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Abstract: In this brief, the problem of the finite-time synchronization is considered for neutral-type neural networks 

(NTNNs) with the Markovian switching and multi-delays. Sufficient conditions are acquired for the finite-

time synchronization of NTNNs by Lyapunov stability theory. Then, the adaptive control is designed by a 

suitable updated law. Finally, a numerical simulation is given to illustrate the effectiveness of the obtained 

result. 

1 INTRODUCTION 

During past several years, the stabilization and the 

synchronization of neural networks (NNs) are 

studied deeply in many fields (Y. Cao, 2016), such 

as the robot path planning, and the multi-robot 

cooperation. In the control system, the model of the 

the corresponding system is different when there is 

the disturbance in the system (X. Liu, 2016). 

According to the transformation relationship of 

Markovian chain, these different corresponding 

systems are established as a new system, which is 

called Markovian switching system. In the NNs, 

many phenomena can be modeled by the Markovin 

switching system, such as the packet loss and the 

time delay. By modeling the Markovian switching 

system, some detail problems can be ignored and the 

performance of the system can be studied 

macroscopically. 

The time-varying delay is inescapable in NNs. 

And NNs often produce the chattering and the 

instability (X. M. Zhang, 2017). Also, the time-

varying delay, which can be called as the neutral 

delay, may exist in the derivative of the system state 

(D. Tong, 2017). 

On the other hand, it is well known that the finite 

time synchronization can be obtained in NNs. In 

reality, NNs would be more economical if the 

synchronization can be achieved as quickly as 

possible. In (X. Liu, 2016), the problem of the finite-

time synchronization for coupled NNs with a 

switching approach networks was investigated. 

Nowadays, many control methods have been 

investigated, such as the adaptive control (D. Tong, 

2016; R. Guo, 2019), the periodically intermittent 

control (C. Li, 2007), the discontinuous grid current 

control (Y. Son, 2017) and the phase current-balance 

control (J. Han, 2016). The exponential 

synchronization has been studied by the adaptive 

control for NNs (W. Zhou, 2012). Furthermore, the 

parameters of the adaptive control need to be 

estimated and evolved by some update laws. The 

exponential stabilization problem for complex 

systems is investigated by the periodically 

intermittent control (Z. W. Liu, 2017). Adaptive 

control is an efficacious control method to achieve 

synchronization for NNs, and this motivates 

researchers’ interests.  

Motivated by the discussions earlier, the adaptive 

controller is given to solve the finite-time 

synchronization problem of NTNNs with multi-

delays and the Markovian switching. The criteria of 

the finite synchronization is obtained by 

constructing a Lyapunov functional and taking the 

LMI toolbox. Finally, a numerical simulation is 

provided to prove the effectiveness of the result. 
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2 PROBLEM STATEMENTS 

Consider the following drive system with multi-

delays and the Markovian switching as 
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Where ( ) R nx t is state vectors. And tr  is a 

continuous-time Markov process with a transition 

probability matrix { }  ij q q  which is presented as  
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connection weight and the delayed connection 

weight. A continuous activation function 

( ( )) nh x t R  satisfies (0) 0.h  , k t  is the time-

varying delay which satisfies ,0   k t , and 

, 1  k t , where   and   are given positive 

constants. 

Consider the controlled response system as 
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Where ( ) ny t R  is state vectors. The error 

system is expressed by )( )) ( (y te t x t  . and let 
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Assumption 1: For neutral-type parameters 

matrices ( 1,2, , ) iA i N , there are positive 

(0,1)i  , such that 

( ) ,   i

iA  
Where maxi S i  , and ( ) iA  are the spectral 

radius of matrix iA . 

Assumption 2: There exist constants z
 and z

 

such that all activation functions of Eqs (1), (3) and 

(4) satisfy the following conditions, 
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Definition 1: Supposed that a continuous and 

positive-definite function ( )V t  satisfies the 

following differential inequality: 
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Lemma 1: Let ,  nR , then 

ICVMEE 2019 - 5th International Conference on Vehicle, Mechanical and Electrical Engineering

374



 

1 ,T T T T           
 

Where 0  . 

Lemma 2: The following inequality 
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3 MAIN RESULTS 

Theorem 1: Under Assumption 1-2, NTNNs (3) 

can be finite-time synchronized with system (1), if 

there exist positive , q  and , such that 
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Proof: Choose a Lyapunov function candidate as 
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Taking the derivative of ( )V t  with respect to t  

along with the trajectories of system (4), one has 
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It follows from Assumption 1 that 
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From Assumption 2, one has 
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It can be deduced from inequalities (6)-(11) and 
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By Lemma 2, we have 
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Remark 1: An appropriate   can be easily find 

by the LMI of Theorem 1. For instance, let 

1.75, 0.5, 0.2q     , then 0.35  . Then, 

the conditions in Theorem 1 can also be easily 

checked. 

 

4 NUMERICAL EXAMPLES 

One example is presented to indicate the 

effectiveness of our results. Consider a time-delayed 

NTNNs (1) and its response system (3) with 

following network parameters, 

 

1 2

1 2

1 2

0.3 0 0.2

0 0.3 0 0.2

2.3 0 3.3

0
, ,

0
, ,

0.5 1
, ,

0 2.7 0 2.

1

-0.3 -1.6

.6

8

0.1 0 2.8

A A

B B

E E

   
   
   

   
   

 

 
   

   
   
 





  

 

11 12

21 22

0
, ,

-0.

0.3 1,5 1.8

0 0.7 2.3

0

1.7

0.5 1
, ,

1.1 0 2.8

3 -1

.6

.6

F F

F F

   
   
   

   


  
 

  
   



 
 

3 3
, ( ( )) 0.3tanh( ( )),

2 2

0.12, 0.2, 0.43.

h e t e t

z 

 
   

   . 

 

Initial values of system (4) are set to be

(0) [0.2,3.7] , (0) [0.11,0.18]T Te k  . The 

dynamic curve e  of NTNNs without the controller is 

not synchronization. In the example, the following 

results can be obtained by solving the LMI (5) based 

on the Matlab toolbox, and it obtains that 
0.57, ，q = 2.17 = 1.52 . 

The dynamic curve of the NTNNs (4) with the 

controller is illustrated by FIG. 1. And the dynamic 

curve of the adaptive gain ( )k t  is given in FIG. 2. 

Thus, one can see that the zero solution of NTNNs 

(4) can be got via the adaptive control. 

 

Figure 1. Dynamic curve of NTNNs ( )e t  with control. 
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Figure 2 Dynamic curve of adaptive control gain ( )k t . 

5 CONCLUSION 

The finite-time synchronization problem for NTNNs 

is considered by using the adaptive control with 

mutil-delays and the Markovian switching. 

Sufficient synchronization conditions for the 

coexistence of the neutral item, time-varying delays, 

the Markovian switching in NTNNs with the 

adaptive control are given to solve the difficulty of 

the mathematical complexity. 
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