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Abstract: The detection probability of the radar of the vehicle target tracking system is often less than 1 during driving 

on urban roads, and the measurement data loss problem may occur. In this paper, the stability of the vehicle 

target tracking system is studied and the sufficient conditions are given for the stability of the mean-square 

exponent under incomplete measurement conditions. A suboptimal estimation algorithm for vehicle target 

tracking motion parameters under incomplete measurement conditions is given when the detection 

probability is known. The simulation results show that the proposed filtering algorithm is effective. 

1 INTRODUCTION 

With the development of social economy, the 

number of vehicles has increased rapidly, and the 

problem of road traffic safety has become 

increasingly prominent, which has become a global 

problem. A large number of casualties and property 

losses caused by traffic accidents every year in the 

world, Vehicle accident statistics show that the car 

rear-end accident is one of the most dangerous road 

traffic and one of the most dangerous accidents in 

the vehicle operation. And 91% of the rear-end 

collision accidents are caused by the driver's 

inattention. If the driver is reminded 0.5s in advance, 

the rear-end accident avoidance rate can reduced to 

90%. The main threat to the driver is the other 

vehicles on the road. The purpose of car-assisted 

driving is to alert the driver to the driving 

environment and possible collisions with other 

vehicles. Therefore, real-time, accurate tracking and 

prediction of other vehicles on the road surface is 

required. In order to estimate the vehicle target 

motion parameters, it is first necessary to extract the 

dynamic target information from the road traffic 

scene, and then use the filtering algorithm to track 

the target vehicle to obtain the target operating 

parameters. All of this information can be measured 

by tracking the radar installed on the vehicle, but in 

complex traffic scenarios, the detection probability 

of the system is usually less than 1 due to obstacle 

obstruction, noise working environment and 

detection equipment failure, etc., so that the 

corresponding problem becomes an estimation 

problem with incomplete measurement. (SinopoliB, 

et.al, 2004) studied the critical detection probability 

problem of filter convergence under intermittent 

measurement, and the upper and lower bounds of the 

critical detection probability were obtained. BoersY 

et al. (Boers Y, et.al, 2006; Y. Boers, et.al, 2006; 

Fayad F, et.al, 2007) studied the modified Riccati 

equation and pointed out that the modified Riccati 

equation is the upper bound of the ideal estimated 

variance. The upper and lower bounds of the 

accuracy of the target tracking with a detection 

probability less than 1 are studied. In (Hongli Dong, 

et.al, 2010), variance-constrained Filtering for a 

class of H∞ nonlinear time-varying systems with 

multiple missing measurements was studied. These 

have laid a good foundation for further research on 

filtering problems under incomplete measurement. 

The optimal filter based on a certain performance 

index is often not easy to establish In the actual 

vehicle target tracking system, therefore, some 

suboptimal filtering methods need to be found. The 

satisfactory filtering based on the covariance design 

method is based on the set of expected performance 

indicators composed of multiple performance 

indicators which meet the actual needs of the project 

as the objective function (Hongli Dong, et.al, 2010; 

Roland Hostettler and Petar M.D, 2015; X. Zhong, 

A, et.al, 2012; Sujuan Chen, et.al, 2012). 

Satisfactory filtering refers to designing a filter with 

a larger expected choice under the constraint 
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constraint of a given error upper bound constraint. 

The given variance constraint is not necessarily the 

minimum variance, but can make each state variance 

satisfy the given variance constraint. Reference 

(Sujuan CHEN, et.al, 2012) studied the allowable 

sampling frequency based on the variance constraint 

of incomplete measurement. 

From the above literatures, there are not many 

studies on the index constraint filtering problem 

under incomplete measurement. In this paper, a 

binary Bernoulli random variable is used to 

represent the data loss, and the sufficient conditions 

for the mean square exponential stability under the 

statistical significance of the system are given. A 

sub-optimal estimation algorithm with the given 

detection probability is given, so that the steady state 

value of the estimated error variance of each state 

component of the system is not greater than the 

respective predetermined variance constraint values. 

The rest of the paper is organized as follows. 

Section 2 establishes the system model and 

introduces the Kalman estimation to deal with the 

proposed problem. Section 3 presents some lemmas 

and corollaries. In Section 4, the suboptimal filter 

algorithm with incomplete measurement is proposed. 

In Section 5, an example of vehicle target parameter 

estimation is given to verify the effectiveness of the 

proposed algorithm. A summary of our conclusions 

is given in Section 6.  

2 SYSTEM MODEL AND 

PROBLEM FORMULATION 

Consider the following discrete-time linear time-

varying state-space system with additive Gaussian 

process and incomplete measurement. The state 

equation is given by 

 

1 .X AX w  k k k                      (1) 

 

Where 

k       discrete-time index; 

 n

k RX  state vector; 

A       matrix of appropriate dimension; 

 n

kw R  zero-mean white Gaussian process 

noise with covariance matrix 
2 0 w . 

The measurement equation with incomplete 

measurement is given by 

 

.Y CX v k k k kd                       (2) 

 

Where  m

ky R  is the measured output at time k, 

and C is a known constant matrix.  m

kv R  is zero-

mean white Gaussian measurement noise 

independent of kw with zero mean and covariance 

matrices 
2 0 v . The initial condition 

0 0(0, )X N P , is uncorrelated with both kw and kv . 

The stochastic kd R which represents the arrival of 

the measurement at time k, is a Bernoulli distributed 

white sequence taking values on 0 and 1, with 

probability distribution: 

 

 prob 1  kd .                        (3) 

 

Consider the following filter for the system (1): 

 

 1 11 1
-k kk k k k k k

ˆ ˆ ˆd .  
 X AX K Y CAX       (4) 

 

Where K is the filter gain to be scheduled. 

Define the estimation error as 1 1 1 1
ˆ

   
 k k k k
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then we can obtain 
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Using the statistics of k k,w v and 0P ,  the 

estimation error covariance obeys the following 

recursion: 
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Since the sequence  kd is random, the equation 

(6) is stochastic and cannot be determined offline. 

Hence, only statistical properties can be deduced. 

Applying the mathematical expectation on 1kd  of 

equation (5), we can make the following error 

equation of statistical significance:  
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Define steady-state estimation error covariance 

as 

 

 T

1 1 1 1: k k k k
k
lim E ,d .    


P e e Y               (8) 

 

Definition 1 (Sujuan CHEN, et.al, 2012). Given 

constants   and K , if the error system is Lyapunov 

progressively stable, then the error system is said to 

be progressively stable in statistical sense, and its 

corresponding steady-state error covariance P  is 

satisfied. 

 
T T

1
ˆ ˆ .P APA JPJ Ξ                   (9) 

 

Where 

 

ˆ : 1 , A A                       (10) 

 

 : , J I KC A                  (11) 

 

 

   

1

T

T

: 1

.







  

  

Ξ Q

I KC Q I KC

KRK

            (12) 

 

In this paper, our objective is to design the filter 

that, the following two problems are satisfied 

simultaneously: 

Q1: the error system (6) of the statistical 

significance is exponentially mean-square stable; 

Q2: the steady-state estimation error variance P

satisfies    2 1 2iii
i , ,...,n P . 

Where  
ii

P  is the diagonal element of P , 
2 i

stands for the pre-specified steady-state estimation 

error variance constraint on the i  state, which is not 

smaller than a lower bound on the minimum 

estimation error variance. 

Definition 2 (Z.Wang, et.al, 2006). If there is a 

constant value 0 (0,1),  , which satisfies the 

following inequality: 

 

   2 2

0

0

k

k

n

E E ,

R ,k R.

 

  

e e

e
              (13) 

 

Then, the system is stable with a mean square 

exponent for all possible measurement values lost. 

3 STABILITY ANLYSIS AND 

THEORETICAL CRLB WITH 

INCOMPLETE 

MEASUREMENT 

Lemma 1 (Sujuan CHEN, et.al, 2012). Given the 

parameters   and K , the following statements are 

equivalent 

 

(1)   1ˆ ˆ ,    A A J J                  (14) 

 

Or 

 T T T T 1ˆ ˆ .    A A J J               (15) 

 

(2) There exists a positive definite matrix   
P 0 , such that 

 
T Tˆ ˆ .J  APA PJ P 0                   (16) 

 

(3) There exists a positive definite matrix   
P 0 , such that 

 
T Tˆ ˆ .  A PA J PJ P 0                   (17) 

 

(4) The system (6) of statistical significance is 

exponentially mean-square stable. 

Where ˆ ,A J  are the same as Definition 1. 

Corollary 1. Given the parameters   and K , if 

the system (6) is mean-square stable and 

 
T T

1 1 1
ˆ ˆ ,  A P A J PJ P 0                   (18) 

 

Holds, then 1P 0 . 

Corollary 2. Given the parameters   and K , if 

there exists a positive definite matrix 2P 0 , such 

that the following inequality 

 
T T

2 2 2 1
ˆ ˆ ,   AP A JP J P Ξ 0              (19) 

 

Holds, then the system (6) is exponential mean-

square stable and satisfies 2P P . 

A common method for evaluating the 

performance of a suboptimal filter is to perform a 

large number of simulations, or to compare with the 

lower bound of the ideal optimal performance, 

which characterizes the limits of the estimated 

performance of the filter. The CRLB is a lower 

bound on the estimation error variance. In the sense 
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of second-order error performance indicators, the 

optimal linear mean square error can be expressed 

by the theoretical CRLB. 

Suppose that ˆ
k k

X  is an unbiased state estimation 

of kX , k k
P is the estimation error variance of k k

X , 

then we obtain 

 

   
T

1

k k kk k k k k k
E    P X X X X J      (20) 

 

Where kJ  is the Fisher Information Matrix. 

CRLB is the inverse of kJ , that is, 
1

k k

C J . From 

the conclusion of the literature (Sujuan CHEN, et.al, 

2012), we know that the CRLB of vehicle tracking 

systems can be expressed as,  
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The system noise and measurement noise of the 

vehicle target state studied in this paper obey the 

Gaussian distribution, so the conditional probability 

density functions of the target motion state and the 

measurement noise satisfy: 
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(23) 

Substituting equation (23) into equation (22), we 

have 

 

11 T 1

12 T 1

21 1

22 1 1
1

,  

,  

,  

k

k

k

k kd







  




 

 

 

D A Q A

D A Q

D Q A

D Q H R H

         (24) 

 

Substituting equation (24) into (21) yields 

 

 

1 1
1 1

1
1 T 1 T 1

k k

k

d  
 


  

  



J Q H R H

Q A J A Q A A Q
         (25) 

 

From the matrix inverse theorem, equation (25) 

can be rewritten as 

 

 
1

1 T 1
1 1 .k k kd


  

   J Q AJ A H R H       (26) 

 

Since the sequence  kd is random, the equation 

(26) is stochastic and cannot be determinedoffline. 

In order to avoid the computation complexity of 

CRLB, we only analyze the statistical properties. 

Define 

 

 .k kEJ J                         (27) 

 

Applying the mathematical expectation on both 

sides of equation (26), we have 

 

 
1

1 T 1
1 .k k


  

   J Q AJ A H R H        (28) 

 

Therefore, the recursion CRLB with incomplete 

measurement can be written in the following way 

 

   
1

11 1 T 1
1 1 .k k kC


   

 
     
 

J Q AJ A H R H (29) 

 

From the equation (29), we know that the 

performance of CRLB is impact of parameters 

, ,Q R .  

4 THE SUBOPTIMAL FILTER 

ALGORITHM WITH 

INCOMPLETE 

MEASUREMENT 

Consider the operator 
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T

2 2

T T

2 2 1

( , ) (1 )

( ) ( ) .





   

   

P K AP A

I KC AP A I KC P Ξ
      (30) 

 

From Corollary 2, we have 

 

2( , ) , P K 0                           (31) 

 

And 2P P , the system is mean-square 

exponential stable. If the  2 1 2i i , ,...,n   are 

selected and satisfy 

 

   2

2 1 2iii
i , ,...,n . P                   (32) 

 

Then     2

2 ( 1 2 )P P   iii ii
i , ,...,n . 

Looking for a set of filter gains which make 

inequality (31) holds and choosing the appropriate 

filter gains, which can estimate target state 

parameters with variance constraints. 

Lemma 2 (Sujuan CHEN, et.al, 2012). If 
1

2( , )A Q is controllable and ( , )A C is detectable, 

then, there exist Z and 0 Y I  which make the 

following LMI (33) holds.  

 

11 12

21 22

( , ) .

  
   

  
Y Z 0                (33) 

 

Where  
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T
21 12

1 1 1
22

,  

1 ( ) ,  

1 ( ) ,

,  

, , , , ;

Y

Z

diag Y Y Q Q R
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Remark 1. Given the error variance constraint 

upper
P , and the following LMI (34) holds. 

 

2


upper
P P                            (34) 

 

Where 
2 ( 1 2 )upper iii

i , ,...,n    P ,

 2 ( )upper ijij
, i j    P P . From the Shur 

complement decomposition, LMI (33) is 

equivalent to LMI (35),  

 

upper 
 

 

P I
0

I Y
                   (35) 

We can get a set of parameters ( )Y,Z  by solving 

a couple LMIs (33) and (35), Since
1

2Y P Z YK
 , , 

then we can get a set of parameters ( )K,P . From 

Corollary 2, the required filter gain can satisfy the 

condition LMI (34)  

The following is the filter design algorithm steps 

with variance constraints: 

(1) Input detection probability  , radar sampling 

interval T , acceleration intensity q , measurement 

noise variance R , and initial state variance 0P . 

(2) 0 0J P , calculate the lower bound of CRLB 

kC . 

(3) According to step 2, obtain the solution crlb
C  

of the steady-state CRLB and take the variance 

constraint upper
P so that it satisfies 

crlb upper
C P . 

(4) Solving the linear matrix inequalities (33) 

and (35), a set of feasible solutions ( )Y,Z  can be 

obtained. Then, the suboptimal gain parameters 

2K P Z  can be obtained. 

(5) Output the filter gain K . 

5 VEHICLE TARGET 

PARAMETER ESTIMATION 

EXAMPLE 

In this section, we present an illustrative example in 

vehicle target parameter estimation to demonstrate 

the effectiveness of the proposed design algorithm. 

Consider the system (1) and (2), the state 

consists of relative position, relative velocity along 

one axis. We can get the relative distance between 

front and rear cars from vehicle radar. Suppose the 

detection probability of radar is  . 

1

0 1
A

 
  
 

T

, 

3 2

2

3 2

2

Q

 
 
 
  

T T

q
T T

 
 1 0C 

, 

The state is defined by:  
T

k k kr rX , with 

initial value  
T

0 100 10 m m / sX  

The sampling interval 0 05T . , the system 

parameters are: 

0.9 ; 0 05T . s ; 
0.1q 

; 
2 20 05 ( ). mR

 

Using the filter algorithm, we can obtain 

 

1 0239 0 0270 1 0043

0 0270 1 0304 0 0763

   
    
   

crlb crlb

. . .
P , K

. . .
      (36) 
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Choosing the following matrix upper
P  as the 

estimation error variances upper bounds, we employ 

Matlab LMI-Toolbox to find the filter parameters 

 

1 0508 0 0542

0 0542 1 0578

 
  
 

upper

. .
P

. .
                   (37) 

 

From the step 4 of the filter algorithm, we can 

obtain the filter gain: 

 

0 5164

0 0521

.

.

 
   

 
K YZ                       (38) 

 

Table 1 shows the filter gains obtained by the 

proposed method with different detection. 

probabilities. 

Table 1. The filter gain with different detection probability

 . 

detection probability   filter gian K  

0.6 
0 9993

0 0894

.

.

 
 
   

0.7 
0 9987

0 0838

.

.

 
 
   

0.8 
0 9979

0 0795

.

.

 
 
   

0.9 
1 0043

0 0763

.

.

 
 
   

1 
1 0015

0 0736

.

.

 
 
   

 

Through 500 Monte Carlo simulations, Fig 1 

shows the comparison of the mean-square filtering 

error of the Kalman filtering and the proposed 

suboptimal filtering algorithm. It can be seen from 

Fig 1 that the proposed filtering algorithm can 

effectively estimate the state of the trajectory. 

It can be seen from Fig. 1 that the proposed 

suboptimal filtering algorithm can meet the filter 

design requirements Q1 and Q2, and the filtering 

accuracy approaches CRLB. Fig.2 shows the 

proposed suboptimal filter error variance with 

different detection probabilities. It can be seen from 

Fig. 2 that the error mean square error becomes 

smaller as the detection probability increases. 

 

 

Figure 1. Comparison of Kalman filter error and proposed 

suboptimal filter error. 

 

Figure 2. The proposed suboptimal filter error variance 

with different detection probabilities. 

6 CONCLUSION 

This paper studies the suboptimal estimation 

problem with incomplete measurement. under the 

variance constraint of linear discrete stochastic 

systems. The suboptimal filter gain can be designed 

according to the actual error variance index 

requirement of the vehicle target tracking system, so 

that the estimated error variance of the components 

of each state of the tracking system with incomplete 

measurement is not greater than the given variance 

constraint. Besides that, the influence of radar 

detection probability on the proposed filtering 

algorithm is also analyzed. The simulation results 

show that the error mean square error of the 

proposed suboptimal filtering decreases with the 

increase of the probability of detection.The 

algorithm proposed in this paper has certain 

engineering application value.  
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