
A Fuzzy Logic Programming Environment for Recycling Facility

Selection

Esra Çakir a and H. Ziya Ulukan
Faculty of Engineering and Technology, Department of Industrial Engineering, Galatasaray University, İstanbul, Turkey

Keywords: Fuzzy Logic Programming, Fuzzy Prolog, Bousi~Prolog, Recycling Facility Selection, Waste Collection

Center Selection.

Abstract: Recycling of wastes is a crucial subject for a sustainable environment. One of the main problem in this area

is the appropriate location of the collection centers and recycling facilities. These facilities can be paired

according to the criteria such as: distance, cost, type of waste. In this paper, fuzzy linguistics Prolog is used

to find importance weights of selection criteria and to match facilities for decision making process.

Bousi~Prolog is a fuzzy Prolog that enables working with both fuzzy linguistic and linguistic tools to guide

the Prolog systems towards computing with paradigm phrases that can be very helpful to the linguistic

resources.

1 INTRODUCTION

Logic programming has been commonly used for

information representation, expert system creation or

deductive database in the field of Artificial

Intelligence. It has, however, lost ground in the

Artificial Intelligence scene in latest years. Because

in real-life problems, expressions are not precise, they

are approximate, even blurred. Fuzzy Logic

Programming (FLP) is a research area which

investigates how to introduce fuzzy logic concepts

into logic programming aiming to deal with the

imprecision and/or vagueness existing in the real

world. The main objectives of this new language are

to support flexible query answering, to allow the

manipulation of fuzzy sets and to incorporate other

features with which it is possible to easily handle

imprecise information using declarative techniques.

As an extension of Prolog, the most commonly

used logic programming language, was proposed. In

order to preserve most of its syntactic characteristics,

it will find the greatest distinctions in several

particular structures and in their resolution and

unification algorithms. For these purpose, the

language was renamed as Bousi~Prolog (abbreviated

BPL), with Bousi being the Spanish abbreviation for”

Unificación BOrrosa por SImilitud."

a https://orcid.org/0000-0003-4134-7679

The outline of the paper is as follows. Section II

includes literature review. Logic programming

language Prolog and Bousi~Prolog, which is

formalized as a transition system based on a

proximity-based unification relation, is presented in

Section III. Waste facilities were chosen as the

application area, matching and criteria weighting was

made between waste collection centers and recycling

facilities by using Bousi~Prolog in Section IV.

Finally, we give our conclusions and future research

lines in Section V.

2 LITERATUR REVIEW

Bousi~Prolog is an extension of the standard Prolog

language that implements a weak unification

algorithm based on proximity relations, that is,

reflexive and symmetric binary fuzzy relations

(Dubois et al., 1988, Fontana and Formato, 2002

Orchard, 1998). Bousi~Prolog has already been used

in interesting real applications such as text cataloging

(Cayrol et al., 1982), knowledge discovery (Fontana

et al., 1999) and linguistic feedback in computer

games (Formato et al., 2000), (Julian et al., 2009).

A similarity relation is an extension of the crisp

notion of equivalence relation and it can be useful in

any context where the concept of equality must be

Çakir, E. and Ulukan, H.
A Fuzzy Logic Programming Environment for Recycling Facility Selection.
DOI: 10.5220/0008397503670374
In Proceedings of the 11th International Joint Conference on Computational Intelligence (IJCCI 2019), pages 367-374
ISBN: 978-989-758-384-1
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

367

weakened. In (Sessa, 2002) a new modified version of

the Linear resolution strategy with Selection function

for Definite clauses (SLD resolution) is defined,

which is named similarity-based SLD resolution (or

Weak SLD resolution: WSLD). This operational

mechanism can be seen as a variant of the SLD

resolution procedure where the classical unification

algorithm has been replaced by the weak unification

algorithm formally described in (Sessa, 2002) (and

reformulate in terms of a transition system in (Julian

and Rubio, 2006)) (Julian and Rubio, 2010,

Mukaidono et al., 1989).

The weak unification algorithm implemented in

Bousi~Prolog is an extension of Martelli and

Montanari’s unification algorithm for syntactic

unification (Julian et al., 2009, Julian and Rubio,

2009, Lee, 1972). Such algorithm extends the classical

one by relaxing the strict true/false result of

unification and replacing it by a real number in the unit

interval [0,1], which indicates the approximation

degree of the unification. Informally, the weak

unification algorithm states that two expressions

f(u(1)…u(n)) and g(u(1)…u(n)) weakly unify, if the

root symbols f and g are approximate and each

argument u(i) and v(i) weakly unify, with i ∈{1,...,n}.

Hence, if there is a syntactic clash between two

different expressions, the weak unification algorithm

does not produce a failure but a success with a certain

approximation degree. Notice that, Bousi~Prolog

computes substitutions as well as approximation

degrees (Julian et al., 2009).

Although Bousi~Prolog weak unification algorithm

generalizes the operating system provided in

(Mukaidono et al., 1989) and improves the language’s

expressive authority, some disadvantages emerge

when considering real-life information and knowledge

bases. As pointed out lately in (Alsinet and Godo,

1998), the weak unification maintains strict features of

the classical unification, such as the arity of the

predicate and function symbols. The weak unification

mechanism should therefore be relaxed as the

resemblance between two phrases should be

determined by the data contained in each expression

and it should not rely on either the arity or subterms

order.

3 METHODOLOGY

Classical Prolog is not able to represent and handle

the vagueness and/or imprecision that exists in the

real world in an explicit. To be sure,

dealing with vagueness and /or imprecision is crucial

in most application fields of Artificial Intelligence,

such as expert systems, fuzzy control, robotics,

computer vision, machine learning or data recovery.

Thus, enhancing these languages with new equipment

is essential (Julian and Rubio, 2009).

3.1 Prolog

Prolog is a fifth generation computer language family

used in artificial intelligence applications. It was

invented by Alain Colmerauer and his working group

at the University of Marseille Aix in France in the

early 1970s. It comes from the French

"Programmation en Logique" word. In the early

1980s, the studies conducted in order to ensure logic

can as a computer language have also intensified. The

interest in the subject has increased to a great extent

with the Japanese announcing the fifth generation

computer project in 1981.

Prolog is a tool that helps human beings in the

development of the necessary methods for defining

and solving the problem with its structure suitable for

logical and symbolic thinking.

Assume a fragment of a deductive database that

stores information about people and their preferences.

Under the question about whether somebody likes

tea, that person may answer: ‘I do not like’,

‘a little’, ‘so much’, ‘very much’.

%% FACTS

likes(ally, tea, a_little).

likes(jane, tea, very_much).

likes(kim, tea, so_much).

likes(ashley, tea, does_not).

%% RULES

drink(X,Y):-likes(X, Y, very_much).

In a standard Prolog system, if we ask about

people who will drink tea ‘‘?-drink(X,tea)’’,

only one answer is obtained: Yes, X=jane.

However, ally and kim also are reasonable

candidates to drink tea. Hence, if we are looking for a

flexible query answering procedure, more accurate to

the real world behaviour, ally and kim should be

appear as answers.

3.2 The Bousi~Prolog Programming
Language

Bousi∼Prolog is an extension of the standard Prolog

language. Its operational semantics is an adaptation of

FCTA 2019 - 11th International Conference on Fuzzy Computation Theory and Applications

368

the Selection-function driven Linear resolution for

Definite clauses. (SLD resolution) principle where

classical unification has been replaced by a fuzzy

unification algorithm based on proximity relations

defined on a syntactic domain. Hence,the operational

mechanism is a generalization of the similarity-based

SLD resolution principle (Sessa, 2002).

The BPL syntax is mainly the Prolog syntax but

enriched with a built-in symbol “∼” used for

describing proximity relations by means of what we

call a “proximity equation”. Proximity equations are

expressions of the form: “<symbol> ~ <symbol> =

<degree>.” (Julian and Rubio, 2010).

The BPL language makes use of two directives to

define and declare the structure of a linguistic variable

(Sessa, 2002): domain and fuzzy_set. The

domain directive allows to declare and define the

universe of discourse or domain associated to a

linguistic variable. The concrete syntax of this

directive is:

:-domain(Dom_Name(n,m,Magnitude)).

where, Dom_Name is the name of the domain, n

and m (with n < m) are the lower and upper bounds of

the real subinterval [n,m], and Magnitude is the

name of the unit wherein the domain elements are

measured. For example, the directive “:-

domain(age(0,100,years)).” Defines a

domain with name age, whose values are numbers

(between 0 and 100) measured in years. The

fuzzy_set directive allows to declare and define a

list of fuzzy subsets (which are associated to the

primary terms of a linguistic variable) on a predefined

domain. The concrete syntax of this directive is:

:-fuzzy_set(Dom_Name,[FSS_1(a1,b1,c1

[,d1]),

 ...,

 FSS_n(an,bn,cn[,dn]])).

Fuzzy subsets are defined by indicating their

name, FSS_1, and membership function type. At

this time, it is possible to define two types of

membership functions: either a trapezoidal function,

if four arguments are used for defining the fuzzy

subset or a triangular function, if three arguments are

used.

Once a domain and the fuzzy sets associated to the

primary terms have been declared, composite terms

may be generated through the following grammar:

<Term> ::= <Atomic_term> |

<Composite_term>

<Composite_term> ::=

<TModif>#<Atomic_term>

<TModif> ::= very | somewhat |

more_or_less | extremely

Consider the given example in subsection

3.1.Prolog, as Bousi∼Prolog allows to work with

linguistic dictionaries, a list of similar concepts for

the source concept “adjectives” could be

obtained by using WordNet::Similarity. This

list can be represented in Bousi∼Prolog by means of

a set of proximity equations.

%% PROXIMITY EQUATIONS

does_not~a_little=0.6.

a_little~very_much=0.3.

does_not~so_much=0.2.

so_much~very_much=0.7.

a_little~so_much=0.5.

The Bousi∼Prolog system answers ‘‘X=ally

with 0.3’’, ‘‘X=jane with 1.0’’ and

‘‘X=kim with 0.7’’. To obtain the first answer,

the Bousi∼Prolog system operates as follows: since

we have specified that a little is close to very much,

with degree 0.3, these two terms may unify “weakly”

with approximation degree 0.3, leading to the

unification of likes(ally, tea, a little)

and likes(X, tea, very much), with X=ally

and approximation degree 0.3; therefore, the assertion

drink(ally,tea) is stated with approximation

degree 0.3.

3.2.1 Approximate Reasoning

Approximate reasoning is basically the inference of

an imprecise conclusion from imprecise premises. In

this section we want to make a reflexion on fuzzy

inference, such as it was formalized by Zadeh (Zadeh,

1965, Zadeh, 1975), and how Bousi∼Prolog can deal

with this kind of reasoning.

Each granule of knowledge is represented by a

fuzzy set or a fuzzy relation on the appropriate

universe. The premises of an argument are expressed

as fuzzy rules and a fuzzy inference is a

generalization of modus ponens that can be

formalized as: “if x is F then y is G” and “x is F’”

then “y is G’”. Roughly speaking, x and y are

variables that takes values on ordinary sets U and W,

F and F’ are fuzzy subsets on U whilst G and G’ are

fuzzy subsets on W. There has been proposed several

methods to compute G’, though there is not consensus

A Fuzzy Logic Programming Environment for Recycling Facility Selection

369

as to which is the best. The method proposed by

Zadeh consists of identifying from F and G a fuzzy

relation, R on U and W, which has a consequence over

G’ on W (Julian and Rubio, 2010).

Bousi∼Prolog constructs a fuzzy relation over

the fuzzy domains involved in a BPL program. This

fuzzy relation is built at compile time. Afterwards, at

run time, it is used by the weak SLD resolution

procedure to infer an answer to a query. (Sessa, 2002)

For instance, Bousi∼Prolog models the following

fuzzy inference in a very natural way: “if x is new

then x is fast” and “car-A is middle” then “car-A is

somewhat fast”.

:-domain(age(0,100,years)).

:-fuzzy_set(age,[new(0,0,30,50),

middle(20,40,60,80),

old(50,80,100,100)]).

:-domain(speed(0,40,km/h)).

:-fuzzy_set(speed,[slow(0,0,15,20),

 normal(15,20,25,40),

 fast(25,30,40,40)]).

speed(X, fast) :- age(X, new).

age(car-A, middle).

Now, if we launch the goal “?- speed(car-

A, somewhat#fast)”, the BPL system answers
“Yes with 0.375”.

3.2.2 Flexible Query Answering in
Reductive Database

Databases are elements of software that collect and

store data (which can be retrieved, added, updated or

removed by users). Because the data in the actual

globe is often permeated by vagueness and

inaccuracy, database systems should address this

issue. They should also allow flexible retrieval of

data. There are several approaches to fuzzy flexible

database. In this study we show how to implement a

fragment of a flexible database in the Prade-

Testemale (Prade and Testemale, 1984).

Below, we present a BPL program implementing a

fragment of a flexible deductive database in the style

of Prade and Testemale. That is, databases that

incorporate the notion of fuzziness by means of fuzzy

sets that may be used as attributes of a table. This

example shows a database fragment for a person who

is familiar with pharmacies in the city. This person

wants to find the pharmacy by preference (ie, close to

home).
%% DIRECTIVES declaring and defining

linguistic variables

%% (i.e., fuzzy sets)

%% Linguistic variable: distance

:-domain(distance,0,60,minutes).

:-fuzzy_set(distance,

 [close(0,10,20,40),

 medial(25,35,45,50),

 far(40,45,50,60)]).

%% FACTS

%% Pharmacy table

%% pharmacy(Name, Street).

pharmacy(ph_1,st_1).

pharmacy(ph_2,st_2).

pharmacy(ph_3,st_3).

pharmacy(ph_4,st_4).

pharmacy(ph_5,st_5).

%% Distance table

%% distance(District, District,

Distance)

%% to home

distance(st_1, home,

somewhat#medial).

distance(st_2, home, more_or_less

#close).

distance(st_3, home, very#far).

distance(st_4, home, close).

distance(st_5, home, somewhat#far).

%% RULES

%% find(Pharmacy, Distance)

find(Pharmacy,Street, Distance):-

pharmacy(Pharmacy, Street),

distance(Street, home, Distance).

Now select find/2 (The number “2” means

there is two input for query “find”.) selects those

which may be considered close to home with a certain

degree. More precisely, if we launch the goal “?-

find(Pharmacy, st_1, close).”, we

obtain: “Yes, Pharmacy = ph_1 with 0.3”.

This means that there is a pharmacy named “ph_1”

on the street named “st_1” and approximation

degree to home is 0.3. If we launch the goal “?-

find(Pharmacy, st_4, close).”, we

obtain: “Yes, Pharmacy = ph_4 with 1.0”.

This means that there is a pharmacy named “ph_4”

on the street named “st_4” and approximation

degree to home is 1.0.

FCTA 2019 - 11th International Conference on Fuzzy Computation Theory and Applications

370

4 APPLICATION

Assume a flexible deductive database in style of

Prade and Testemale (Prade and Testemale, 1984)

storing information on fourteen recycling facilities

and three waste collection centers which have

properties such as cost, distance and energy

generation capacity. These properties are expressed in

fuzzy numbers. The Table 1 shows the fuzzy

expressions.

Table 1: Fuzzy Expressions of Criteria.

C
o

st

cheap normal expensive

(200,200,450

,600)

(300,450,650,

700)
(550,750,800,900)

D
is

ta
n

ce
 close medial far

(0,0,30,80)

(20,45,70,90) (50,85,110,120)

E
n

e
rg

y
 G

en
e
ra

ti
o
n

C
a

p
a

c
it

y

fair good excellent

(0,0,1,3)

(2,5,7)

(6,8,9,10)

Cities where recycling facilities are located are
located in different places. The recycling costs of
these facilities are known. However, the energy
generation capacity of the facility is expressed by
using fuzzy numbers instead of crisp numbers for
reasons such as material and machine destruction.
Similarly, the distance of waste collection centers to
the zones is expressed in fuzzy numbers. These
relationships are shown in the Figure 1.

Our aim is to match waste collection center and
recycling facility according to cost, distance and
capacity. A BPL program code is prepared in
APPENDIX. Here is the query used to run the code.

%% GOAL EXAMPLE

% find (Facility, City, Collection,

Cost ,Distance , Capacity).

Now “find/6” selects those facilities, which
may be considered “cheap”, “close” and
“excellent” to the “collection_no” with a
certain degree. More precisely:

 If we launch the goal “?- find(Facility,
City, Collection, Cost ,Distance

, Capacity).”, the answer is: “Facility

= facility_1, City = city_A,

Collection = collection_1, Cost =

cost_400, Distance = medial,

Capacity = fair, With

approximation degree: 1.0”. This
means that the first match with the

approximation degree = 1.0 and this

is the properties of the match.

Figure 1: Facility locations and recycling costs.

 If we write six criteria to our query, the query will
give us the degree of membership of this match.

For example, if we launch the goal “?-find
(facility_13, city_H,

collection_2, normal ,close ,

good).”, the answer is: “Yes. With

approximation degree: 0.92”.

Because we asked the code; Compare

facility_13 in city_H and

collection_2 according to

cheapness, closeness and good

energy capacity.

 Also, we can find the best match of the degree of
membership according to the selected criteria.

For example, if we launch the goal “?-find
(Facility, City, collection_3,

expensive, medial, excellent.”, the

answer is: “Facility = facility_7,

City = city_D, With approximation

degree: 0.82”. Because we asked the

code; find a Facility for match

with collection_3 according to

expensive cost, medial distance

A Fuzzy Logic Programming Environment for Recycling Facility Selection

371

and excellent energy capacity. So,

the answer is “Yes, i found facility_7
to match with approximation

degree: 0.82”.

 These queries are based on criteria. In the last

question, if we make the distance “close”

instead of “medial”, the approximation will be
different even if it matches the same facility. For

example; “?-find(Facility, City,

collection_3, expensive , close ,

excellent.”, the answer is: “Facility =
facility_7, City = city_D, With

approximation degree: 0.517”.

Because we asked the code; find a

Facility for match with

collection_3 according to

expensive cost, close distance

and excellent energy capacity. So,

the answer is “Yes, i found facility_7
to match with approximation

degree: 0.517”.

 If an irrelevant match is asked, the code answers

“No answers”. This means that the

approximation is zero. For example; “?-
find(Facility,City,collection_1,

expensive , far , fair.”, the answer

is: “No answers”. Because we asked the

code; find a Facility for match

with collection_1 according to

expensive cost, far distance and

fair energy capacity. There are no
suitable facilities for a match in these properties.

 As a result, if we want to match waste collection

centers (collection_(1-2-3)) and

recycling facilities (facility_(1…14)) that

meet the criteria of "cheap", "close" and

"excellent", our query should be "?-find
(Facility, City, collection_ (1-

2-3), cheap, close, excellent).”.

The best match is ”collection_1” and

“facility_11” with the approximation
degree : 0.277. The outputs are shown in Table
2.

The advantage of using this program is to estimate the

weight of these criteria. Thanks to these queries,

weighting can change according to the changes in

criteria. An example is given below.
Example: Suppose we only have

“facility_2” and ”facility_13”, and all of
three collections. We want to match this waste center
with 2 recycling facilities in different regions. Let our
criteria be “cost”, “distance” and “energy
generation capacity” of the facility. In the
Table 3, the approximation degrees of the query "?
-find (facility (2-13), City,

collection_1-2-3), normal, medial,

good).” are given.

Table 2: Approximation degrees according to “cheap, close,

excellent” criteria.

Waste Collection Center

collection_1 collection_2 collection_3

R
ec

y
cl

in
g

F
a

ci
li

ty

Facility_11

,city_F

Facility_11

,city_F

Facility_11

,city_F

A
p

p
ro

x
im

a

ti
o

n
 D

eg
re

e

0,277 0,25 0,171

Table 3: Approximation degrees according to “normal,

medial, good” criteria.

Waste Collection Center

collection_1 collection_2 collection_3

fa
c
il

it
y

_
2

1,0 0,3 0,436

fa
c
il

it
y

_

1
3

0,405 0,4 0,405

In the Table 4, the approximation degrees of the
query "? -find (facility_ (2-13),

City, collection_ (1-2-3), normal,

far, good).”

Table 4: Approximation degrees according to “normal, far,

good” criteria.

Waste Collection Center

collection_1 collection_2 collection_3

fa
c
il

it
y

_

2

0,357 1,0 0,245

fa
c
il

it
y

_

1
3

0,891 0,17 0,891

As shown in the tables, we fixed three fuzzy criteria

and made facility and collection weighting. On the

other hand, we did the same weighting by changing

the distance criterion. As a result, we found that fuzzy

criterion change affects at weighting, but in terms of

other criteria, the change was made in the same way.

FCTA 2019 - 11th International Conference on Fuzzy Computation Theory and Applications

372

5 CONCLUSION AND FUTURE

WORK

In this study, waste collection is related to artificial

intelligence and a sample code is written with fuzzy

logical programming language Bousi∼Prolog that is

an extension of the standard Prolog language with a

fuzzy unification algorithm based on proximity

relations. This is to remark that, it is a useful tool for

dealing with approximate reasoning and modelling

vagueness, also selecting centers with flexible query

answering in deductive databases for decision-

making process.

As a matter of future work, we should

incorporate: graphical tools for helping the

programmer to define fuzzy sets; other fuzzy

matching options and new application areas such as

project management, decision making on

environmental-technical criteria.

ACKNOWLEDGEMENTS

This research has been financially supported by

Galatasaray University Research Fund (19.402.002).

REFERENCES

Alsinet T., Godo L., 1998. Fuzzy Unification Degree. In

Proc. of the 2nd Intl. Workshop on Logic Programming

and Soft Computing’98, Manchester (UK) , pp 18.

Cayrol M., Farency H., Prade H., 1982. Fuzzy pattern

matching. Kybernetes, 11:103-106.

Dubois D., Prade H., Testemale C., 1988. Weighted fuzzy

pattern matching. Fuzzy Sets and Systems, 28:313-331.

Fontana F.A., Formato F., 1999. Likelog: A logic

programming language for flexible data retrieval. In

Proc. of the ACM SAC, pp. 260–267.

Fontana F.A., Formato F., 2002. A similarity-based

resolution rule. Int. J. Intell. Syst., 17(9):853–872.

Formato F., Gerla G., Sessa M.I., 2000. Similarity-based

unification. Fundam. Inform. , 41(4):393–414.

Julian P., Rubio C., 2006. A wam implementation for

flexible query answering. In A.P.del Pobil, editor, In:

Proc. of the 10th IASTED International Conference on

Artificial Intelligence and Soft Computing (ASC 2006),

August 28-30, 2006, Palma de Mallorca, pages 262–

267. ACTA Press.

Julian P., Rubio C., 2009. A similarity-based WAM for

Bousi∼Prolog. In: LNCS, vol 5517, pp. 245–252.

Springer, Heidelberg.

Julian P., Rubio C., 2009. UNICORN: A Programming

Environment for Bousi∼Prolog. In: Proc. of

PROLE’09.

Julian P., Rubio C., Gallardo J., 2009. Bousi∼Prolog: a

Prolog extension language for flexible query

answering. In: ENTCS, vol 248, pp. 131-147. Elsevier,

Amsterdam.

Julian P., Rubio C., 2009. A Declarative Semantics for

Bousi∼Prolog. In:Proc. of 11th Intl. Symposium on

PPDP’09. ACM SIGPLAN.

Julian P., Rubio C., 2010. Bousi~Prolog - A Fuzzy Logic

Programming Language for Modeling Vague

Knowledge and Approximate Reasoning. In: ICFC-

ICNC, vol 5517, Valencia, Spain, October 24-26.

Lee R.C.T., 1972. Fuzzy Logic and the Resolution

Principle. Journal of the ACM , 19(1):119–129.

Mukaidono M., Shen Z.L., Ding L., 1989. Fundamentals

of fuzzy Prolog. Intl. J Approximate Reasons, 3, pp.

1080–1086.

Orchard R.A., 1998. Fuzzy Clips Version 6.04A. User’s

Guide Integrated Reasoning. Institute for Information

Technology. Canada.

Prade H., Testemale C., 1984. Generalizing database

relational algebra for the treatment of

incomplete/uncertain information and vague queries.

Information Science, 34:115–143.

Sessa M.I., 2002. Approximate reasoning by similarity-

based sld resolution. Theoretical Computer Science,

275(1-2):389–426.

Zadeh L. A., 1965. Fuzzy Sets. Information and Control,

8(3):338–353.

Zadeh L. A., 1975. The Concept of a Linguistic Variable

and its Applications to Approximate Reasoning I, II and

III. J. of Information Sciences 8 and 9, Elsevier.

APPENDIX

%% DIRECTIVES

%% Linguistic variable: cost

:-domain(cost,0,900,dolar).

:-fuzzy_set(cost,[cheap(200,200,450,600),

normal(300,450,650,700),

expensive(550,750,800,900)]).

%% Linguistic variable: distance

:-domain(distance,0,120,minutes).

:-fuzzy_set(distance,[close(0,0,30,80),

medial(20,45,70,90), far(50,85,110,120)]).

%% Linguistic variable: energy generation

capacity

:-domain(capacity,0,10,capacity).

:-fuzzy_set(capacity,[fair(0,0,1,3),

good(2,5,7),excellent(6,8,9,10)]).

%% FACTS

%% Facility table

%% facility(Facility_name, City, Cost,

Capacity).

A Fuzzy Logic Programming Environment for Recycling Facility Selection

373

facility(facility_1, city_A, cost#400,

fair).

facility(facility_2, city_A, cost#650,

good).

facility(facility_3, city_B, cost#900,

extremely#excellent).

facility(facility_4, city_B, cost#700,

very#good).

facility(facility_5, city_B, cost#850,

somewhat#good).

facility(facility_6, city_C, cost#200,

very#fair).

facility(facility_7, city_D, cost#800,

excellent).

facility(facility_8, city_D, cost#750,

very#good).

facility(facility_9, city_E, cost#250,

somewhat#fair).

facility(facility_10, city_F, cost#700,

very#good).

facility(facility_11, city_F, cost#550,

somewhat#excellent).

facility(facility_12, city_G, cost#300,

fair).

facility(facility_13, city_H, cost#500,

more_or_less#good).

facility(facility_14, city_H, cost#800,

excellent).

%% Cities table

%% city(Name, Zone)

city(city_A,zone_1).

city(city_B,zone_1).

city(city_C,zone_2).

city(city_D,zone_3).

city(city_E,zone_4).

city(city_F,zone_4).

city(city_G,zone_4).

city(city_H,zone_5).

%% Distance table

%% distance(Zone, Collection, Distance)

%% to waste collection center no1

distance(zone_1,collection_1,medial).

distance(zone_2,collection_1,somewhat#clo

se).

distance(zone_3,collection_1,far).

distance(zone_4,collection_1,extremely#cl

ose).

distance(zone_5,collection_1,more_or_less

#far).

%% to waste collection center no2

distance(zone_1,collection_2,very#far).

distance(zone_2,collection_2,somewhat#clo

se).

distance(zone_3,collection_2,more_or_less

#medial).

distance(zone_4,collection_2,somewhat#far

).

distance(zone_5,collection_2,close).

%% to waste collection center no3

distance(zone_1,collection_3,more_or_less

#close).

distance(zone_2,collection_3,extremely#fa

r).

distance(zone_3,collection_3,somewhat#med

ial).

distance(zone_4,collection_3,far).

distance(zone_5,collection_3,more_or_less

#far).

%% RULES

%% close_to(Facility, Collection)

close_to(Facility, Collection, Distance

):- facility(Facility, City, _, _),

city(City, Facility_Dist),

distance(Facility_Dist, Collection,

Distance).

find (Facility, City, Collection, Cost

,Distance , Capacity):-facility(Facility,

City, Cost, Capacity),

close_to(Facility,Collection,Distance).

FCTA 2019 - 11th International Conference on Fuzzy Computation Theory and Applications

374

