaches have a
hard time finding high quality solutions outside of
Beasley’s well-known OR library. Further we could
observe high runtimes and in our theoretical evalua-
tion we could identify edge cases where algorithms
might even have an exponential one. Thus we recom-
mend to also perform a formal analysis of an algo-
rithm’s runtime in order to detect bottlenecks.
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Table 3: Aggregated results for the scpe and scpclr classes
(averaged durations and approximation ratios ±σ).

scpe duration approx. ratio
CRO 3.9 ± 1.0 1.66 ± 0.0
GA 13.0 ± 17.2 1.19 ± 0.25

GCAIS 18.8 ± 36.9 1.03 ± 0.1
GSEMO 24.4 ± 22.9 1.09 ± 0.19

JPSO 3564.6 ± 64.5 1.31 ± 0.33
SA 52.0 ± 64.3 1.09 ± 0.18

SEIP 11.0 ± 29.6 1.38 ± 0.62

scpclr duration approx. ratio
CRO 5.6 ± 2.3 1.02 ± 0.16
GA 99.2 ± 97.4 1.0 ± 0.0

GCAIS 508.1 ± 375.3 1.0 ± 0.0
GSEMO 98.1 ± 98.9 1.31 ± 0.58

JPSO 3581.5 ± 29.2 1.38 ± 0.87
SA 809.8 ± 1065.6 34.82 ± 5.13

SEIP 12.0 ± 19.9 2.91 ± 2.29
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Neuronale Netze, Evolutionäre Algorithmen, Fuzzy-
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