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Abstract: This research compares the performances of two metaheuristic methods: Particle Swarm Optimization (PSO) 

and a hybridized PSO method with Greedy Randomized Adaptive Search Procedures (GRASP) for solving 

aircraft maintenance problems (AMP). In this problem, AMP consists of two different maintenance activity 

types: inspection and continuous airworthiness maintenance programs (CAMP). The purpose of this paper is 

to determine the number of periods that the aircraft needs to be maintained and which inspection and CAMP 

tasks need to be done in each period. The problem is NP-Hard in nature, so that metaheuristic methods are 

used to make sure the optimization process can be solved quickly. Computational experiments are performed 

by using 16 conditions, and four randomly generated dataset instances. The computational experiment result 

shows that PSO-GRASP outperforms PSO for a larger planning horizon. 

1 INTRODUCTION 

Aviation industries obtain their revenues based on the 

number of passengers they serve by using their 

aircraft (Gargiulo, Pascar, & Venticinque, 2013). 

However, sometimes, the aircraft need to be 

maintained. When an aircraft needs to be maintained, 

it cannot be operated to earn revenues for the owners. 

All airlines hope that their aircraft have high 

utilization to serve their customers by minimizing the 

number of maintenances for their aircraft without 

violating any regulation related to aircraft 

airworthiness. Research related to those problems is 

termed aircraft maintenance / aeronautical 

maintenance (Gargiulo et al., 2013; Han, Cao., & 

Yang, 2012).  

To the best of our knowledge, the research related 

to aeronautical / aircraft maintenance only considered 

inspection check schedule (example A-Check, C-

Check, D-Check) for the aircraft to be scheduled in 

the form of aircraft maintenance routing problem 

(AMRP). Several researches have been conducted in 

the area of AMRP, such as: Al-Thani, Ben Ahmed, 

and Haouari (2016), Eltoukhy, Chan, Chung, and Niu 

(2018), Ezzinbi, Sarhani, El Afia, and Benadada 

(2014) Gopalan and Talluri (1998) Liang, 

Chaovalitwongse, Huang, and Johnson (2011) and 

Safaei and Jardine (2018). In practice, there are other 

maintenance activities that need to be considered by 

the airlines, like the Continuous Airworthiness 

Maintenance Program (CAMP). The difference 

between inspection check and CAMP is that 

inspection check does visual checking on some 

components  (Nickles, Him, Koenig, Gramopadhye, 

& Melloy, 1999) and determines whether the 

components need to be replaced or further maintained 

(this maintenance activity could be categorized as 

unscheduled maintenance), while CAMP does minor 

maintenance based on manufacturer direction and 

must be done regularly, known as scheduled 

maintenance (U.S. Department of Transportation & 

Federal Aviation Administration, 2016). Both 

maintenance categories use maintenance resources 

and could make the airlines bear the cost, but those 

tasks should be done by them in order to ensure their 

aircrafts’ airworthiness. These problems encourage 

the airline to design a  maintenance schedule that can 

either reduce its costs or maximize the aircraft's' 

utility. 

Given the nature of aircraft maintenance, we 

consider this problem based on inspection and CAMP 
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as NP-Hard. To tackle this problem, metaheuristic 

methods such as Particle Swarm Optimization (PSO) 

are used as an optimal solution search engine. PSO 

has a broad experience in resolving maintenance 

schedule. In this research, we would like to test 

hybridized PSO-GRASP to find whether it could 

solve the problem and outperform the PSO method. 

2 PROBLEM DEFINITION 

Consider a set of 𝐼 ̅inspection tasks {1, 2, … , 𝐼} and a 

set of �̅� CAMP tasks {1, 2, … , 𝑅}, which must be 

scheduled on a single aircraft. Each set has notable 

data, such as next do time, interval time, threshold 

time, and duration (only for the set I). We consider 

that in the set, 𝐼 and 𝑅 have two different time units, 

such as calendar days and flight hours. Both tasks 

must be scheduled on a set of �̅� periods {1, 2, … , 𝑇}, 
which could be calculated first by using planning 

horizon ℎ, Both next do 𝑛𝑥𝑖  for inspection task and 

𝑛𝑦𝑟  for a CAMP task, and both intervals 𝑖𝑥𝑖 for 

inspection task and 𝑖𝑦𝑟  for a CAMP task, with the 

following equation (1(1). 

T = [
h

min(min
i∈I ̅

(ixi), min
r∈R̅

(iyr))
] +1 (1) 

In order to use the model, available data must be 

converted from two different time units into one 

calendar day’s unit. For next do, interval, threshold, 

and duration data of inspection tasks are converted 

into the following equations (2), (4), (6), and (8), 

consecutively. For next do, interval and threshold 

data of CAMP tasks are converted by the following 

equations (3), (5) and (7), respectively. 
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Those indexes and converted variables are used to 

determine the maximum utilization of an aircraft by 

following the equation below. 

 

max Z = 
∑ (ct+1 - ct)𝑡 ∈ T̅

cT+1+mT
 (9) 

∑ xi,t
𝑖∈𝐼̅

 ≥ 1, 𝑡 ∀ �̅� (10) 

 ∑ y
r,t

𝑟∈�̅�
≥ 1, 𝑡 ∀ �̅� (11) 

𝑛𝑐𝑥𝑖,(𝑡+1) − 𝑛𝑐𝑥𝑖,𝑡 ≥ 0, 𝑖 ∀ 𝐼 ̅, 𝑡 ∀ �̅� (12) 

𝑛𝑐𝑦𝑟,(𝑡+1) − 𝑛𝑐𝑦𝑟,𝑡 ≥ 0, 𝑟 ∀ �̅� , 𝑡 ∀ �̅� (13) 

mt - ∑ (xi,tdcxi)
𝑖∈𝐼̅

 = 0, 𝑡 ∀ �̅� (14) 

ndxi,t - xi,t(ct+1 + icxi + mt) = 0, i ∀ I̅ , t ∀ T̅ (15) 

ntxi,t - (1 - xi,t)(ncxi,t+mt) = 0, i ∀ I̅ , t ∀ T̅ (16) 

ncxi,(t+1) – (ndxi,t+ntxi,t) = 0, i ∀ I̅, t ∀T̅ (17) 

ndy
r,t

 - y
r,t

(ct+1+icy
r
+mt) = 0, r ∀ R̅, t ∀ T̅ (18) 

nty
r,t

 - (1- y
r,t

) (ncy
r,t

+mt) = 0, r ∀ R̅, t ∀ T̅ (19) 

ncy
r,(t+1) - (ndxi,t+ntxi,t) = 0, r ∀ R̅, t ∀ T̅ (20) 

xi,tncxi,t - ct+1 ≥ 0, i ∀ I̅, t ∀ T̅ (21) 

y
r,t
ncy

r,t
 - ct+1 ≥ 0, r ∀ R̅, t ∀ T̅ (22) 

ncxi,(t+1) - tcxi ≥ 0, i ∀ I̅, t ∀ T̅ (23) 

ncy
r,(t+1) - tcy

r
 ≥ 0, r ∀ R̅, t ∀ T̅ (24) 

c1 = 0 (25) 

𝑥𝑖,𝑡 , 𝑦𝑟,𝑡 ∈ {0,1} (26) 

 

Equation (9) is the objective function of the 

model. Equation (10) and (11) ensure the decision has 

at least one task to be done in each period for 

inspection task and CAMP task, respectively. 

Equation (12) and (13) ensure generated next do data 

in 𝑡 + 1 period always have greater or equal value 

with next do data in 𝑡 period for inspection task and 

CAMP task, respectively. Equation (14) calculates 

total maintenance duration equal to all maintenance 

durations of inspection task that has to be done in 𝑡 

period. Equation (17) and (20) calculate next do data 

of 𝑡 + 1 both of inspection task and CAMP task, 

respectively. Equation (17) and (20) could be 

calculated by equation (15) and (18) for calculating 

the difference value when the task is being done in 𝑡 

period, while equation (16) and (19) for calculating 

the difference value when the task is not being done 

in 𝑡 period. Equation (21) and (22) ensure next do data 

of 𝑡 period always have greater or equal value with 

current days of 𝑡 + 1 period for inspection task and 

CAMP task, respectively. Equation (23) and (24) 

ensure next do data for 𝑡 + 1 period always have 

greater or equal to threshold data for inspection task 

and CAMP task, respectively. Equation (25) ensures 

the current days of period 1 have a value equal to 0. 

Equation (26) ensures the decision variable for both 
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the inspection task, and the CAMP task is filled with 

binary value. 

3 MODEL DEVELOPMENT 

In this research, we focused on solving the given 

problem using two metaheuristic methods, pure PSO 

and hybrid PSO-GRASP. In this following sub-

section, the PSO and GRASP will be first presented, 

and then their combination to create the PSO-GRASP 

is discussed.  

3.1 Particle Swarm Optimization 

PSO is a swarm intelligent metaheuristic method 

based on how a flock of birds tracks down their prey 

(Santosa & Ai, 2017). Every bird will fly to the best 

location based on all information shared by other 

birds in that flock, including itself. To reach the best 

objective function for each iteration, each individual 

has to share their objective function value and 

conclude all information into one best. In order to 

make an individual move to its targeted value, the 

individual velocity needs to be updated as in the 

following equations (27) and (28).  

 

vp,(a+1)=ωvp,a+b1r1 (pbest
p,a
-xp,a) 

+b2r2(gbest
a
-xp,a) 

(27) 

𝑥𝑝,(𝑎+1) = 𝑥𝑝,𝑎 + 𝑣𝑝,(𝑎+1) (28) 

 

Both equations consist of the following index: 

▪ Set �̅� individual or population {1, 2, …, P}  

▪ Set A̅ iteration {1, 2, …, I} 
 

Both equations use the following related 

variables: 

▪ vp, a: velocity of p population of an iteration 

▪ 𝑥𝑝, a: generated solution in p population of an 

iteration 

▪ pbest
p,

 a: best-generated solution of p 

population in an iteration 

▪ gbest
a
 : best-generated solution of all 

population in an iteration 

▪ r2 : randomized number with 

decimal value from 0 to 1 

In equation (27), there are some parameters that 

can be set up manually, which are: 

▪ b1 : ratio to take the best-generated 

solution of each population that would affect 

the velocity variable  

▪ b2 : ratio to take the best-generated 

solution of all population that would affect 

velocity variable  

▪ ω : ratio to take an earlier iteration of 

generated solution that would affect velocity 

variable 
 

In equation (27), we will calculate velocity of 𝑎 +
1 iteration by determining a certain portion of 

velocity in an earlier iteration, a certain portion of the 

gap between the generated solution of the last 

iteration with best generated solution of p population, 

and a certain portion of the gap between the generated 

solution of the last iteration with the best generated 

solution of all population. Using those velocity 

values, we can update the new position of each 

individual using equation (28) by adding the 

generated solution of the last iteration with calculated 

velocity from equation (27). 

3.2 Greedy Randomized Adaptive 
Search Procedures (GRASP) 

GRASP is a metaheuristic method designed for 

helping other metaheuristic methods to find an 

optimal solution efficiently. This method was 

developed by Feo dan Resende (1995) and had two 

phases, the construction phase, and the local search 

phase. Both phases are developed by specifically 

identifying the decision variable of the problem and 

constructing the encoded form of those decision 

variables. 

Table 1: Decision Variable Transformed Form 

 Per 1 Per 2 ... Per T 

𝐼𝑛 − 1 1 0 ... 1 

𝐼𝑛 − 2 0 1 ... 1 

… ... ... ... ... 

𝐼𝑛 − 𝐼 0 0 ... 0 

𝐶𝑎 − 1 0 0 ... 1 

𝐶𝑎 − 2 1 1 ... 1 

… ... ... ... ... 

𝐶𝑎 − 𝑅 1 0 ... 1 

 

In this research, decision variables of the problem 

have two-dimensional matrix; 𝑥𝑖,𝑡, and 𝑦𝑟,𝑡 , which 

represents each inspection and CAMP task, 

respectively, at each period. Metaheuristic methods 

must generate those variables, as illustrated in Table 

1. Using this form, the metaheuristic method 

sometimes may generate a solution that violates some 

constraints of the problem. To avoid generating an 

invalid solution, GRASP is implemented at both 

metaheuristic methods and creates a new decision 
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variable form filled with inspection task ID, as 

illustrated in Table 2. 

Table 2: Decision Variable with GRASP Transformed 

Form 

 Per 1 Per 2 ... Per T 

𝐼𝑛 − 𝑟𝑒𝑓 3 4 ... 2 

3.3 Hybrid PSO-GRASP 

PSO method must generate data by filling the form as 

described in the previous section with the decimal 

value from 0 to 1, as illustrated in Table 3. Those 

decimal values are converted into inspection task ID 

by finding the nearest multiplication of decimal value 

with 𝐼. For example, if 𝐼 = 6, the generated form in 

Table 3 will be transformed, as illustrated in Table 2.  

Table 3: Decision Variable with GRASP Form 

 Per 1 Per 2 ... Per T 

In-ref 0.439 0.72 ... 0.272 

 

To convert generated decision variables with 

GRASP, as in Table 2, into the original decision 

variable form as in Table 3, we use the local search 

method, which satisfies equation (29) and (30). Both 

equations ensure the selected inspection and CAMP 

tasks that have to be done next must-have lower or are 

equal to the referred inspection task’s next values. 

 
ncxreft,t - xi,tncxi,t ≥ 0 (29) 
ncxreft,t - yr,tncyr,t

 ≥ 0 (30) 

3.4 Proposed Model 

The proposed algorithm of Hybrid PSO-GRASP is 

depicted in Figure 1. First, we generate the referred 

inspection task using a random number generator and 

convert them using the GRASP method for the first 

iteration, using PSO-GRASP later. 

For the iteration, until the maximum iteration 

number is reached, we update the max time of each 

maintenance period in each generated solution, then 

construct all inspection and CAMP tasks that need to 

be ordered. Using the ordered task, we compute the 

maintenance duration needed. Using the ordered task 

and the maintenance duration in each period, we 

calculate when inspection and CAMP tasks should be 

done and then update the utilization of the aircraft. 

Using the ordered tasks, we validate the generated 

solution each period. Each valid solution will be 

marked and will be used to calculate the objective 

function value of the generated solution. 

The objective function value is calculated from 

utilization value for a valid solution in each period 

and penalty value for an invalid solution in each 

period. Each period’s penalty value has a different 

number. Increased period value means decreased 

penalty value, and the highest penalty value will be in 

the first period. Penalty value will be calculated  
 

Generate referred inspection tasks. 

For ( from p ← 1 to p ← P̅ )   

 For ( from t ← 1 to t ←T̅ ) 

  Update the max period of time. 

  For ( from i ← 1 to i ← I ̅ ) 
   Construct task order of all inspection tasks. 

  End 

  For ( from r ← 1 to r ← R̅ ) 

   Construct task order of all CAMP tasks. 

  End 

  Update maintenance duration. 

  Update next do value of the next period. 

  Update utilization of the aircraft. 

  Validate the generated solution. 

 End 

 Compute the objective function value for each 

solution population. 

End 

Save the maximum objective value of each generated 

population 

Figure 1: Pseudocode of PSO-GRASP Model 

Following equation (31). When we have a 

maximum period T̅  equal to 30 and the generated 

solution has an invalid solution at a few period t = 

{1, 3, 15}, then we have penalty
1
 equal to 3000, 

penalty
3
 equal to 2800, penalty

15
 equal to 1600. From 

those values, we can conclude that the generated 

solution has a total penalty equal to 7400. 

 
penaltyt - 100(T̅ - t + 1) = 0 (31) 

 

The objective function value is calculated using 

calculated utilization and penalty value following 

equation (32). When the generated solution in p 

population calculates its objective function, the 

current value of the objective function will be added 

by summation of utilization time in each period that 

is marked as valid solution divided by next do time at 

last period T̅ added by maintenance duration of last 

period T̅ as described in equation (9). When the 

generated solution in p population and t period are 

marked as invalid solution, the current value of the 

objective function will be subtracted by penalty 

value, as described in equation (31).
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Table 4: The Results by Varying Planning Horizon and Dataset Size Sensitivity Testing 

ID 
Plan 

Horizon 
Group 

PSO PSO-GRASP 

Last Maint. 

Finish Time 
Obj Value 

CPU 

Time 

Last Maint. 

Finish Time 

Obj 

Value 

CPU 

Time 

Test01 

730 

G1 453 -277 600.39 782 78.14 110.45 

Test02 G2 267 -3650 600.64 781 78.11 181.19 

Test03 G3 1008 -11680 600.25 1100 49 258.64 

Test04 G4 807 -20440 600.15 923 48.43 390.59 

Test05 

1460 

G1 639 -821 600.69 1776 77.03 197.65 

Test06 G2 480 -2920 600.19 1673 77.35 337.11 

Test07 G3 1839 -154760 600.85 2361 46.3 508.42 

Test08 G4 1804 -143080 600.93 2362 43.4 744.06 

Test09 

2190 

G1 856 -26280 601.53 2819 76.84 289.77 

Test10 G2 759 -56940 600.53 2669 76.89 496.17 

Test11 G3 2636 -575970 600.15 4171 41.99 600.32 

Test12 G4 2528 -917610 600.93 4419 41.46 600.52 

of value
p

 - 
∑ vldp,t(𝑐𝑡+1  −  𝑐𝑡)𝑡 ∈ �̅�

cT+1+mT
 

+ penalty
t
(1 − vldp,t) = 0 

(32) 

4 EXPERIMENTAL DESIGN 

This research evaluates the performance of both the 

non-hybridized PSO method and PSO that have been 

hybridized with GRASP with four sets of randomized 

problems’ data. These instances are generated on a 

different scale, from small scale to large scale, with 

five and 20 inspection tasks, combined with 500 and 

1000 CAMP tasks. The combination of each dataset 

is described in Table 5. For example, Group G1 has a 

combination of five inspection tasks and 500 CAMP 

tasks. Moreover, PSO has three parameters that could 

be set up manually, consisting of 𝑐1, 𝑐2, and 𝜔. In this 

experiment, we use the basic values of PSO 

parameters, which are  𝑐1 = 𝑐2 = 𝜔 = 1.  

Table 5: Dataset Instance 

Group Inspection Task CAMP Task 

G1 5 500 

G2 5 1000 

G3 20 500 

G4 20 1000 

5 COMPUTATIONAL RESULT 

Both PSO and PSO-GRASP were executed until the 

objective value for the generated solution was labeled 

as a valid solution and reached the maximum iteration 

parameter. The other set condition was that the 

objective value is invalid, and the iteration process is 

stopped when CPU computational time is greater than 

or equal to 600 seconds. Using the parameters that 

have been set up before, we do two kinds of 

experiments. The first experiment is to do sensitivity 

testing on both varying planning horizon parameters 

and the size of the dataset. The second experiment is 

to do sensitivity testing on both iteration and 

population parameters. 

The first experimental results are shown in Table 

4. Increasing the planning horizon of the test has an 

impact on increasing CPU time in both PSO and PSO-

GRASP methods. In the example for dataset G1 using 

PSO-GRASP, for planning horizon 730 days has 

110.45 seconds of computational time, while for 

planning horizon 1460 days, the CPU time increases 

to 197.65 seconds, and for planning horizon, 2190 

days CPU time usage increased to 289.77. For the 

other method, PSO used at least 600 seconds CPU 

time in all conditions. PSO always generates invalid 

solutions because, in every test, the objective values 

of PSO always have negative values, as we have 

explained in sub-section 3.4 so that the values are 

invalid solutions.  

Experiments by using PSO-GRASP on the larger 

size as well as longer planning horizon datasets use 

more CPU time, either in inspection task number or 

CAMP task number. From all tests in this first 

experiment, 83.3% of the results show that PSO-

GRASP uses lower CPU time compared with the 

PSO, while the other 16.6% have the same average 

CPU time as PSO.  

Increasing the planning horizon of the tests can 

decrease objective function values. In the example for 

dataset G1 using PSO-GRASP, 730 days of planning 

horizon has an objective function value Equal to 

78.14, 1460 days has 77.03, and 2190 days have 
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76.84. The same condition also applies for a larger 

size dataset, which mostly generates less objective 

function value, either in inspection task number or 

CAMP task number, both using PSO-GRASP. For 

1460-day planning horizon, using PSO-GRASP, 

dataset G1 until G4 has objective function values 

equal to 77.03, 77.35, 46.3, and 43.4, consecutively. 

Based on these results, it can be concluded that 

increasing the number of CAMP tasks does not 

significantly change the objective function values 

Table 6: The Results by Varying the Number of Iteration and Population Sensitivity Testing 

ID 

Iteration / 

Population 

Limitation 

Group 

PSO PSO-GRASP 

Last 

Maint. 

Finish 

Time 

Obj 

Value 
% Gap 

CPU 

Time 

Last 

Maint. 

Finish 

Time 

Obj 

Value 
% Gap 

CPU 

Time 

Test13 1000/100 

G3 

425 -305 - 600.44 1051 47.48 - 240.68 

Test14 1000/200 467 -263 13.77% 600.32 861 53.08 11.79 475.16 

Test15 2000/100 474 -256 16.07% 600.59 1146 49.92 5.14 481.61 

Test16 2000/200 426 -304 0.33% 600.45 914 54.6 15.00 930.88 

The second experiment explored only Dataset G3 

with 730 days planning horizon, as shown in Table 6, 

by varying the number of iterations and population 

Test13 uses 1000 iterations and 100 populations as 

the baseline. Test 14 uses the same number of 

iterations as the one in Test 13; however, the number 

of populations of Test 14 is double the one of Test 13. 

Test 15 and Test 16 have the same number of 

iterations, 2000, but they differ in the number 

population.  

Increasing the number of population and the 

number of iteration parameters escalates the CPU 

time and mostly increases the objective function 

values in both methods. In PSO-GRASP, doubling 

the number of populations significantly increased the 

objective function values with a 15% gap rather than 

doubling the number of iteration parameters with only 

a 5.14% gap.  

Using PSO, increasing the number of iteration 

parameters significantly increases the objective 

function value with a 16.07% gap rather than that 

increasing the population parameter with a 13.77% 

gap and that increasing both iteration and population 

parameters with 0.33% gap. Even though the number 

of iterations and population parameters may affect 

PSO performance, we cannot make any accurate 

conclusion of CPU time usage because the objective 

function generated by the PSO method is always 

marked as an invalid solution and cannot be 

implemented to the real system. 

6 CONCLUSIONS 

In this paper, we presented a MILP model for 

optimizing aircraft maintenance scheduling 

problems, considering the inspection check task and 

CAMP task. Both tasks have to be considered by the 

airline because it could affect the airworthiness of 

their aircraft. Because of the NP-Hard nature of the 

problem, we developed PSO-GRASP metaheuristic 

methods to solve this problem in a reasonable time. 

We tested the model using four randomly generated 

datasets. We compared the metaheuristic models, 

PSO, and hybrid PSO-GRASP, based on objective 

function values and their CPU computational times. 

The developed model could solve both small and 

large-scale datasets. Using a larger scale dataset, the 

result showed that the model could generate small 

objective function value, but it needs longer CPU 

time when tested in a similar parameter setting. 

Statistical analysis shows that the PSO-GRASP 

model is able to provide better performance than the 

PSO method without hybridization based on the 

objective function values. PSO cannot even provide a 

valid solution to this problem.  

By using the larger values of the iterative and the 

population parameters, it makes PSO-GRASP work 

better, but, in the PSO, the changes in these 

parameters do not have any impacts on the solutions 

made and still provide an invalid solution. Moreover, 

by using these parameters or other parameters such as 

the planning horizon, the computational times are 

longer both for PSO and PSO-GRASP. 

An interesting topic following this research is to 

develop the exact algorithm, whether using Mixed 

Integer Programming or Non-Linear Programming, 

using either small or larger similar datasets. 

Developing other metaheuristic methods, such as the 

Genetic Algorithm, Tabu Search, or Simulated 

Annealing, is also interesting for the next research 

agenda for solving this aircraft maintenance problem. 
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