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Abstract: Tracking a moving speech source in non-Gaussian noise environments is a challenging problem. A speech 

source tracking method based on the particle filter (PF) and the generalized correntropy function (GCTF) in 

non-Gaussian noise and reverberant environments is proposed in the paper. Multiple TDOAs are estimated 

by the GCTF and the multiple-hypothesis likelihood is calculated as weights for the PF. Next, predict the 

particles from the Langevin model for the PF. Finally, the global position of moving speech source is 

estimated in term of representation of weighted particles. Simulation results demonstrate the vadility of the 

proposed method. 

1 INTRODUCTION 

Tracking a speech source accurately in reverberant 

environments is desirable for teleconferencing 

system (B. Kapralos, M. R. M. Jenkin and M. 

Evangelos, 2003), robots (K. Nakadai, et al, 2006), 

and human-machine interaction (T.P. Spexard, M. 

Hanheide, and G. Sagerer, 2007). Acquiring the 

position of the speech source plays an important role 

in speech signal processing region. The 

environmental noise and reverberation of the speech 

signal are two challenging problems for speech 

source tracking. In conventional speech source 

localization and tracking approaches (E. T. Roig, F. 

Jacobsen and E. F. Grande, 2010), (M. F. Fallon, 

and S. J. Godsill, 2012), they only depend on the 

current observations to estimate the positions of the 

speech source. To improve tracking performance, 

Bayesian filtering algorithms are used to track the 

moving speech source, which employs not only 

current observations but also previous observations. 

The particle filter (PF) is an approximation of the 

optimal sequential Bayesian estimation via Monte 

Carlo simulations for non-linear and non-Gaussian 

system. The PF incorporated multiple-hypothesis 

model was applied to the speaker tracking problem 

based upon TDOA observations (abbreviated to PF) 

(D. B. Ward, E. A. Lehmann and R. C. Williamson, 

2003). A novel framework of PF based on 

information theory was discussed for speaker 

tracking (F. Talantzis, 2010). A non-concurrent 

multiple talkers tracking based on extended Kalman 

particle filtering (EKPF) was proposed (X. Zhong, 

and J. R. Hopgood, 2014). In (X. Zhong, A. 

Mohammadi, et al, 2013), a distributed particle filter 

(DPF) was proposed in speaker tracking in a 

distributed microphone network, in which each node 

runs a local PF for local posteriors fused to obtain a 

global posterior probability (abbreviated to DPF-

EKF). In (Q. Zhang, Z. Chen, and F. Yin, 2016), a 

distributed marginalized auxiliary particle filter was 

proposed for speaker tracking. 

For above-mentioned speech source tracking 

methods, the background noise is assumed to be 

Gaussian noise. However, the practical background 

noise may be non-Gaussian noise such as knock on 

the door, sudden phone ringing and a fit of couching, 

which is impulsive in essence and would lead to 

poor tracking performance for these speech source 

methods. To remedy impacts of non-Gaussian 

background noise on tracking performance, a PF 

based speaker tracking method under non-Gaussian 

noise environments is proposed. First, the symmetric 

alpha-stable (SαS) distributions (M. Shao and C. L. 

Nikias, 1993) are employed to model the non-

Gaussian noise and TDOA observations of speech 

signals received between a microphone pair at each 

node are approximated via a generalized correntropy 

function (GCTF) (W. Liu, P.P. Pokharel, et al,  

2007). Next, the Langevin model (D. B. Ward, E. A. 

Lehmann and R. C. Williamson, 2003) is used to 
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model the time-varying states of a moving speech 

source to predict the particles and a multiple-

hypothesis model is introduced to calculate the 

likelihood function as weights corresponding to the 

particles of the PF. Finally, the global time-varying 

position estimations at each time step are obtained in 

terms of weighted particles. 

2 FUNDAMENTAL ALGORITHM 

2.1 Particle Filter for Tracking 
Problem 

Considering time-dependent state vector kx in a 

distributed sensor network, where k being a discrete 

time index. The state-space model of the system and 

observation models at node j are given as (D. B. 

Ward, et al, 2003). 
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Where kz is observation vector of kx , kf and kh

are the system dynamics function and the 

observation function, respectively, ku and kv are the 

process noise and observation noise with known 

probability density function, respectively. 

The Bayesian filter for tracking problem is to 

calculate the posterior probability density 1:( )k kp x z . 

Particle filter estimates the Bayesian recursion via 

the Monte Carlo simulation and works in the 

principle of sequential importance resampling (SIR) 

algorithm. In the prediction step, N particles  
1

N
n
kX

are drawn from a suitable chosen proposal function

1: 1 1:( , )n
k k kq x X z at time k. In the update step, the 

weight n
kw corresponding to the nth particle n

kX  is 

calculated based on the prior transition density as the 

proposal function, i.e., 

1: 1 1: 1( , ) ( ),n n
k k k k kq p x X z x X  written as 
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Where ( )n
k kp z X  is likelihood function.  

The PF is to represent posterior probability

1:( )k kp x z  by a set 
1

,
N

n n
k k

n
w


X , given as  
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Where ( )  denotes the multi-dimensional Dirac 

delta function. Finally, the MMSE estimate of the 

state kx is estimated as 
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2.2 TDOA Estimation under non-
Gaussian Environments 

For non-Gaussian noise, symmetric alpha-stable 

(SαS) processes can model the impulsive noise 

better than other processes (M. Shao and C. L. 

Nikias, 1993), (W. Liu, P.P. Pokharel, et al, 2007) 

which does not have finite second order statistics 

and a closed-form probability density function 

unfortunately. Normally, alpha-stable processes can 

be described with characteristic functions, written as   
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Where (0,2   is the characteristic exponent. 

When speech source signals received by a pair of 

microphones is polluted by non-Gaussian noise, 

accurate TDOA estimations is difficult to be 

obtained via typical TDOA estimation methods for 

example generalized cross-correlation (GCC) (C. 

Knapp, and G. C. Carter, 1976). To solve the 

problem, a generalized correntropy function (GCTF) 

(W. Liu, P.P. Pokharel, et al, 2007) based TDOA 

estimation method is presented for speech source 

tracking under the non-Gaussian noise environment. 

The GCTF ( )j

k jD   at node j is defined as  
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Where ,1( )js k and ,2 ( )js k denote the two signals 

received at two microphones of node j,  E  

represents mathematical expectation operation, ( )  

is the Gaussian kernel and ( 0)    is the kernel 

size.  

The TDOA observations at node j can be 

estimated by a GCTF estimator   
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Where maxj denotes the maximal probable 

value of the TDOA at node j.  

Considering the noise and reverberation, 

generally, mN TDOAs selected from first mN  local 

maxima of ( )j
kD  constitute the TDOA observation 

vector ,1 ,2 ,
ˆ ˆ ˆ, , ,

m

T
j j j j
k k k k N

    
 

z at node j (D. B. 

Ward, E. A. Lehmann and R. C. Williamson, 2003).  

3 SPEECH SOURCE TRACKING 

UNDER NON-GAUSSIAN 

ENVIRONMENTS 

3.1 Speech Source Dynamic Model 

The Langevin model is simple and has worked well 

in practice to represent the time-varying locations of 

a speech source moving trajectory which is denoted 

as (D. B. Ward, E. A. Lehmann and R. C. 

Williamson, 2003), (Q. Zhang, Z. Chen, and F. Yin, 

2016). 
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Where [ , , , ]T

k k k k kx y x yx denotes the speech 

source’s state at time step k in the Cartesian 

coordinates, T is the discrete time interval, k
 is 

the time-uncorrelated Gaussian white noise vector, 

and the parameters a and b are defined as 

 

2exp( ) 1a T b v a    
            (11) 

 

Where β is the rate constant, and v is the root-

mean-square velocity. 

3.2 Multiple-Hypothesis Likelihood 
Model 

Consider the local likelihood function ( )j
k k

p z x  at 

node j based on mN TDOA observations in z
j
k . Due 

to noise and reverberation, among mN TDOAs at 

most one associated with the true speech source, 

whereas the others correspond to the spurious speech 

source (X. Zhong, and J. R. Hopgood, 2014). Thus, 

the multiple-hypothesis likelihood model is 

employed as the local likelihood function or local 

weight for particles at node j, written as (X. Zhong, 

and J. R. Hopgood, 2014). 
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Where 0q is the prior probability that none of 

mN TDOA observations corresponds to the true 

speech source, 1,i mq i N（ ）  is the prior 

probability that only the ith TDOA corresponds to 

the true source,
0

1
mN

i
i

q


 and ( )  denotes the 

Gaussian distribution. 

3.3 Speech Source Tracking Method 
Based on PF and GCTF 

Under non-Gaussian noise environments, the PF is 

employed for speech source tracking. Assume that 

observation vectors ( 1,2, , )j
k j Jz  in the 

distributed microphone network with J nodes are 

conditionally independent given a particle n
kX . Then 

the global likelihood function ( )n
k kp z X  in Eq. (2) 

can be factorized into all local likelihood functions

( )j n
k kp z X  in Eq. (12), written as 

 

1
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J

n j n
k k k k
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Then a global MMSE estimate x̂k of the speech 

source state xk can be obtained from Eq. (4). 

The speech source tracking method based on PF 

and GCTF under non-Gaussian noise environments 
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is described as follows (abbreviated as PF-GCTF). 

Firstly, the TDOA observations of speech signals 

with non-Gaussian noise received by microphone 

pair are estimated from the GCTF according to Eq. 

(7). Taking into account the reverberation, multiple 

TDOA candidates are selected as observation vector 

at each node and based on them the multiple-

hypothesis likelihood model is performed to 

calculate the local likelihood function. Next, predict 

the particles according to the dynamic model in Eq. 

(10), and global likelihood functions, i.e., weights, 

corresponding to the particles are computed from Eq. 

(13). Finally, a global position estimate of the 

speech source state can be obtained in form of 

weighted particles in Eq. (4). 

4 SIMULATIONS AND 

DISCUSSIONS 

4.1 Simulation Setup 

To verify the performance of a speech source 

tracking method, the Root Mean Square Error 

(RMSE) is given as 
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Where ˆ
kx

l and 
kx

l represent the position estimate 

and ground true position at time k, respectively, M 

denotes the number of Monte Carlo simulations. 

In the SαS noise environment, the generalized 

signal noise ratio (GSNR) is used to describe the 

different non-Gaussian environments 
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Where 2
s  is the signal variance and  is the 

dispersion parameter of the SαS noise.  

In simulation experiments, a female speech 

source with the length about 4s and 16 kHz sampling 

frequency moves along a semicircle trajectory in a 

room which size is 5m 5m 3m  , and microphone 

network has been constructed in advance with J=12 

pairs of omni-direction microphones shown in Fig.1. 

The heights of microphones and speech source are 

set 1.5 m. The spacing distance of two microphones 

in each node is 0.6 m. The speech signal is split into 

120 frames and each frame length is 32ms. The 

signal received by each microphone is captured by 

Image method (E. A. Lehmann, A. M. Johansson, et 

al., 2007), setting the size of room, reverberation 

time T60 and the microphone coordinates, then 

different impulsive noise is added to each 

microphone, generating different GSNRs and 

reverberations signals. 

The simulation parameters are set as follows. For 

the Langevin model, 110s and 11msv  ; for the 

PF, the number of particles is N =500 and the initial 

states of speech source state are considered 

randomly; for the TDOAs, the number of the 

TDOAs is Nm=4; for the GCTF, the kernel size  is 

set as 0.5; for the multi-hypothesis model, 0q =0.25 

and the observations standard deviation is 5=5 10 . 

 

Figure 1. Speech source trajectory and layout of the 12 

microphone pairs in X-Y plane. 

4.2 Result Discussions  

To evaluate the proposed method (PF-GCTF), some 

comparative experiments with the existing speech 

source tracking methods are conducted, i.e., the PF 

(D. B. Ward, E. A. Lehmann and R. C. Williamson, 

2003) and the DPF-EKF (X. Zhong, A. Mohammadi, 

et al, 2013). These methods are evaluated in the 

RMSE results in Eq. (14), and the tracking results 

are averaged over 50 Monte Carlo simulations based 

on the same speech signal and the simulation setup. 

4.2.1 Speech Source Tracking Results with 
Different Reverberation Time T60 

Table 1 shows that the RMSE results of all methods 

with different reverberation time T60 from 100 ms 

to 300 ms, when GSNR=6 dB and α=0.8. It can be 

observed that the RMSE values of all methods 

become larger when reverberation gets heavier. 

Obviously, the DPF-EKF almost cannot track the 

moving speech source under different reverberations 

and the PF method has better tracking performance 
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only when T60 < 200 ms. It can be seen from Table 

1 that the tracking performance of the PF-GCTF 

method is better than the PF and DPF-EKF with 

smaller RMSE values. It illustrates that the proposed 

method is robust to the environmental reverberations.   

Table 1. Average RMSE results versus different 

reverberation times T60. 

T60 

(ms) 
PF-GCTF (m) PF (m) 

DPF-

EKF (m) 

100 0.1062 0.1614 1.405 

150 0.0921 0.1792 1.4544 

200 0.1101 0.3987 1.7067 

250 0.3385 0.63 1.8741 

300 0.3974 0.9043 1.9738 

4.2.2 Speech Source Tracking Results with 
Different GSNR 

Fig.2 illustrates that the RMSE results of all methods 

with different GSNRs from -4 dB to 8 dB, when the 

reverberation time T60 = 100 ms and α=0.8. It can 

be seen from Fig.2 that with the rise of the GSNR 

the RMSE values of all methods become smaller. 

We can find that the tracking performance of the 

DPF-EKF is the worst with larger RMSE values and 

the PF method owns better tracking accuracy only 

when GSNR > 6 dB. However, the proposed method 

can successfully track the moving speech source 

under different GSNR conditions with smaller 

RMSE values. It implies that the PF-GCTF is a valid 

speech source method for non-Gaussian background 

noise of different GSNRs. 

4.2.3 Speech Source Tracking Results with 
Different Characteristic Exponents α 

The RMSE results of all methods with different 

characteristic exponents from 0.6 to 1.6 are 

illustrated in Table 2 when T60 = 100 ms and 

GSNR=0 dB. We can find that the PF and DPF-EKF 

have better tracking accuracies only when α > 1. 

Nevertheless, the RMSE values of the proposed 

method in Table 2 are smaller when 0.6 < α < 1.6 

which implies the PF-GCTF is an effective speech 

source tracking method under non-Gaussian noise 

environments. 

 

Figure 2. Average RMSE results versus different GSNRs. 

Table 2. Average RMSE results versus different 

characteristic exponents α. 

α PF-GCTF (m)  PF (m) 
DPF-EKF 

(m) 

0.6 0.1565 2.2503 2.1875 

0.8 0.1301 1.4484 1.9428 

1 0.0967 0.1552 1.3202 

1.2 0.0892 0.0853 0.2833 

1.4 0.0846 0.0672 0.1517 

1.6 0.09 0.0641 0.1302 

5 CONCLUSIONS 

In the paper, a tracking method based on PF and 

GTPF is proposed to estimate the positions of the 

moving speech source under non-Gaussian noise and 

reverberant environments. Since the generalized 

correntropy function is employed to estimate 

TDOAs, the proposed method based on PF can track 

a moving speech source successfully in non-

Gaussian noise environments. Simulation results 

illustrate that the PF-GCTF outperforms other 

comparative methods and is robust against non-

Gaussian background noise and room  

reverberations. 
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