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Abstract: Because the charging load of electric vehicles is random in time and space, a large number of disorderly 
charging of electric vehicles will lead to the peak load of distribution network exceeding the limit of 
equipment, which will bring adverse effects on the operation of power grid. In order to smooth the daily 
load curve of distribution network, this paper establishes a solution model of intelligent charging control 
strategy for large-scale electric vehicle considering the charging demand constraints of electric vehicle  
users, and uses adaptive genetic algorithm (AGA) to solve the model. Taking IEEE33 bus distribution 
network as an example, based on Monte Carlo stochastic simulation of large-scale electric vehicle grid-
connected scene, the impact of electric vehicle load on distribution network under two control modes of 
disorderly charging and intelligent charging is studied comparatively, and the effectiveness of this method is 
verified. 

1 INTRODUCTION 

Global climate and environmental issues have 
prompted countries around the world to develop and 
utilize renewable energy on a large scale as a 
strategy for energy security. The development of 
electric vehicles (EVs) is of dual importance in 
promoting the efficient use of renewable energy and 
reducing fossil fuel consumption, which has 
attracted wide attention (ZHANG Wen-liang, WU 
Bin, LI Wu-feng, et al., 2009). 

If large-scale electric vehicles are randomly and 
disorderly connected to the grid to charge, it will 
have a significant impact on the scheduling, 
planning, control and protection of the entire power 
system. On the time scale, random charging may 
lead to peak load "bee-on-bee" phenomenon, which 
exceeds the power supply capacity and affordability 
of the existing distribution network, thus causing a 
series of problems such as voltage overshoot, branch 
overload and so on. On the spatial scale, disorderly 
decentralized access may lead to three-phase 
unbalance of distribution network, damage the 
power quality of the network and increase the power 
loss and other adverse effects (MA Ling-ling, 
YANG Jun, FU Cong, et al, 2013; GAO Ci-wei, 
ZHANG Liang, 2011; KRISTIEN CN, EDWIN H, 

JOHAN D, 2010). Therefore, the research on 
charging control strategy aiming at reducing the 
impact of large-scale electric vehicle access on 
distribution network has become a hot issue. 

Documents (SUN Xiao-ming, WANG Wei, SU 
Su, et al, 2013; GE Shao-yun, HUANG Liu, LIU 
Hong, 2012) put forward the method of transferring 
charging power of EV to daily load trough through 
the guidance of time-sharing tariff policy. But when 
large-scale EV is centralized connected to grid or 
unreasonable design of valley tariff period may lead 
to new load peaks and new problems. Literature 
(LUO Zhuo-wei, HU Ze-chun, SONG Yong-hua, et 
al, 2012) studied the charging control strategy of EV 
under the mode of switching power, aiming at 
minimizing the total charging cost and minimizing 
the fluctuation of the total load curve. However, 
based on a large number of assumptions, this paper 
lacks certain practicability. Literature (ERIC S, 
MOHAMMAD M H, JAMES MAC PHERSON S  
D, et al, 2011) proposes three different objective 
functions: minimum load variance, maximum load 
factor and minimum network loss, and compares the 
optimization results and calculation time of the three 
models. However, it investigates the total load 
power of load nodes and does not involve making 
appropriate charging plans for each electric vehicle. 
Literature (WANG Xiu-yum, REN Zhi-qiang, CHU 
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Dong-qing, 2008) establishes a charging 
optimization model for EV with the objective of 
minimizing the loss of distribution network, and 
considers the user's charging demand and voltage 
amplitude constraints. Literature (TIAN Wen-qi, HE 
Jing-han, JIANG Jiu-chun, et al, 2013) studies the 
multi-objective optimization problem aiming at the 
uniform distribution of charging load, the minimum 
charging time and the minimum distance of electric 
vehicles, and compares the computational 
characteristics of particle swarm optimization (PSO) 
and genetic algorithm (GA). 

This paper takes the conventional charging mode 
of electric private car as the research object, 
combines the space-time characteristics and 
charging characteristics of large-scale electric 
vehicle, considers the user's charging demand and 
the constraints of safe and stable operation of the 
power grid, and takes the minimum standard 
deviation of the total load curve of the power grid as 
the control objective, establishes the intelligent 
charging strategy of large-scale electric vehicle. The 
mathematical model is solved slightly, and an 
adaptive genetic algorithm is proposed to optimize 
the charging plan. Based on the proposed model and 
method, taking IEEE33 bus distribution system as an 
example, the effects of intelligent charging and 
disordered charging on distribution network are 
studied. 

2 INFLUENCING FACTORS OF 
CHARGING LOAD OF LARGE-
SCALE ELECTRIC VEHICLE 

There are many factors affecting the charging load 
of large-scale electric vehicles, which can be 
summarized as the scale of electric vehicles, battery 
characteristics, charging mode, user behavior, 
charging strategy, etc. (YANG Bing, WANG Li-
fang, LIAO Cheng-lin, 2013). The battery capacity 
of electric vehicle determines the maximum mileage 
and charging frequency of the vehicle. The larger the 
battery capacity, the farther the vehicle travels, the 
lower the charging frequency correspondingly. 
However, the battery capacity of different models is 
different. Generally speaking, the battery capacity 
requirement of electric bus is much larger than that 
of electric private car. 

At present, there are three charging modes: 
conventional charging, fast charging and battery 
replacement. Conventional charging is to charge 
batteries slowly in a relatively low charging current 

for a longer period of time. Generally, the charging 
time is 8-l0h. This mode is mainly aimed at a large 
number of low-voltage (220V) distributed charging 
points (mainly concentrated in residential buildings 
and office parking lots). Its advantages are low cost, 
small size and practicability of charging facilities. 
On-board now. Fast charging mode is a charging 
method that makes the battery reach or close to full 
state in a short time. Its typical charging time is 10-
30 minutes. This mode can quickly solve the 
problem of power supply when the endurance 
mileage is insufficient, but it requires a higher power 
grid and is only suitable for large charging stations. 
Battery replacement is achieved by directly 
replacing the battery pack of electric vehicles to 
achieve the purpose of charging. The whole battery 
replacement process can be completed in 10  
minutes. For the batteries replaced, the conventional 
charging method is generally used for centralized 
charging. This mode does not need on-site charging, 
so it can be arranged in the low load period, which is 
conducive to reducing the peak-valley difference of 
the power grid. It also effectively solves the 
problems of short endurance mileage of general 
batteries, and is conducive to the maintenance and 
recovery of batteries. But this mode needs to build 
large-scale centralized charging station, special 
power grid, and uniform shape and parameters of 
batteries. 

The user behavior that affects the electric power 
demand of EV mainly includes the starting charging 
time, starting power and expected power of EV. The 
more concentrated the initial charging time of users, 
the more prominent the power demand of large-scale 
electric vehicles, and the greater the impact on the 
power grid. The initial charge reflects the user's 
power consumption, while the expected charge 
determines the charging duration at a certain 
charging power. Referring to reference (SOARES F 
J, 2016), this paper studies the travel law of EV 
based on Markov chain, so as to determine the 
charging time and the end time of EV. 

Similarly, the demand for electric power varies 
with different charging strategies. At present, 
charging strategies are mainly divided into three 
categories: disordered charging, time-sharing pricing 
policy and intelligent charging. Unordered charging 
usually starts after the last trip or when the battery 
power is below a certain threshold. It can be 
imagined that large-scale disordered charging will 
bring many adverse effects to the power grid. Time-
of-use tariff policy is a common market regulation 
mechanism, which means that in the low load  
period, users can be guided to charge in the low load 
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period by lowering the tariff, thus playing a certain 
role in filling the valley. Intelligent charging refers 
to the optimal operation of the power grid by 
reasonably arranging the charging plan of electric 
vehicles. 

3 MATHEMATICAL MODEL 
FOR OPTIMIZING 
INTELLIGENT CHARGING OF 
ELECTRIC VEHICLES 

3.1 Objective Function 

This paper studies the charging schedule of electric 
vehicles in one day, and divides the day into T 
periods. Taking the charging of No. i electric vehicle 
at time t as the independent variable and the 
minimum standard deviation of the total load as the 
control objective, i.e. 
 

     (1) 

 
Formula: N is the total number of electric 

vehicles; T is the total calculation time; ݔ௧
  is the 

"1/0" independent variable to represent the electric 
vehicle i charging or not at t times; ாܲ  is the 
electric vehicle i the rated charging power, unit kW; 
ߟ  is the charging efficiency; ܲௗ௧ is the total 
amount of conventional load in the network at t 
times, unit kW; ܲ௩	represents the average value of 
the daily load curve. The specific calculation 
formula of ܲ௩ is as follows: 
 

   (2) 

3.2 Constraints 

(1) Customer Charging Demand Constraints 
In order to meet the user's needs when leaving, 
constraints need to be met: 
 

                           (3) 
 

(4) 

 

Formula: SOܥ௧
  represents i the starting power of 

an electric vehicle; ∆ܶrepresents the calculation time 
step; ܥ  represents the rated battery capacity of an 
electric vehicle of i. The formula constrains the 
charging time, which means that the electric 
vehicle's power consumption reaches the user's 
expectation at least when the user leaves. 

The recursive formulas of electric quantity at 
each time are given: 
 

    (5) 

 
In the formula, SOܥ௧ାଵ

  represents the power 
consumption of an electric vehicle at time t+1. 
Obviously, if ݔ௧

= 0, SOܥ௧ାଵ
 ൌ SOܥ௧

 , which means 
that if the electric vehicle is not charged at the 
current moment, the vehicle power will not change 
at the next moment. 

(2) Uncontrollable time constraints 
 

                  (6) 

 
Where, 6 is the time when the electric vehicle is 

connected to the grid. This paper assumes that the 
user will be merged into the grid at the end of the 
last trip; Ukraine is the time when the electric 
vehicle leaves. This formula indicates that only 
when the electric vehicle is connected to the grid can 
it be charged. 

(3) Node Voltage Constraints 
 

                   (7) 

 
Where, ܷ

  and ܷ
௫  represent the upper and 

lower voltage constraints of node j, respectively. 

4 ADAPTIVE GENETIC 
ALGORITHM 

Genetic algorithm (GA) is a kind of randomized 
search method based on the evolutionary law of the 
biological world. Through a series of operations 
such as selection, crossover and mutation, the 
individuals with the greatest fitness obtained in the 
evolutionary process are taken as the output of the 
optimal solution. However, simple genetic algorithm 
uses fixed crossover probability and mutation 
probability, ignoring the adaptive characteristics in 
the process of population evolution, which will 
affect the global search ability and premature 
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convergence into local optimum. The adaptive 
genetic algorithm (AGA) uses the dynamic 
generation method to determine the adaptive 
crossover and mutation probability, so as to maintain 
the genetic diversity of individuals and prevent the 
genetic algorithm from premature convergence to 
local optimum. By comparing AGA with GA in 
dealing with some optimization problems, it is found 
that AGA can quickly converge to the global 
optimum. Therefore, this paper adopts adaptive 
genetic algorithm to study the intelligent charging 
strategy of electric vehicles. 

Adaptive crossover probability Pc and mutation 
probability Pm can be obtained by the following 
formula: 
 

  (8) 

 
In the formula, ܲ_௫ is the maximum crossover 

probability; ܲ_  is the minimum crossover 
probability; Gen is the current iteration number: M 
is the maximum number of iterations; ௧ݐ݂݅	  is the 
larger fitness in a crossover operation; ݂݅ݐ௩ is the 
average fitness of all individuals in the current 
iteration. 
 

   (9) 

 

In the formula: ܲ_௫ is the maximum mutation 
probability; 	 ܲ_  is the minimum mutation 
probability; Gen is the current iteration number; M 
is the maximum iteration number; fit represents the 
fitness of the individual in the current mutation 
operation. Fig. 1 is the flow chart of the adaptive 
genetic algorithm. 

Before the operation starts, the environment 
variables of the adaptive genetic algorithm need to 
be set, such as the maximum number of iterations M, 
population size N, intersection and variation 
parameters Pc_max, Pc_min, Pm_max, Pc_min, The 
specific operation steps are as follows: 

The first step is to initialize, generate effective 
population, and calculate the fitness of each 
individual; 

The second step is to select and retain N 
individuals with better fitness. If the optimal fitness 
satisfies the set goal or reaches the maximum 
number of iterations, the optimal result is output and 
the operation is stopped, otherwise the next step will 
be taken. 

The third step is crossover operation. When the 
random variable is less than the adaptive crossover 
probability, the single point crossover of parents and 
children is performed. Thus, 2N offspring 
individuals are generated from N parents, and the 
parents and offspring are combined to form a new 
population.  

The fourth step is mutation operation. For new 
populations, mutation occurs when the random 
variable is less than the adaptive mutation 
probability. 

 

Fig 1. Operation flow chart of the adaptive genetic algorithm. 
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Fifth step: Constraint judgment is made on 3N 
individuals, invalid individuals are eliminated, and 
N individuals with better fitness are retained, then 
the second step is returned, and the number of 
iterations is increased once. 

To study the intelligent charging problem of 
large-scale electric vehicles, this paper adopts 
adaptive genetic algorithm with binary coding, uses 
independent variable ݔ	௧

 to represent the charging 
state of ist electric vehicle at t-time, ݔ	௧

 ൌ 1  to 
indicate charging: ݔ	௧

  = 0 to indicate not charging. 

5 ANALYSIS OF EXAMPLES 

Taking IEEE33 bus residential distribution network 
as an example, as shown in Figure 2, the impact of 
charging load on distribution network of large-scale 
electric vehicles under two charging strategies of 
disorderly charging and intelligent charging is 
studied. The routine daily load curve of the example 
system is shown in Figure 3 (KRISTIEN C, EDWIN 
H, JOHAN D, 2010). 

Assuming that there are 600 electric vehicles in 
this area, the user chooses to merge them into the 
grid after the last trip, so the starting charging time 

of each electric vehicle is t0. The departure time td 
can be simulated by Markov chain.  

Considering the actual situation, all electric 
vehicle loads are allocated to different nodes in 
geographic space according to the proportion of the 
conventional load of each node to the total load for 
charging (GARCIA-VALLE R, LOPES J A P,  
2013), which is shown in the following formula: 
 

                  (10) 

 
In the formula: ܰ  is the number of electric 

vehicles allocated by node j; N is the total number of 
electric vehicles; ܲௗ  is the normal load size of 
node j connection; ∑ ܲௗ

ெ
ୀଵ  is the total amount of 

normal load in distribution network; M is the 
number of nodes in network. 

In order to simplify the analysis, it is assumed 
that the rated battery capacity of each electric 
vehicle is Ci=60kWh; the rated charging power is 
PEvi=4kW; the charging efficiency is η=95%; and 
the initial power is SOܥ௧

 . It obeys truncated Gauss 
distribution, with a mean of 40, a variance of 20, a 
minimum SOܥ௧

  20 and a maximum SO ௧
  50; the 

user's expected charge capacity obeys the uniform 
distribution between (80, 100). 

 

Fig 2. IEEE 33-nodes distribution system. 

 

Fig 3. Daily load profile of the test system. 
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In this paper, the specific parameters of the 
adaptive genetic algorithm are set as follows: the 
number of genetic iterations is 80, the total number 
of individuals in the population is 200, the maximum 
crossover probability Pc_max = 0.9, the minimum 
crossover probability Pc_min = 0.4, the maximum 
mutation probability Pm_max = 0.1, and the 
minimum mutation probability Pm_max = 0.01. The 
specific operation flow is shown in Figure 4.  

The intelligent optimal charging strategy 
proposed in this paper is compared with disordered 
charging, and the results are shown in Fig. 5. 

The peak-valley difference rate in Table 1 is the 
ratio of peak-valley difference to peak load. From 
Fig. 5 and Table 1, it can be seen that under the 
disordered charging strategy, users access the power 

grid after the last trip and start charging  
immediately. Therefore, in the evening, the overlap 
between the electric vehicle load and the original 
load presents a "peak" phenomenon, which increases 
the peak-valley difference of the system, and 
reduces the utilization rate of power resources, and 
will have a negative impact on the power grid. 
Under the intelligent charging strategy, the charging 
load of most electric vehicles is transferred to the 
low valley period of the original load. Compared 
with the disordered charging, it can reduce the peak-
valley difference and make the total load curve more 
flat, which is conducive to reducing the number of 
unit start-up and shutdown, and improving the 
security and economy of the system operation. 

 
 

Fig 4. Flow chart intelligent algorithm. 
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Fig 5. Load curves under two control strategies.

Table 1. Comparisons of system load level indexes. 

 
 
In this model, the voltage offset of node 17 is the 

largest, which can reflect the impact of electric 
vehicle access on the node voltage, and is 
representative. Therefore, this point is taken as the 
research object to study the voltage offset of the 
node. Figure 6 shows the voltage offset at each time 
of node 17. As can be seen from the figure, 
intelligent charging can effectively reduce voltage 
offset.  

Table 2. Comparisons of system losses. 

 
 
As can be seen from Table 2, the network loss of 

intelligent charging is less than that of disorderly 
charging, because when the total load is fixed in a 
day, The flatter the daily load curve, the smaller the 
loss; conversely, the greater the difference between 
peak and valley, the greater the loss.  

 

Fig 6. Comparisons of voltage deviation of bus 17. 

Figure 7 shows the convergence curve of the 
optimization algorithm. When the iteration is about 
60 times, the optimal solution is obtained, which 
proves that the optimization algorithm has good 
convergence. 
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Fig 7. Convergence of the optimization algorithm. 

6 SUMMARY 

This paper presents a solution model and method of 
intelligent charging control strategy for large-scale 
electric vehicles. The key of this model is to 
consider the user's charging demand and grid side 
constraints, and to minimize the standard deviation 
of total load as the optimization objective. An 
example is given to study the intelligent charging 
with each charging plan as the control variable. The 
effectiveness of the proposed model and method is 
verified by comparing the effect of the disorderly 
charging mode on the load of the electric vehicle. 
Based on this model and method, other types of 
objective functions can also be considered, such as 
maximum absorption of renewable energy 
generation, and so on. In addition, based on Monte 
Carlo scenario random simulation and distribution 
network power flow calculation, the model can also 
be used to evaluate the impact of a given scale of 
electric vehicle access on distribution network and 
the maximum penetration level of electric vehicles 
in distribution network. 
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