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Abstract: The lane-changing decision-making is a great challenge in autonomous driving system, especially to judge 
the feasibility of lane-changing due to the randomness and complexity of surrounding traffic participants. 
Reinforcement learning has been shown to outperform many rule-based algorithm for some complex systems. 
In this paper, the single-step deep Q network algorithm is proposed by combining single-step reinforcement 
learning and deep Q network, and it is applied to judge the feasibility of lane-changing for autonomous  
vehicle. In a real-world-like and random traffic environment built in Carmaker, the trained agent can make 
correct judgment about the feasibility of lane-changing. Comparing the single-step deep Q network with the 
general deep Q network, although the general deep Q network can converge, there are still collisions, and the 
agent trained by single-step deep Q network is absolutely safe. 

1 INTRODUCTION 

The data shows that in the transportation system, 90% 
of the total number of traffic accidents are caused by 
driver improper operations (Aufrère, R, et.al, 2003). 
Autonomous vehicles are developed to eliminate 
driver errors to improve traffic safety. Typically, an 
autonomous vehicle consists of a perception module, 
a decision-making module and a control module (Li, 
D, et.al, 2018). The decision-making module makes 
correct decisions based on the information of sensors 
of the perception module. Making correct decision is 
challenging because of the influence of surrounding 
traffic participants. The lane-changing decision is 
particularly important because collision is more likely 
to happen when changing lane compared with driving 
in a single lane. In recent years, the lane-changing 
decision has gradually become one of the research 
focuses in the field of autonomous vehicles. 

The methods of lane-changing decision of 
autonomous vehicle can be divided into two 
categories: rule-based and machine learning-based. 
Currently, rule-based methods have been widely 
used. And machine learning-based methods have also 
proven to perform better in many scenarios in recent 
years. 

The main method of the rule-based lane change 
decision system is the finite state machine method. 
This method requires determining multiple states that 
an autonomous vehicle may execute, and then 
determining the switching conditions between the 
states (Schwarting, W, et.al, 2018). Representative 
works of this method are the ‘Stanley’ developed by 
Stanford University Thrun, S., et.al, 2006) and the 
‘Boss’ developed by Carnegie Mellon University 
(Urmson, C, et.al, 2008). They decide to execute a 
lane-change decision based on some pre-set rules and 
thresholds. However, the rule-based method relies too 
much on the experience of engineers, and the pre-set 
states and thresholds have poor adaptability to 
complex  traffic  conditions.  The developers  of 
‘Junior’ from Stanford University acknowledged that 
although the junior was able to complete the DARPA 
Challenge, it was unable to cope with real urban 
traffic (Chen, J, et.al, 2014). 

In recent years, machine learning-based methods 
have become the focus of research in the field of 
decision-making. Researchers from NVIDIA 
(Bojarski, M, et.al, 2016), Intel (Codevilla, F., et.al, 
2018) and Comma.ai (Santana, E., & Hotz, G, 2016) 
used an end-to-end supervised learning approach to 
train decision-making systems for autonomous 
vehicles. They used a car equipped with various 
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sensors to collect data from all on-board sensors when 
the driver was driving the car. By training a 
convolutional neural network, the mapping of the 
camera's original image to the vehicle control 
parameters is completed. This method has a certain 
ability to adapt to complex traffic, but it requires a 
large amount of data collected in advance, which is 
difficult to manipulate in practice. 

In addition to end-to-end supervised learning, 
reinforcement learning is also widely used in 
decision-making systems for autonomous vehicles. 
Reinforcement learning is an algorithm that teaches 
an agent so that it can perform correct actions in a 
random environment to get the maximum reward. 
Different from supervised learning, there is no fixed 
label for reinforcement learning. Trial and error 
methods are used to simulate the learning process. It 
is usually implemented in the fields of robot control 
(Gu, S., et.al, 2017), autonomous driving (Alizadeh, 
A., et.al, 2019), and gaming (Kamaldinov, I., & 
Makarov, 2019). 

Desjardins et al. (Desjardins, C., & Chaib-Draa, B, 
2011) used reinforcement learning to study adaptive 
cruise control system. They used policy gradient 
reinforcement learning to teach autonomous vehicle 
to follow the car in front. Ure et al. (Ure, N. K, 2019) 
introduced reinforcement learning based on the 
model predictive control adaptive cruise control 
system. Reinforcement learning is used to train model 
predictive control weights so that autonomous 
vehicles can perform better when facing more 
complex scenarios. 

This paper introduces a single-step deep Q 
network algorithm. This algorithm combines single-
step reinforcement learning with deep Q network 
algorithm. And it is used to train an autonomous 
vehicle to judge the feasibility of lane-change. In this 
way, the autonomous vehicle can make correct 
decision under different conditions, and ensure the 
safety of the lane-changing process. 

2 REINFORCEMENT LEARNING 

2.1 Deep Reinforcement Learning 

In reinforcement learning, agent performs action 
according to a policy π . There are two ways to 
represent a policy. The first is expressed in the form 
of a function a ൌ πሺsሻ, which is a mapping of state 
space S to action space A. The second is expressed in 
the form of probability πሺs, aሻ, so that ∑ πሺs, aሻୟ ൌ
1. In this paper, the policy is expressed as a function. 

The quality of a policy can be evaluated using a 
state-action value function Qሺs, aሻ. The state-action 
value function is defined as the expected value of the 
cumulative reward from state s୲  to state sஶ , when 
perform an action a୲  at the state s୲  and keep 
interacting with the environment according to the 
policy π, i.e., 
 

Qሺs, aሻ ൌ EሺR୲|s୲ ൌ s, a୲ ൌ aሻ             (1) 
 

R୲  in (1) is the cumulative reward, and can be 
calculated as follows: 
 

R୲ ൌ ∑ γ୩r୲ା୩
ஶ
୩ୀ                        (2) 

 
Where r୲ା୩ is the reward obtained by performing 

the action a୲ in state s୲, and γ is the discount factor. 
Combining (1) and (2): 

 
Qሺs, aሻ ൌ E൫∑ γ୩r୲ା୩

ஶ
୩ୀ |s୲ ൌ s, a୲ ൌ a൯     (3) 

 
The basis of reinforcement learning is the Markov 

Decision Process (MDP), which means, the future 
state ሼݏ௧, … ,  ஶሽ of the agent is only related to theݏ
current state s୲, and not to the past state ሼݏଵ, … ,  .௧ିଵሽݏ
Therefore, the Bellman equation of the state action 
value function can be derived by combining (3), i.e., 
 

Qሺs, aሻ ൌ ∑ Pୱୱᇱୟ ൫Rୱୱᇱୟ  γQሺsᇱ, a′ሻ൯ୱᇱ         (4) 
 

Where Pୱୱᇱୟ  is the state transition probability, Rୱୱᇱୟ  
is the reward obtained when action a is taken and the 
state transfers from s to sᇱ. And aᇱ ൌ πሺs′ሻ. 

The purpose of reinforcement learning is to obtain 
the optimum policy π∗ to maximize the cumulative 
reward obtained by the agent, i.e., 
 

 Q∗ሺs, aሻ ൌ maxQሺs, aሻ                  (5) 
 

Combining (4) and (5) can get the optimal 
Bellman equation, i.e., 
 

Q∗ሺs, aሻ ൌ ∑ Pୱୱᇱୟ ቀRୱୱᇱୟ  γmaxୟᇱQ∗ሺs′, a′ሻቁୱᇱ    (6) 

 
Reinforcement learning to find the optimal policy 

is to find the only solution for (6). Traditional 
reinforcement learning methods, such as Q learning, 
build a Q table to find the optimal solution. The 
columns of the Q table represent all states in the state 
space, and the rows represent all actions in the action 
space. The values in the table are Q values and they 
are updated according to (7). 
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Qሺs, aሻ ← Qሺs, aሻ  αሾr  γmaxୟᇱQሺsᇱ, a′ሻ െ Qሺs, aሻሿ  (7) 
 

Where α is learning rate. 
This method has very good results when solving 

simple problems. But when the problem becomes 
more complicated, especially when the state variable 
is continuous, the curse of dimensionality will occur. 

Deep Q Network (DQN) can solve the above 
problems well. DQN combines deep learning and 
reinforcement learning. It utilizes a neural network to 
get approximate Q values. Since the neural network 
can fit any function, DQN can successfully 
approximate the Q value, even if the state space is 
multidimensional and continuous. 

The input of the neural network in DQN is state, 
and the output is the Q value of different actions. At 
each training step, DQN saves the current state s୲ , 
action a୲, reward r୲ and next state s୲ାଵ to the replay 
memory, and samples a mini-batch of tuples 
ሺs୲, a୲, r୲, s୲ାଵሻ  to train the neural network. The 
parameter of neural network θ is updated to minimize 
the loss function (8). 
 
L ൌ

ଵ

୫
∑ ൫r୲  γmaxୟᇲQᇲሺs୲ାଵ, a

ᇱሻ െ Qሺs୲, a୲ሻ൯
ଶ

୫     (8) 
 

θᇱ  is the parameter of target neural network, 
which has the same structure as θ , but is updated 
more slowly than θ. 

2.2 K-armed Bandit Problem 

K-armed bandit problem is a single-step 
reinforcement learning task, which maximizes the 
single-step reward. It is a mathematical model 
extracted from the scene of a multi-arm gambling 
machine in a casino. The k-armed bandit has k arms. 
After placing a coin, a gambler can choose to press 
one of the arms. Each arm spit out coins with a certain 
probability. The goal is to maximize the reward 
through a certain policy, that is, to get the most coins. 

Similar to general reinforcement learning 
problem, the state-action value function is used to 
evaluate the quality of the policy. Since the K-armed 
bandit problem is a one-step reinforcement learning 
problem, the state of each execution is the same, and 
only the action is different, so it can be simplified into 
an action value function Qሺaሻ . Qሺaሻ  represents the 
expected reward obtained after executing action a. 
And after the n-th attempt of action a, Qሺaሻ is updated 
as: 

 

Q୬ሺaሻ ൌ
ଵ

୬
ሾሺn െ 1ሻ ൈ Q୬ିଵሺaሻ  r୬ሿ          (9) 

3 SCENE STATEMENT 

The driver's decision to change lane usually consists 
of three steps: making a lane-changing plan, judging 
the feasibility of lane-changing, and executing lane-
changing (Hidas, P, 2005). In this paper, we focus on 
the step of judging the feasibility of lane-changing. 
Generally speaking, the lane-changing plan is made 
by the higher-level path-planning module. It may be 
a free lane-changing due to obstacles ahead or a 
forced lane-changing to reach the destination. In this 
paper, we use a random number to simulate the lane-
changing plan made by the driver. An LQR-based 
path tracking method is used to execute lane-
changing with the goal of minimizing distance and 
deviation angle to the path at previewed point. 

The research scenario of this paper is shown in  
Fig. 1. The autonomous vehicle expects to change 
from the current lane to the target lane, and there may 
be a leading vehicle and a following vehicle on the 
target lane. 

vୣ, v୪ and v are velocity of ego vehicle, leading 
vehicle and following vehicle respectively. d୪ is the 
distance between the ego vehicle and the leading 
vehicle, and d  is the distance between the ego 
vehicle and the following vehicle. 

This paper aims to use reinforcement learning to 
teach autonomous vehicle to judge if it is proper to 
change lane, with the goal to start lane-changing as 
early as possible to improve traffic efficiency and 
avoid collisions during lane-changing. 

 

Figure 1: Lane-Changing Scenario. 
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4 METHODOLOGY 

In this section, how to train agent is described. The 
reinforcement learning model and the dynamic traffic 
environment are explained in detail. 

4.1 Reinforcement Learning Model 

We consider the process of an autonomous vehicle 
making a lane-changing decision as MDP. The 
autonomous vehicle is the agent which needs to be 
trained. The environment includes lanes, the 
conditions of the ego vehicle and vehicles in the target 
lane. 

As described in Fig. 1, when the autonomous 
vehicle makes a lane-changing decision, the main 
basis is the condition of the ego vehicle and the 
condition of the ego vehicle relative to the vehicles in 
the target lane. So we took the absolute velocity of the 
ego vehicle vୣ, the relative velocity between the ego 
vehicle and the obstacle vehicle ∆v୧ ൌ v୧ െ vୣ, and 
the relative distance d୧ as the state representations. i 
represents l or f, that is, leading vehicle or following 
vehicle. If there is no vehicle in the position of leading 
vehicle or following vehicle, the relative distance d୧ 
is set to the maximum distance of the sensor which is 
200 m, and the relative velocity ∆v୧ is set to 0. The 
state vector consists of five continuous variables: 

 
 s ൌ ሾvୣ, d୪, ∆v୪, d, ∆vሿ                (10) 

 
Generally, there are two actions that can be 

selected for autonomous vehicle: lane-changing or no 
lane-changing. In this paper, when the autonomous 
vehicle makes a lane-changing decision, the order 
cannot be withdrawn, which means the lane-changing 
decision must be the last step of each training episode. 
In addition, since the reward obtained by the agent 
after a decision of not changing lane is a fixed value, 
then an output of the neural network is also a fixed 
value, which does not make sense. Therefore, when 
training the agent, this paper only studies the last step 
of each training episode, that is, the step where the 
agent makes a lane-changing decision. In other 
words, there is only one action of the reinforcement 
learning model: 

a: change lane. 
The reward function is defined as follows: 

 

r ൌ ൜
1, successful	lane െ changing
െ5, collision

       (11) 

 
The problem studied in this paper is a maximal 

single-step reward reinforcement learning problem 

which is similar to the "K-armed Bandit Problem". 
Since there is only one action, the state-action value 
function is expressed as follows: 
 

Qሺsሻ ൌ Eሺr୲|s୲ ൌ sሻ                    (12) 
 

Where Qሺsሻ  represents the expected reward 
obtained when the lane-changing decision is 
performed in state s. It can be written as below: 
 

 ൜
Qሺsሻ ൌ pୱሺsሻrୱ  pୡሺsሻrୡ
s. t. pୱሺsሻ  pୡሺsሻ ൌ 1

               (13) 

 
Where pୱሺsሻ  and pୡሺsሻ  are the probability of 

successful lane-changing and collision after 
executing lane-changing in state s, respectively; rୱ 
and rୡ  are the reward for successful lane-changing 
and collision, respectively. According to (11), rୱ ൌ 1 
and rୡ ൌ െ5. 

The state variables are continuous values, so a 
neural network will be used to represent Qሺsሻ 
combined with deep reinforcement learning. The 
parameters of the neural network were updated to 
minimize the loss function: 
 

 L ൌ
ଵ

୫
∑ ൫r୲ െ Qሺsሻ൯

ଶ
୫                    (14) 

 
Although only one action is set when establishing 

a reinforcement learning model, it does not mean that 
the autonomous vehicle can only execute lane-
changing action. Autonomous vehicle will execute 
the action based on the value of Qሺsሻ. In this paper, 
as shown in (11), a successful lane-changing gets a 
positive reward while a failed lane-changing gets a 
negative reward, so the reward for not changing lane 
is set to a constant 0, which can be considered as the 
state-action value function that does not execute lane-
changing. Therefore, the autonomous vehicle will 
choose whether to execute lane-changing based on 
Qሺsሻ: 

Qሺsሻ  0: change lane, and 
Qሺsሻ ൏ 0: not change lane. 

4.2 Environment 

In this paper, CarMaker developed by IPG 
Automotive GmbH is utilized as the simulator to 
build the traffic environment for training the 
autonomous vehicle. Compared to general traffic 
simulators, CarMaker is more focused on the vehicle 
itself, and has a better vehicle dynamics model. An 
illustration of CarMaker is shown in Fig. 2. 
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Figure 2: Screenshot of CarMaker. 

A one-way road with two lanes is built in 
CarMaker as shown in Fig. 2. The yellow vehicle in 
the left lane is the autonomous vehicle studied in this 
paper. Its behaviour is controlled by our algorithm. 
There are several vehicles in the right lane. Their 
behaviours are controlled by both our settings and the 
IPG Driver model set by CarMaker. They run at 
random speeds according to our settings, but at the 
same time they meet the restrictions of the IPG Driver 
model. The minimum distance between them is 
d୫୧୬ ൌ tୱୟୣv  d , where tୱୟୣ ൌ 1.5s  is the 
headway time, d ൌ 3m is the static distance to the 
front vehicle. All data of all vehicles, including 
vehicle speed and longitudinal position, can be 
provided directly by CarMaker. 

5 TRAINING AND RESULT 

5.1 Training Setup 

In this paper, MATLAB is utilized to build and train 
the neural network, which is the Q value network. 
During the training process, the interaction between 
MATLAB and CarMaker-Simulink is shown in Fig. 
3. 

While training the agent, there is a balance 
between exploration and exploitation. If the agent 
chooses to explore only, then all the trial 
opportunities are evenly distributed to each state, and 
eventually the expected Q value of each state can be 
obtained, but obviously the training time is very long. 
On the other hand, if the agent chooses to exploit 
only, each time it only executes the action with the 
highest Q value. The training time is short, but it is 
difficult to get the global optimal solution. 

 

 

Figure 3: Interaction between MATLAB and CarMaker-
Simulink. 

ε-greedy algorithm is used to solve the problem of 
exploration and exploitation. The agent explores with 
a probability of ε and exploits with a probability of 
ሺ1 െ εሻ. When ε ൌ 0, the optimal action is chosen, 
and when ε ൌ 1 , the agent chooses the action 
completely randomly. In this paper, instead of being 
a constant, ε will gradually decrease with training as 
below: 

 
Algorithm 1: Single-Step DQN for Lane-
Changing. 
Initialize replay memory D with infinite capacity 
Initialize state value function Q with random 
weights θ 
for episode ൌ 1,M do 
    Initialize action a: not change lane 
    while a: not change lane do 
        Read the state s from CarMaker 
        Initialize a random number rnd ∈ ሺ0,1ሻ 
        if t  tୱ୲ୟ୰୲ then 
            if rnd ൏ ε then 
Randomly select action a: change lane or not 
change lane 
            else 
                if Qሺsሻ  0 then 
                    a: change lane 
                else 
                    a: not change lane 
                end if 
            end if 
        end if 
    end while 
    Start lane-changing 
    if collision then 
        r ൌ െ5 
    else 
        r ൌ 1 
    end if 
    Store transition ሺs, rሻ in D 
if episode  Nୱ୲ୟ୰୲ then 
Sample random mini-batch of transitions ሺs୧, r୧ሻ 
from D 

Perform a gradient descent step on ൫r୧ െ Qሺs୧ሻ൯
ଶ
 

with respect to θ 
    end if 
end for 
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ε ൌ ሺεୱ୲ୟ୰୲ െ εୣ୬ୢሻe
ି
౦౩ౚ
ౚౙ౯  εୣ୬ୢ

           (15) 

 
In the simulator, the speeds of all vehicles, 

including the ego-vehicle and traffic vehicles, change 
randomly and constantly. During the lane-changing 
process, the speed of the ego-vehicle will be constant, 
and the speeds of traffic vehicles are changing all the 
time to simulate the unknown behaviour of the 
surrounding vehicles in actual traffic. 

In addition, to ensure the randomness of the initial 
conditions, we set a random start time tୱ୲ୟ୰୲ ∈
ሺ0,50ሻs. The training starts when the simulation time 
is bigger than tୱ୲ୟ୰୲,. This can be understood as the 
higher-level path-planning module making a lane-
changing plan at tୱ୲ୟ୰୲. 

During training, in order to ensure that the agent 
has enough experience, we set a threshold for the 
number of replay memory Nୱ୲ୟ୰୲ , and training will 
only start when the number of replay memory is 
greater than Nୱ୲ୟ୰୲. 

The details of the single-step DQN algorithm used 
in this paper for the lane-changing decision are shown 
in Algorithm 1. 

The algorithm consists of three steps. The first 
step is to determine whether a lane-changing decision 
could be made before making a lane-changing 
decision. The second step is that after the agent has 
made a lane-changing decision, the agent begins to 
change lane. The third step is to store the data in the 
replay memory after the lane-changing is completed 
(there may be a successful lane-changing or a 
collision), and train the agent with the data in the 
replay memory. 

5.2 Training Configurations 

A neural network with the structure shown in Fig. 4 
is used to approximate the Q value function. It 
consists of two fully connected layers, each 
consisting of 50 nodes. The input is the state, and the 
output is the Q value for executing the action in that 
state, that is, the expected reward obtained by 
executing a lane-changing in the given state. The tanh 
function is selected as the hidden layer activation 
function. 

 

Figure 4: Structure of the Neural Network. 

The maximum training episodes M was set to 
6,000. The threshold of the replay memory at the 
beginning of training Nୱ୲ୟ୰୲ is 200, that is, the training 
does not start until the agent has completed 200 
explorations. The Adam optimizer is selected to 
update neural network parameters with a learning rate 
of 0.001 and the mini-batch of 32. For ε -greedy 
algorithm, we set εୱ୲ୟ୰୲ ൌ 0.9 , εୣ୬ୢ ൌ 0  and 
εୢୣୡୟ୷ ൌ 200. 

5.3 Results 

Since the initial state of each training episode is 
completely random, it is very likely that there is no 
obstacle vehicle in the target lane when the 
autonomous vehicle starts to make lane-changing 
decision, so the result of a single training episode 
cannot be used to evaluate the algorithm. In this  
paper, we use the number of collisions of the 
autonomous vehicle per 100 training episodes to 
evaluate the result. The result is shown in Fig. 5. 

In addition, a general DQN method is used to 
solve the same problem as a comparison. The general 
DQN uses two actions, that is, the Q network has two 
outputs, one is the Q value for executing lane-
changing, and the other is the Q value for not 
executing lane-changing. The reward is set as (16). 
The discount factor is 0.99. The replay memory 
capacity is 10,000. The frequency of updating the 
target Q network is 2,000. The result is also shown in 
Fig. 5. 
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r ൌ ൝
1, successful	lane െ changing
െ5, collision
0, not	execute	lane െ changing

      (16) 

 
As shown in Fig. 5, the numbers of collisions for 

single-step DQN and general DQN both decrease 
during training. After 1,700 training episodes, there is 
no more collisions happening for single-step DQN. 
But general DQN cannot completely converge to 0. 
This shows that our algorithm can converge better. It 
can teach the autonomous vehicle to learn to judge the 
feasibility of lane-changing ensuring absolute safety. 

 

Figure 5: Training Results. 

6 CONCLUSIONS 

In this paper, we proposed a new method to judge the 
feasibility when the autonomous vehicle is going to 
change the lane. The method combines the single-step 
reinforcement learning and the deep reinforcement 
learning. We use the single-step reinforcement 
learning framework that learns by solving the 
expected reward for executing different actions in the 
same state. Aiming at the problem of discontinuous 
states or actions in this framework, combined with the 
idea of DQN, a neural network is used to approximate 
the Q value function. The proposed single-step DQN 
algorithm judges the feasibility of lane-changing 
based on the lane-changing plan made by the high-
layer path planning module and the surrounding 
vehicle state obtained by sensors. The instruction is 
sent to the low-level control module, which uses the 
LQR-based method to complete the lane-changing. 
The final results indicate that the proposed method in 
this paper can ensure that the lane-changing process 
of autonomous vehicle is absolutely safe. 
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