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Abstract: Rainfall becomes one of the weather parameters that is most widely considered because the phenomenon of 
its occurrence can significantly affect human activities, including in agriculture, plantations, fisheries, 
transportation and others. In addition, rainfall information is very important to do weather analysis, especially 
in analyzing the occurrence of floods caused by heavy rains so there is a need for accurate rainfall information. 
This study aims to obtain an optimal rainfall estimation system at locations where there is no direct rainfall 
observation data. Machine learning is one branch of artificial intelligence that provides a learning system for 
machines to learn automatically without explicit instruction. The machine learning used in this study is Multi 
layer perceptron (MLP), with backpropagation as a gradient value search algorithm and adam optimizer as an 
optimization function. The structure of the MLP used is 2 hidden layers which in the first hidden layer uses 7 
neurons with a hyperbolic tangent activation function and the second hidden layer contains 3 neurons and the 
activation function is sigmoid and finally the output layer, the activation function used is pure linear. MLP 
system input data is radar data, reflectivity, radial velocity, spectrum width and radar rain estimation data 
which are validated with automatic rain observation data around the Single Polarization Radar observation in 
Yogyakarta. The results using MLP can improve rain detection accuracy by 79% and reduce the error value 
in the estimated rainfall. 

1 INTRODUCTION 

Indonesia is a humid archipelago and equatorial 
monsoon region (Tjasyono, B.H.K., and Harijono, 
S.W.B, 2007), many hydrometeorological natural 
disasters occur throughout the year, including 
Yogyakarta. Hydrometeorological disasters are 
disasters related to changes in the normal water cycle, 
such as flash floods (Minervino, A.C and Duarte, E.C, 
2015). Hydrometeorological disasters in the current 
period show an increasing trend (Adi S. , 2013). 
Hydrometeorological disasters can seriously damage 
infrastructure, significant economic losses and often 
loss of life (Paul, S.H., Sharif, H.O., and Crawford, 
A.M.G, 2018). Rainfall is precipitate in liquid form 
which is largely a direct result of the condensation of 
water droplets in the clouds, followed by growth to a 
size large enough to overcome the effect of air 
buoyancy forces (Tjasyono, B.H.K., and Harijono, 
S.W.B, 2007) . 

Single polarization radar is a remote sensing 
technology that can be used to determine the 
distribution of rain in locations where there is no 
rainfall measurement tool. A single polarization radar 
measures rainfall in real-time and provides high-
resolution data for short-term rainfall forecasts, also 
known as nowcasting (Codo, M., and Rico-Ramirez, 
M.A., 2018). Radar emits electromagnetic waves at 
the frequency of microwaves in the form of pulses 
into the atmosphere through the transmitter. When a 
pulse hits an object, the electromagnetic wave is 
partly returned to the weather radar which is received 
as reflected energy called reflectivity. The amount of 
reflectivity depends on the physical parameters of the 
object. 

Radar transmits microwaves and receives 
backscattering radiation from precipitation particles 
through radar reflectivity (Z), which is related to 
rainfall rate (R) using a semi-empirical equation of 
the form Z = a𝑅௕ (Germann, U., Galli, G. Boscacci, 
M., and Bolliger, M., 2006). However, parameters a 
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and b of the Z-R relation equation are known to 
depend on rainfall type and rainfall size distribution. 
The use of the constant Z-R relation equation 
contributes to errors in the estimation of radar rainfall 
(Harrison,D.L., Driscoll,S.J., and Kitchen,M , 2000). 

Radar has limitations that cause errors in 
estimating rain and rain forecasts by nowcasting, 
when the distance from the radar increases, naturally 
there is also an increase in the volume of radar 
sampling (Rico-Ramirez, M.A., and Cluckie, I.D, 
2007).  At higher altitudes, the distribution of the 
hydrometeor changes, causing a difference between 
the measured rainfall and the rainfall that actually 
falls to the ground, so it is necessary to determine the 
right technique for estimating using radar. The Single 
Polarization Radar in Yogyakarta is a Baron branded 
C-Band radar, which has a frequency of 5.2-5.9 GHz 
and a wavelength of 5-5.7 cm and Radar Yogyakarta 
began operations in 2016. In this research, a statistical 
/ engineering based approach is used to improve the 
estimation of rainfall in Yogyakarta's Single 
Polarization Radar using VCP 21 with 9 elevations. 

There are two classifications of rain estimation 
techniques using radar, namely: Physical-based 
techniques and statistical / engineering-based 
techniques (Bringi, V. N. and Chandrasekar, V, 
2001). Physically based techniques are used to find 
the relationship between the observation radar and 
precipitation levels of observation, such as the use of 
relational equation Z-R precise in determining the 
estimated rainfall while using statistical techniques 
such as machine learning algorithms.  

Machine learning is an application of artificial 
intelligence (AI) that provides a system of ability to 
learn automatically and improve from experience 
without being completely programmed 
(Chandrasekar, V., Tan, H., and Chen, H., 
2017)(Chandrasekar, Tan, and Chen, 2017). Machine 
learning spends on developing computer programs 
that can be accessed and used for self-study. The 
machine learning used in this study is a multi-layer 
perceptron (MLP), with backpropagation as a 
gradient value search algorithm and adam optimizer 
as an optimization function. The structure of the MLP 
used is 2 hidden layers which in the first hidden layer 
uses 5 neurons with a hyperbolic tanget activation 
function and the second hidden layer contains 3 
neurons and the activation function is sigmoid and 
finally the output layer, the activation function used 
is pure linear. MLP system input data is radar data, 
reflectivity, radial velocity, spectrum width and radar 
rain estimation data which are validated with 
automatic rain observation data around the Single 
Polarization Radar observation in Yogyakarta. 

At the training stage of machine learning network 
will produce the best network and the best network 
will be tested with new radar data then verified. The 
results of the verification value will show and 
improve the rainfall estimation model using a single 
polarization radar around the study area. An optimal 
rainfall estimation system will further benefit weather 
forecasters in providing early warning information 
for heavy rainfall and in providing extreme weather 
analysis at locations where there is no direct rainfall 
observation. 

2 STUDY AREAS AND DATASET 

This study, the results of three radar data outputs are 
reflectivity, radial velocity, and width spectrum and 
the results of radar rain estimation using the Marshall-
Palmer Z-R relation, will be used as input for MLP. 
The reflectivity data used are the CMAX(Z) product 
reflectivity, the CMAX(Z) product reflectivity 
deviation standard, the CAPPI(Z) product reflectivity 
0.5 km and the CAPPI(Z) product deviation 
reflectivity standard 0.5 km. For radial velocity and 
spectrum width data used from CAPPI (V) 0.5 km 
and CAPPI (W) 0.5 km. The use of  CAPPI 0.5 km 
product on reflectivity data, radial velocity data, and 
width spectrum data due to the closest surface, for 
CMAX products (taking maximum value) on the 
reflectivity value can represent conditions vertically 
at an altitude of 0.5-30 km (Ali, A and Hidayati,S, 
2016). In addition, the distance between automatic 
rainfall data and radar is included as additional input. 
Furthermore, the 10 inputs are processed using MLP 
and automatic rain observation data from an 
automated weather station (AWS) will be used as a 
target / model validation.  

 Observation rainfall data used as a comparison of 
MLP is AWS data for 2017-2018 in 4 locations, 
namely Kulon Progo, Gajah Mada University, Bantul 
and Sleman. Data of Automatic rainfall observers is 
accumulated per hour. The following is the 
availability of AWS data shown in table 1. 

Table 1. Automatic rainfall observation data used 

Location Coordinate Total data 
(mm/hours) 

Kulon-Progo -7,890242; 
110,100552 

1342 

Sleman -7,75016; 
110,419759 

550 

Bantul -7,90736; 
110,365048 

3163 

Gajah Mada 
University

-7,7704589; 
110,3798372 

3111 
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Radar data is processed using python with 2 (two) 
stages, namely the data extracting stage and the 
training model stage. Data extracting stage is the 
stage where the radar data value at the point of 
observation of rainfall is automatically extracted. 
After the radar product is extracted, the radar value is 
used as a predictor while the observed rainfall value 
is made a predictor in the MLP model. 

The training stage of machine learning network 
will produce the best network and the best network 
will be tested with new radar data then verified. So 
the results of the verification value will show and 
improve the rainfall estimation model using a single 
polarization radar around the study area. An optimal 
rainfall estimation system will further benefit weather 
forecasters in providing early warning information 
for heavy rainfall and in providing extreme weather 
analysis at locations where there is no direct rainfall 
observation. 

3 RESEARCH METHODOLOGY 

3.1 Radar 
 

A single polarization radar has three types of data 
output namely reflectivity, radial velocity and 
spectral width (Raghavan, 2003). Reflectivity (Z) 
states the amount of energy reflectivity returning 
from an object, depending on the size, shape and 
composition of the object. The amount of energy 
received by the radar is much smaller than the energy 
that was transmitted at the beginning. The following 
radar equation describes the calculation of the amount 
of energy returned by the radar, which is very 
dependent on the magnitude of the Power Transmit 
and the type of radar band used, the greater the object 
and the energy received, the greater the reflectivity 
value. 

𝑃𝑟 ൌ
గమ

ଵ଴ଶସ௟௡ଶ
ቂ

௉௧ ீమఏ஍

ఒమ ቃ ቀሾ𝐾ሿଶ ௓

௥మቁ  (1) 

Description: 
Pr: average power of radio waves returned to radar 
(watts) 
Pt: Peak wave power emitted by radar (watts) 
G: Antenna gain 
H: length of radar pulses in the air (m) 
θΦ: radi wave width in vertical and horizontal 
(radians) 
λ: wavelength emitted (m) 
ሾ𝐾ሿଶ: refractive index 
r: distance from the radar to the target (m) 

Z: Radar reflectivity factor (mm6/m3) 

The first term of the equation above illustrates the 
geometrical composition which will be represented 
by the velocity of the electromagnetic waves which 
refers to the velocity of light propagation. The second 
term of the equation is about the parameters of the 
radar system, consisting of the type of polarization 
(horizontal and or vertical), antenna gain and 
wavelength, the amount of power transmitter and the 
amount of pulse used in operations. The resulting data 
resolution will be greatly influenced by the choice of 
sampling parameters, antenna speed and Pulse 
Frequency Repetition used which all depend on the 
radar system technical specifications. And the third 
term depends on the distance and characteristics of 
the target. The radar parameters are relatively fixed, 
and if the transmitter is operated and used with a 
constant output arrangement, the equation can be 
simplified to: 

𝑃𝑟 ൌ
஼ሾ௄మሿ

௥ೝ  𝑍    (2) 

Where C is a radar constant. The value of Z can be 
calculated by the equation: 

𝑍 ൌ ∑ 𝐷௜
଺௡

௜ୀଵ     (3) 
Z values vary between 0.001 and 10,000,000, to make 
it easier to understand, use a decibel scale: 

𝑍ሺ𝑑𝐵𝑍ሻ ൌ 10 𝑙𝑜𝑔ଵ଴ሺ𝑍ሻ  (4) 
 

dBZ=10𝑙𝑜𝑔ଵ଴
௓ ௠௠ల௠షయ

ଵ  ௠௠ల௠షయ  (5) 

The value of Z is proportional to the sum of the entire 
particle diameter raised to six in a sample volume, 
because the size of the drops is usually measured in 
millimeters (mm), and the volume is usually 

expressed in units of cubic meters (m3), so Z has a 

unit of mm6/m3. 
For the purposes of hydrology connecting signal 

strength with observed rainfall, an equation that 
combines radar reflectivity and rainfall is needed. 
This equation is the approach and empirical 
relationship between Z and R. The relationship 
between Z and R is drawn in exponential form, as 
follows: 

𝑍 ൌ 𝑎𝑅௕    (6) 
 
Where a and b are positive empirical constants whose 
value depends on the geographical location and 
climate conditions / type of rain. The coefficient a 
represents the condition for the median diameter of 
the drop size in a sample volume. The greater the 
value of a, the median size of drops in a sample 
volume indicates a larger diameter. While the 
coefficient b represents the equilibrium condition 
changes in the size of the drops. The results of rain 
estimation using the Marshall-Palmer Z-R relation is 
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used to master regional variability in the distribution 
of raindrop sizes in Indonesia (M. Marzuki, H. 
Hashiguchi, M. K. Yamamoto2, S. Mori and M. D. 
Yamanaka, 2013).  

Radar transmits electromagnetic waves using 
units of power transmit and operational frequency. 
Changes in frequency from higher droplets will be 
processed and recognized as movements approaching 
the radar, while changes in frequency from lower 
echo replies are recognized as echos moving away 
from the radar. Radar routinely measures speed and is 
used to detect wind speeds, tornadoes, and hurricanes. 
This echo movement data is called radial velocity (V) 
data. Velocity radial data can be used as a validation 
medium for echo reflectivity / intensity for the 
forecaster to recognize meteorological and non-
meteorological echoes, because generally rain 
patterns have different patterns from other echoes. 
And especially for Ground Clutter echo has a zero 
radial speed value. V data not only describes the 
movement of rain particles, but Velocity data is very 
helpful in describing phenomena in two scales, 
namely the large scale (largescale) and small scale 
(mesoscale). Large scale (largescale) describes 
phenomena that occur in all regions and potential 
SHEAR that supports rotation while small scale 
(mesoscale) describes whether Converging, 
Divergent or rotating winds are also used to diagnose 
Couplets (two adjacent Inbound and outbound areas 
to detect Convergence , Divergence or rotation). 

The spectral width (W) data produced by the 
weather radar is taken from processing the frequency 
signal reflected by the object and received by the 
weather radar. In one sampling volume each droplet 
has a different speed and direction of motion, the 
value of the deviation of each droplet is displayed by 
the spectral width data. Information obtained from the 
value of W in the form of air lability. A small width 
value indicates that in the sampling volume there is 
no difference in speed (stable) and a large width value 
indicates there is a difference in the speed of the 
hydrometeor in the sampling volume (unstable). W 
value gives information about the possibility of 
windshear, turbulence, mesocyclone. 

Constant altitude plan position indicator (CAPPI) 
is a radar product that is made based on the height 
input desired by the user. The height referred to in this 
product is the height of the MSL. It is recommended 
to apply the Pseudo-CAPPI algorithm to maximize its 
output, the height of this cappi product has the same 
value both near and far from the radar. The CAPPI 
algorithm will only display data available at the 
desired height at each elevation available. When there 
is no data at the desired height then the data is blank. 

The Maximum Reflectivity (CMAX) product 
represents the maximum reflectivity value between 
two heights for each cell of volume. In other words, 
able to show the maximum detectable reflectivity of 
each pixel between the selected user height, including 
the East-West and North-South profiles from the 
maximum in the side panel. This product was 
produced based on a volume scan. A minimum and 
maximum height set by the user and defaults to 0.5 
and 30 kilometers. The advantages of MAX products 
include being able to display peaks and side views in 
the same window so as to give a three-dimensional 
(3D) impression of the weather situation. In addition, 
ground clutter will be reduced when choosing a 
bottom height that is higher than the radar installation 
height. However, this product is less useful for data 
speeds because only absolute speeds are displayed. 
The product is very useful especially for reflectivity 
data analysis to medium distances. 

 
3.2 Multi Layer Perceptron (MLP) 
 

MLP structure consists of input layer, hidden 
layer and output layer. The back-propagation 
algorithm is the most popular approach, which not 
only overcomes the weaknesses of the large network 
generated in the previous section, but also makes this 
network a powerful tool for a number of other 
applications, beyond pattern recognition 
(Theodoridis, S., Koutroumbas, K., Koutroumbas, K., 
& Koutroumbas, K. , 2008). This approach is usually 
to improve architecture and calculate synaptic 
parameters so as to minimize the appropriate cost 
function of the output. However, such an approach is 
a difficulty in the discontinuity of the step function 
(activation), promoting differentiation with respect to 
unknown parameters. Synaptic weight The 
perceptron multilayer architecture has so far been 
developed by Nouron McCulloch-Pitts (Theodoridis, 
S., Koutroumbas, K., Koutroumbas, K., & 
Koutroumbas, K. , 2008). The most complex task to 
implement the hardware artificial neural networks is 
the non-linear activation function. Common 
examples of activation function include hard-limiter, 
saturated linear, hyperbolic tangent function and 
sigmoid function (A. Armoto, L. Fanucci, E.P. 
Scilingo and D.De Rossi, 2011). 

The most common non-linear activation 
functions, which are used in the artificial neural 
networks, are the sigmoid function and the 
hyperbolic, these functions are mainly used in 
statistics, bio-mathematics, physics, engineering, 
economic science, etc tangent (A. Armoto, L. 
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Fanucci, E.P. Scilingo and D.De Rossi, 2011). The 
general equation is as follows: 

𝑦 ൌ
௔

ଵା௘ష್ೣష೎ ൅ 𝑑   (7) 

where a, b, c and d are constants. 
The sigmoid function is a particular case of Eq. 

(7) where we put a = 1, b = 1, c = 0 and d = 0. The 
equation thus becoming: 

𝑦 ൌ 𝑆ሺ𝑥ሻ ൌ
ଵ

ଵା௘షೣ  (8) 

On the other hand, when a = 2, b = 2, c = 0 and d 
= 1, the equation represents the hyperbolic tangent: 

𝑦 ൌ 𝑇ሺ𝑥ሻ ൌ
ଶ

ଵା௘షమೣ െ 1 ൌ
௘మೣିଵ

௘మೣାଵ
 (9) 

The following is a picture of MLP network 
architecture in this study: 

 

Figure 1. MLP network architecture 

Adaptive Moment Estimation (Adam) is a very 
popular training algorithm for deep neural networks, 
implemented in many machine learning frameworks 
(Bock & Weis, 2019). Adaptive optimization 
algorithms, such as Adam and have proven better 
optimization performance than stochastic gradient 
descent (SGD) in several scenarios (Zhang, 2019). 
According to Kingma & Ba (2015), the Adam 
algorithm is a method that is easy to implement, 
computationally efficient, has few memory 
requirements, is not volatile for scaling gradients 
diagonally, and is suitable for large problems in terms 
of data and / or parameters. This method is also 
suitable for purposes and problems that are not 
stationary with gradients that have a lot of noise and 
data that are not continuous. 

In this study, MLP used has 2 (two) hidden layers, 
which in the first and second hidden layers have 
different activation functions. The first hidden layer 
uses the sigmoid activation function and the second 
hidden layer uses the tangent activation function, with 
backpropagation as the gradient value finder 
algorithm and Adam optimizer as the optimization 
function. The structure of the MLP used 9 inputs, 2 

hidden layers which in the first hidden layer uses 7 
neurons with a hyperbolic tanget activation function 
and the second hidden layer contains 3 neurons and 
the activation function is sigmoid and finally the 
output layer, the activation function used is pure 
linear 

The results of rainfall estimation using the 
Marshall-Palmer Z-R relation is used to master 
regional variability in the distribution of raindrop 
sizes in Indonesia (M. Marzuki, H. Hashiguchi, M. K. 
Yamamoto2, S. Mori and M. D. Yamanaka, 2013). 
CAPPI (V) 0.5 km products and CAPPI (W) 0.5 km 
products is used to identify winds in Indonesia, and 
identified echo hooks using CAPPI (Z) 0.5 km 
products and CMAX (Z) products (Ali, A and 
Hidayati,S, 2016). To improve radar estimation based 
on artificial neural networks with input reflectivity 
data on average, standard deviation and distance on 3 
cloned events in Darwin, Northern Territory, 
Australia (Tsun-Hua, Y., Lei, F., and Lung-Yao, C., , 
2016). Meanwhile, TRMM-PR satellite data and 
Radar data from CAPPI (Z) products 1,2,3, 4,5 km to 
improve the estimated rainfall results in Melbourne 
(Chandrasekar, V., Tan, H., and Chen, H., 2017). 

Based on the references above, the inputs used in 
MLP in this study are: 

1. Maximum reflectivity / CMAX (Z) 
2. CMAX(Z) standard deviation  
3. reflectivity at an altitude of 0.5 km / CAPPI (Z) 

0.5 km 
4. standard deviation ofCAPPI (Z) 0.5 km 
5. radial velocity at an altitude of 0.5 km / CAPPI 

(V) 0.5 km 
6. standard deviation of CAPPI (V) 0.5 km 
7. spectrum width at an altitude of 0.5 km / CAPPI 

(W) 0.5 km 
8. standard deviation of CAPPI (W) 0.5 km 
10. distance between AWS and radar 

 

The study design is shown in Figure 2:  

 

Figure 2: Conceptual diagram of the MLP based Machine 
Learning 

In order to furter evaluate the rainfall perfornance, 
mean error (ME), mean absolute error (MAE), mean 
square error (MSE), root mean square error (RMSE) 
and accuracy is used. 
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𝑀𝐸 ൌ
ଵ

ே
∑ ሺ𝑓௜ െ 𝑜௜ሻ

ே
௜ୀଵ   (8) 

𝑀𝐴𝐸 ൌ
ଵ

ே
∑ |ሺ𝑓௜ െ 𝑜௜ሻ|ே

௜ୀଵ   (9) 

𝑀𝑆𝐸 ൌ
ଵ

ே
∑ ሺ𝑓௜ െ 𝑜௜ሻ

ே
௜ୀଵ

ଶ
  (10) 

𝑅𝑀𝑆𝐸 ൌ √𝑀𝑆𝐸   (11) 
Description: 
fi    : Estimated rainfall from Radar/MLP 
oi  : rainfall from AWS 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ൌ
்௉ା்ே

௡
  (12) 

Description: 
- True positive (TP) = the number of cases 

correctly identified as rain 
- False positive (FP) = the number of cases 

incorrectly identified as rain 
- n= the total amount of data 

4 RESULT 

Multi-layer perceptron (MLP) is a type of 
machine learning algorithm inspired by neuroscience 
(Tan et al., 2017) This technique has been widely 
applied in academia and industry such as computer 
vision, machine translation, neural language 
processing, and pattern recognition . The MLP 
algorithm consists of most neurons that are attached 
by interrelated weights (Hornik, Stinchcombe, & 
White, 1989). In a neural network, there are 3 (three) 
forming elements, namely (i) a set of connection lines 
that have different weight sets, a positive value will 
strengthen the signal while a negative value that 
weakens the signal underneath. The number of 
structure and relationship patterns will determine the 
network architecture and network model; (ii) the sum 
unit that determines the signal input multiplied by its 
weight, for example input = x_1, x_2, x_3 .......... 
x_m, connecting weight = w_1, w_2, w_3 ....... .... 
w_m, sum ouput = u_j = x_1 w_1 + x_2 w_2 + x_3 
w_3 ........... x_m w_m; (iii) an activation function that 
determines whether signals from neural inputs are 
forwarded to other neurons. 

In this section will show the performance of MLP 
in estimating rainfall. The data used in this model are 
Radar and AWS data for 2017 and 2018 in Kulon-
Progo, Bantul, UGM and Sleman. Rainfall estimation 
data from Radar and AWS are accumulated in 1 hour, 
containing rain data and no-rain data. Z-R relation 
used to estimate rain on radar in this study is the 
Marshall-Palmer Z-R relation. The results of this 
radar rainfall estimation will be compared with MLP 
and evaluated. 

There is a difference in the time of rainfall 
calculation between AWS and Radar, where AWS 

will calculate continuous rainfall continuously for 10 
minutes, while the results of measurement of radar 
rainfall estimation within 10 minutes there is a 4 
minute pause to calculate the results of scanning some 
elevations (scaning 6 minutes, calculation 4 minutes). 
The estimated 10-minute rain from the radar / AWS 
will be accumulated to 1 hour. In addition, the rainfall 
measured by AWS is true rain falling to earth, while 
Radar calculates estimates of rain falling to the 
surface of the earth based on the results of scanning 
the atmospheric conditions in certain layers 
(depending on the product used). 

Radar also has several limitations, one of which is 
the optimal results of the radar scaning representation 
when the object distance from the radar is far away. 
This happens because the earth is round, so the farther 
away the object is from the radar, the radar only gets 
scaning at the top layer (Rauber, R.M and Nesbitt, 
S.W, 2014)(Robert M. In this study, the distance 
between AWS and Radar locations is used as input in 
MLP.  

Some of the above problems, require the approach 
to improve outcome radar rainfall estimates. There 
are 2 (two) classifications of rain estimation 
techniques using radar, namely: Physical-based 
techniques and statistical / engineering-based 
techniques (Bringi, V. N. and Chandrasekar, V, 
2001). Physical-based techniques are used to find the 
relationship between radar observations and the 
rainfall rate of observations, such as the use of the Z-
R equation equation that is appropriate in determining 
rainfall estimates while statistical techniques using 
algorithms such as machine learning models one of 
which is MLP. 

Figure 3 and Figure 4 show the results of the 
distribution of data (scetterplot) between the results 
of variations in the MLP model compared to AWS as 
a rainfall observation / target model. The X-axis 
displays the results of the observed rainfall from 
AWS, while the Y-axis displays the results of the 
MLP model rain estimation. Black dotted line shows 
trend line / trend of MLP model. The sloping trend 
line to the right shows a positive correlation / 
correlation value, while the sloping tend line to the 
left shows the negative correlation value / correlation. 

Based on Figure 3, the MLP rainfall results are 
compared with AWS data in 4 locations. The results 
of estimation of rain using MLP can increase the 
value of accuracy in detecting no-rain events to 79%. 
The existence of a sloping trendline to the right 
illustrates a positive correlation between estimated 
MLP rain and rain from AWS data. 

However, there are some occurrences of rain with 
high intensity MLP unable to detect it. Figure 4 shows 

CONRIST 2019 - International Conferences on Information System and Technology

46



 

the estimation of radar rain using the Z-R Marshall-
Palmer relation at 4 AWS locations. Based on Figure 
4, radar rainfall estimates tend to underestimate 
rainfall estimates, this can be seen from the 
downward trend line.. 

 

Figure 3. Scatter plot of estimated MLP rainfall and AWS 
rainfall 

 

Figure 4. Scatter plot of estimated radar rainfall and AWS 
rainfall 

ME value of a model, used to determine the tendency 
of the model in making estimates. The disadvantage 
of using ME verfication is that one error can cover the 
other's errors due to averaged error.  

 

Figure 5. Comparison of MLP and Radar error values 

Some relevant research methods use verification 
methods to evaluate the results of models that have 
been developed. An important aspect of the error 
metric used for model evaluation is its ability to 
distinguish between model results. A more 
discriminating measure that results in higher variation 
in model performance metrics among various sets of 
model results is often more desirable. In this case, 
MAEs may be influenced by a large number of 
average error values without adequately reflecting 
some large errors, RMSE is usually better at 
expressing model performance differences, but many 
researchers choose MAE over RMSE to present their 
model evaluation statistics when evaluating the 
results of the model (Chai & Draxler, 2014). 

In measuring the performance of machine 
learning models in this study, the model output will 
be validated and verified, that is validating by 
measuring the accuracy of the model in predicting the 
occurrence and absence of rain and measuring the 
accuracy of the model in predicting rain events 
according to its category; while in verifying the 
model, you will see the model error from the value of 
mean error (ME), mean absolute error (MAE), mean 
square error (MSE) and root mean square error 
(RMSE). MAE is suitable for describing evenly 
distributed errors, whereas for normally distributed 
errors, RMSE is a better metric to present than MAE. 
ME value, is a bias value that can measure the 
tendency of the model in the form of underestimate if 
it is negative or overestimate is positive, but ME has 
a disadvantage because the error values can overlap. 
The MSE value can be analogized as a variant plus 
the bias squared of a model 

Figure 5 shows the comparison of error values 
between estimated Radar and MLP rain, the error 
value closest to zero is MLP, ie with ME, MAE, MSE 
and RMSE values of -0.02 mm / h, 0.25 mm / h, 1.05 
mm / h and 1.03 mm / h, while the ME, MAE, MSE 
and RMSE values of the radar rain estimate are -0.69 
mm / h, 0.69 mm / h, 9.33 mm / h and 3.05 mm / h.  

Based on the error value of the ME, MAE, MSE 
and RMSE values of the MLP model shown in Figure 
5, the MLP model error values compared with the 
radar rainfall estimation results, the MLP model error 
values are smaller than the radar error values. this 
shows that the performance of the MLP model is 
better than the results of the estimation of radar 
rainforest and the MLP model is able to improve the 
rainfall estimation results from the single polarization 
radar data in Yogyajarta. 
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