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Abstract: The goal of process mining is to discover the process behavior from the runtime information of process 
executions. Having labeled process logs is crucial for process mining research. However, real life event logs 
at process-aware information systems are mostly partially assigned to case identifiers, known as unlabeled 
event log problem. As a remedy to labeled data need in process mining research, we propose an approach to 
generate synthetic event logs according to the provided process profile, which outlines the activity 
vocabulary and structure of the corresponding business process. We evaluate the performance of our 
prototypical implementation in term of compatible log generation under varying parameter setting 
complexities. 

1 INTRODUCTION 

The impact of process-aware information systems is 
limited by the difficulties encountered at process 
design phase (Weijters & van der Aalst, 2003). 
Respectively, reference process models are normative 
in the sense that they reflect what should be done 
rather than the actual process execution (van der Aalst 
et al., 2003). Instead of manually designing the 
corresponding process, it is proposed to reverse this 
traditional design procedure by a more objective and 
automated technique called process mining. Process 
mining collects the process knowledge and distills the 
process patterns from the low-level process history. 
The major assumption about process mining is the 
existence of event log, which contains a sequence of 
process trails in the form <caseID, taskID> where 
caseID identifies the process instance and taskID 
specifies the activity that has been performed 
(Walicki & Ferreira, 2011). A case identifier is 
important to correlate different events recorded in the 
event log and this orchestration of process instances is 
called labeled event log (Bayomie et al., 2016). 

In capability maturity levels at software 
development process, providing event logs with 
automatically assigned case identifiers is classified as 
maturity level-4 or higher at logging (van der Aalst, 
2011; Dustdar & Gombortz, 2006). However, the 

process may execute in an environment of lower 
logging maturity level. As stated in (van der Aalst, 
2006), the event logs of most enterprise resource 
planning (ERP) vendors are unable to monitor unique 
and individual process cycles. Instead, they only log 
the execution of transactions without referring the 
corresponding case. This is due to the fact that, these 
systems are mostly data centric such that the event 
logs are staggered at the application tables with the 
lack of case relations. Such kind of logs is called as 
unlabeled event log (van der Aalst et al., 2006; 
Gunther & van der Aalst, 2006). Limitations in 
obtaining labeled data constitutes an important 
drawback for process mining research, especially for 
supervised learning-based approaches, which call for 
labeled training data set. 

In this paper, we address the challenge of 
extracting and preparing event logs for analysis. 
Rather than correlating the process instances with 
case identifiers, we propose a synthetic log generator 
namely synLogGen, that simulates the event log for a 
given process profile according to Petri net firing rule. 
Process profile composes activity vocabulary and 
Petri net. While activity vocabulary holds all valid 
activity labels in terms of activity type and occurrence 
priority, Petri net converts the graphed-based 
reference process model into tabular format. 
Additionally, unexpected process terminations and 
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noise effect that deteriorate the business rules are 
considered as parameters at proposed synthetic event 
log generation. 

The remainder of this paper is organized as 
follows: The literature review is given in Section 2. In 
Section 3, we present the details of proposed 
approach for process log generation, synLogGen. In 
the following section, experimental analysis and 
validation with respect to related approaches, i.e. 
deducing case identifiers (DCI) in (Bayomie et al., 
2016) and expectation maximization (E-Max) in 
(Ferreira & Gillblad, 2009), are analyzed for 
benchmark business processes given in (Bayomie et 
al., 2016). Finally, we conclude the paper in Section 5 
with a discussion and an outlook on future work. 

2 LITERATURE REVIEW 

In this section, we summarize the previous efforts on 
dealing with incomplete labeling in the process event 
logs. In general, process-aware information systems 
record a vast array of events without being able to 
assign them to specific process instances. In such 
environment, the case identifier attribute is mostly 
absent and the event log becomes an unlabeled stream 
of events. In (Bayomie et al., 2016), Bayomie et al. 
propose an approach to automate the preprocessing 
step by deducing the case identifiers (DCI) for the 
unlabeled event log. In addition to the execution log, 
DCI requires as input the reference process model and 
heuristic data about the execution timestamp. As a 
limitation, DCI does not support cyclic processes and 
inaccurate heuristic data affects the number of 
possible labeling. 

The handling of unlabeled event log is also 
addressed in (Walicki & Ferreira, 2011) and (Ferreira 
& Gillblad, 2009). In (Ferreira & Gillblad, 2009), an 
Expectation-Maximization approach (E-Max) is 
introduced to estimate a Markov model from an 
unlabeled event log. It is a greedy heuristic that finds 
mostly a local maximum of the likelihood function. 
The main limitation of the corresponding approach is 
erroneous handling of loops and parallelism in the 
unlabeled log.  

Alternatively, a sequence partitioning approach is 
presented to produce a set of partitions that represent 
the minimum cover of the unlabeled log in (Walicki 
& Ferreira, 2011). Respectively, the underlying 
approach aims to traverse the complete search space 
to enumerate all possible solutions within the concept 
of minimum description length (MDL) stated in 
(Rissanen, 1978). Similar limitation about handling 

loops and parallelism is valid for (Walicki & Ferreira, 
2011).  

There are also other efforts to monitor, and 
visualize logs, and to map low-level logs to higher-
level process tasks. The studies in (Doganata, 2011) 
and (Doganata & Curbera, 2009) are based on 
business provenance graph model to generate an 
automated auditing tool. The main problems are to 
create internal control points and business artifacts to 
visualize the process progress. In (Rogge-Solti, 2014) 
and (Rogge-Solti et al., 2013), a stochastic model is 
proposed to recommend missing events in the log. 
They apply path probabilities and Bayesian network 
to reflect initial beliefs given at reference process 
model at computing the most probable timestamp. In 
(Burrett & Gent, 2008), Burrett and Geng propose an 
iterative workflow mining approach that implements 
expectation-maximization approach to associate low-
level events with high-level tasks.  

The proposed work differs from these previous 
studies such that, rather than handling the labeling 
problems in the corresponding data set, we propose to 
generate the event log according to the provided 
process profile. We especially use the log generation 
efforts in (Bayomie et al., 2016), (Ferreira & Gillblad, 
2009) and (Esgin, Senkul & Cimenbicer, 2010) for 
comparison. 

3 PROPOSED APPROACH 

When process mining techniques are applied to the 
process-aware information systems, we confront the 
problem about collecting the transactional data, i.e. 
event log at the source systems. The transactional log 
at process-aware information systems is not 
appropriate to monitor the individual business cases. 
Instead, these systems only monitor the execution log 
of specific transactions without any relations within a 
case identifier (van der Aalst, 2006). Indeed, process-
aware information systems are strongly data centric: 
the transactional data is staggered through header and 
line-item database tables with a many-to-many (M:N) 
cardinality. Although SAP tools like Reverse 
Business Engineering (RBE) log the transaction 
frequencies, these transactions are linked to event 
process chain (EPC) format reference process models 
without any assignment to individual business cases 
(van der Aalst, 2006).  

According to these limitations at correlating the 
process instances with case identifiers, we propose a 
synthetic event log generator (synLogGen) that 
simulates the event log from scratch according to 
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process profile and Petri net firing rule for a given 
business process. 

3.1 Preliminaries on Petri Net 

This section introduces the basic Petri net 
terminology and notation given in (Desel & Esparza, 
1995) and (Reisig & Rozenberg, 1998). The classical 
Petri net is a directed bidirectional graph with two 
node types: places and transitions. The nodes are 
connected via directed arcs and connections between 
two nodes of the same type are restricted (Desel & 
Esparza, 1995; Reisig & Rozenberg, 1998). 

Definition (Petri net). A Petri net is a triple (P, T, F): 
 P is a finite set of places. A place p is called an 

input place of a transition t, i.e. denoted as •t or 
p•, if and only if there exists a directed arc from p 
to t otherwise it is called an output place of 
transition t if and only if there exists a directed 
arc from t to p, i.e. denoted as t• or •p. 

 T is a finite set of transitions (P ∩ T = ∅). 
 F ⊆ (P × T) ∪ (T × P) is a set of arcs. 
 

At any time, a place contains any tokens that are 
denoted as dots (van der Aalst et al., 2003). The state, 
called as marking, holds the current distribution of 
these tokens over places and the number of existing 
tokens varies according to the process structure and 
successors of the corresponding activity. The marking 
procedure of Petri net is defined as firing rule as 
follows (van der Aalst et al., 2003; van der Aalst, 
2006): 
 A transition t is said to be enabled if and only if 

each input place contains at least one token. 
 An enabled transition may fire. If a transition t is 

fired, then t consumes one token from each input 
place p and produces one token from each output 
place p of t (van der Aalst et al., 2003; van der 
Aalst, 2006). 

3.2 Synthetic Log Generator 

Synthetic log generator has a main input which 
defines the process profile. Process profile composes 
two data lists: activity vocabulary and Petri net. 
Activity vocabulary holds all valid activities in terms 
of activity type (i.e. I-initiator, O-ordinary, S-sink) 
and the activity occurrence priority. This priority 
represents the path probability of corresponding 
activity occurrence changing at [0, 100] interval and 
this factor is determined by the domain experts. Petri 
net converts the graph-based reference process model 

into tabular format, at which each transition ti is 
listed in terms of predecessor, successor and 
transition type (i.e. AND/OR/XOR join/split-type 
gateway or direct succession). Table 1 exemplifies 
the activity vocabulary and Petri net for the 
combined xor-and process given in Figure 1. 

Table 1: Activity Vocabulary and Petri net for combined 
xor-and Process. 

 
 

According to Petri net firing rule adaptation and 
input requirements, synthetic event logs are 
generated as the following steps. Terms in 
parenthesis refer to the variables and constants 
addressed in the pseudo-codes Algorithm 1 and 2 
respectively. 
(1) As the starting point, the initiator (I-typed) 

activity of the corresponding process (e.g. activity 
A for combined xor-and process) is tokenized 
first. Since token list holds just this initiator, the 
corresponding activity is selected 
(selectedActivity) and fired at fire next activity 
step. Then a new event log line is created with 
respect to newly set time stamp, current process 
instance (proIns) and the originator randomly 
obtained from originator list. 
Afterwards, the successors of initiator activity 
(e.g. activity B and D for the initiator A) are 
tokenized and added to the token list. According 
to transition type, and-list and xor-list are also 
updated. 

(2) At the next iteration of fire next activity step, 
firstly the occupancy of and-list is checked to 
give priority to any tokenized successors with 
AND-split transition type. In the case of XOR-
split, unfired successors are suppressed at the 
current process instance (proIns). On the other 
hand, OR-split successors are conditionally fired 
according to the OR-threshold determined by the 
domain experts.  

(3) If and-list is initial, one of tokenized activities is 
randomly selected from token list and fired with 
respect to activity occurrence priority and then a 
new event log line is created with respect to 
newly set time stamp, current process instance 
(proIns) and the originator randomly obtained 
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from originator list. Due to this firing, the 
successors of fired activity are tokenized. 

(4) If any successive activity with AND-join 
transition type is selected, it is checked whether 
all predecessors of the corresponding activity are 
priorly fired and untokenized at fire next activity 
step (at lines 10-24 at Algorithm 2). According to 
the tokenized flag, it propagates tokenization to 
subsequent successors. This tokenization and 
firing iteration continue up to a sink (S-type) 
activity is fired (sinkActivityFired) or process 
instance limit (maxProsIns) is reached. 

 

In addition to the firing rule, various parameters are 
used for handling exceptional cases: 
 Surprise parameter (SURPRISE_PROB) is used 

to evoke unexpected process terminations. For 
instance, bankruptcy is a niche business case in a 
banking financial process and this relatively least 
probable case is held by the surprise effect. The 
default value for surprise probability threshold is 
5%. 

 Noise parameter (NOISE_FACTOR) is used to 
generate noisy event log that deteriorates the 
business rules given in process profile. The default 
value for noise factor threshold is 5%. 

 OR-split gateway specifies that one or more 
tokenized successors will be fired in the case of 
OR-split. OR-threshold reflects this conditional 
firing.  

 

Pseudo-codes for event log generation and fire next 
activity steps are given in Algorithm 1 and Algorithm 
2, respectively. 

Algorithm 1: Generate Logs(actListFile, pnFile, 
maxProIns). 

1: activityList  Read Activity List(actListFile)  
2: petriNet  Read Petri Net(pnFile) 
3: proIns  1 
4: fireCount  0 
5: while proIns ≤ maxProIns do 
6:   surprise  SURPRISE_PROB 
7:   Set sinkActivityFired as FALSE 
8:   currActivity  Get Initiator Activity(activityList) 
9:   Set tokenized attribute of currActivity as TRUE 

10:   Add currActivity to tokenList 

11: 
  while surprise ≥ SURPRISE_PROB AND 
!sinkActivityFired do   

12:      Fire Next Activity(proIns)           // Algorithm 2 
13:      Random Generate surprise from [0, 100] 
14:      if  surprise < SURPRISE_PROB then 
15:         Reset Lists(andList, xorList, tokenList) 

16: 
        Reset Attributes(tokenized, fired) of all activity at 
activityList 

17:      endif 
18:   endwhile 
19:   proIns++ 
20: endwhile 

Algorithm 2: Fire Next Activity( proIns). 

1: Set getFired as FALSE 
2: while !getFired do 
3:    if andList IS NOT INITIAL then   

4:       selectedActivity  Random Select Activity wrt 
priority attribute from andList   

5:    else

6:       selectedActivity  Random Select Activity wrt 
priority attribute from tokenList 

7:   endif
8:    Get originator from originatorList 

9: 
  if predecessorList of selectedActivity IS NOT 
INITIAL then   

10:      tokenized  Check Tokenization at predecessorList 
of selectedActivity 

11:      Random Generate noise from [0, 100] 
12:      if !tokenized AND noise < NOISE_FACTOR then   
13:         fireCount++ 
14:         Set timestamp wrt fireCount 

15: 
        Generate newEventLog wrt {timestamp, 
originator, selectedActivity, proIns} 

16: 
       Set tokenized attribute of selectedActivity as 
FALSE 

17:         Set fired attribute of selectedActivity as TRUE 

18: 
        Refresh Lists(andList, xorList, tokenList) wrt 
selectedActivity and its successorList 

19:        Set getFired as TRUE 
20:        if selectedActivity IS SINK then   
21:           Set sinkActivityFired as TRUE    
22:           Reset Lists(andList, xorList, tokenList) 

23: 
          Reset Attributes(tokenized, fired) of all activity 
at activityList   

24:         endif 
25:      endif 
26:    else 
27:        fireCount++
28:        Set timestamp wrt fireCount 

29: 
       Generate newEventLog wrt {timestamp, 
originator, selectedActivity, processInstance} 

30: 
       Set tokenized attribute of selectedActivity as 
FALSE 

31:         Set fired attribute of selectedActivity as TRUE

32: 
       Refresh Lists(andList, xorList, tokenList) wrt 
selectedActivity and its successorList 

33:         Set getFired as TRUE 
34:        if selectedActivity IS SINK then   
35:           Set sinkActivityFired as TRUE    
36:           Reset Lists(andList, xorList, tokenList) 

37: 
          Reset Attributes(tokenized, fired) of all activity 
at activityList   

38:         endif 
39:    endif 
40: endwhile 

4 EXPERIMENTAL ANALYSIS 
AND DISCUSSION 

As benchmark process models, we use the xor, and, 
combined xor-and, and nested xor-and processes, 
which are also referenced in (Bayomie et al., 2016). 
According to the process models given in Figure 1, 
process profiles are prepared and synthetic event log 
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Figure 1: Benchmark Processes for Evaluation as referenced in (Bayomie et al., 2016). 

are generated according to given number of cases 
(maxProIns) as given in Table 2.  

Table 2: Benchmark Process Characteristics according to 
Candidate (DCI and E-Max) and Proposed Approach 
synLogGen. 

 

As given in Section 4.2, we use two previous 
studies, DCI (Bayomie et al., 2016) and E-Max 
(Ferreira & Gillblad, 2009) that priorly worked on 
the benchmark processes in (Bayomie et al., 2016), 
for performance comparison. For this reason, we 
present the process log generation parameters of 
these works in Table 2. The basics of these two 
studies are as follows:  
 DCI (deducing case identifiers) generates a set of 

labeled event log by considering all labeling 
possibilities for each activity in the event log 
(Bayomie et al., 2016). Additionally, a ranking 
score that indicates the degree of trust in labeling 
of events within each log is assigned (Bayomie et 
al., 2016).  

 E-Max (Expectation-Maximization) is a greedy 
algorithm that mines the unlabeled event log 
(Ferreira & Gillblad, 2009). It takes the local 
maximum to generate one labeled event log.  

4.1 Analysis on Compatibility of Event 
Logs with Intended Process Model 

After the event logs are generated by our solution, in 
order to analyze the compatibility of the generated 

logs with the target model, we extract the process 
back from the generated logs and compare with the 
target model. We used the process mining approach 
given in (Esgin, Senkul & Cimenbicer, 2010). The 
underlying process discovery approach is composed 
of two components: from-to chart and process flow 
branch discovery. From-to chart is an analytical tool, 
which is basically used in monitoring material 
handling routes between operations, machines, 
departments or work centers on the production floor 
(Esgin & Senkul, 2009). It is adapted to monitor 
transitions among activities occurred in process 
instances and to figure out if there exists any 
specific order of the occurrences for representing in 
process model (Esgin, Senkul & Cimenbicer, 2010).  

We aim to compare the quality of mined process 
models by completeness and soundness metrics, 
which are defined as follows: 
 Completeness of the process model is the ratio of 

the traces in the event log that may be the result 
of some enactment at the corresponding process 
model (van Dongen, Dijkman & Mendling, 
2008). The completeness metric is similar to 
fitness defined in (Jagadeesh Chandra Bose & 
van der Aalst, 2012), (Rozinat & van der Aalst, 
2008) and recall defined in (Becker & Laue, 
2012) and (Gerke, Cardoso & Claus, 2008). 

 Soundness measures the ratio of the activity 
enactments within the corresponding process 
model that find some correspondence in the 
event logs (van Dongen, Dijkman & Mendling, 
2008). The soundness metric is similar to 
minimality or behavioral appropriateness defined 
in (Maruster, Weijters & van der Bosch, 2006) 
and precision defined in (Jagadeesh Chandra 
Bose & van der Aalst, 2012), (Becker & Laue, 
2012) and (Gerke, Cardoso & Claus, 2008). 
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Figure 3: Process Maps per Candidate Process Variant (candidatei) as referenced in (Yilmaz & Karagoz, 2015), (Buijs & 
Reijers, 2014) and (van der Aalst, 2011). 

As shown in Figure 2, the combination of 
proposed approach synLogGen with the process 
discovery approach introduced in (Esgin, Senkul & 
Cimenbicer, 2010) captures the process behavior at a 
high accuracy degree, having an average 
completeness value over 95%. Respectively, XOR 
gateways at nested xor-and process results in a more 
spaghetti-like process model with a 38.8% 
soundness value. 

 

Figure 2: Completeness and Soundness Values per 
Benchmark Process (according to proposed approach 
synLogGen). 

In addition to the benchmark process models 
referenced in (Bayomie et al., 2016), we aim to 
analyze the performance of proposed approach at 
handling relatively complex business processes. 
Hence the proposed approach synLogGen is applied 
and evaluated on the Environmental Permit 
Application business process in Configurable 
Services for Local Governments (CoSeLoG) project, 
which investigates the similarities and deviations 
between processes of different municipalities in 
Netherlands (Yilmaz & Karagoz, 2015; Buijs & 
Reijers, 2014; van der Aalst, 2011).  

According to the process maps of candidate 
process variants given in Figure 3, process profiles 
are designated, and event logs are generated 
according to varying noise factor, i.e. noise in [%0.5, 
%10] value range. Then process discovery is 

performed for each noisy event log dataset. 
As shown in Figure 4 and 5, the combination of 

proposed approach synLogGen with the process 
mining algorithm introduced in (Esgin, Senkul & 
Cimenbicer, 2010) is robust to the noise factor effect 
at event log generation and process discovery. 
According to completeness metric, complex 
candidate process variants with relatively deeper 
process maps (i.e. candidate1 figured within 10-level 
and candidate3 within 7-level process map) have a 
%1.46 average loss per noise factor increment, while 
candidate2 figured within a lasagna-like structured 
process map has a %0.65 average loss. 
 

 

Figure 4: Noise Factor Effect on Process Discovery with 
respect to Completeness. Although spaghetti-like complex 
process variants with deeper process maps are potentially 
more vulnerable to the increments at noise factor in the 
first glance, a %1.46 average loss at completeness values 
implies a relatively robust approach that appropriately 
extracts relatively dominant process behaviors at a noisy 
process history. 

Similar outcomes are valid for soundness metric 
such that, while candidate1 and candidate3 have a 
%1.36 average loss per noise factor increment, 
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candidate2 performs a mitigated average loss of 
%0.43. 
 

 

Figure 5: Noise Factor Effect on Process Discovery with 
respect to Soundness. 

4.2 Log Generation Analysis in 
Comparison to the Literature on 
Compatibility of Event Logs with 
Intended Process Model 

Since the process event logs generated by DCI and 
E-Max in (Bayomie et al., 2016) are not available, 
we follow an indirect way of performance 
comparison. Therefore, process discovery 
performance is evaluated according to mined Petri 
nets given in (Bayomie et al., 2016). Although the 
accuracy of the discovered process depends on both 
log generation and process discovery method used, it 
gives a hint as to the quality of the generated logs.  

As the accuracy metric, dissimilarity metric 
(dissim) introduced in (Esgin & Senkul, 2011) is 
applied to measure the graph-based structural 
deviance between reference process models and 
mined process behaviors. Underlying dissimilarity 
metric is built on a vector model from information 
retrieval and an abstraction of process behavior 
called process triple. Process triple is a set that covers 
activity existence and interactions in terms of 
successors and predecessors among activities (Esgin 
& Senkul, 2011).  

According to dissimilarity values given in Figure 
6, DCI and the combination of proposed approach 
synLogGen with the process discovery approach in 
(Esgin, Senkul & Cimenbicer, 2010) are respectively 
more accurate in distilling the process behavior given 
in the reference process models than E-Max. While 
average dissimilarity value of E-Max is 

approximately 0.554, the average values of both DCI 
and proposed approach synLogGen highlight less 
discrepancies between the intended process 
behaviors given at reference process model and 
discovered behaviors (i.e. 0.151 and 0.14 
respectively). 
 

 

Figure 6: Dissimilarity Values per Benchmark Process. 
Higher dissimilarity value implies a strong distinction 
between reference and mined process model (i.e. 0: 
exactly the same, 1: quite distinct). 

In addition to dissimilarity metric, we aim to 
analyze the understandability of mined process 
models in terms of connectivity. Connectivity is the 
average number of transitions (|T|) per activity (|A|) 
at the corresponding process model (|T|/|A|). As 
shown in Figure 7, candidate approaches, i.e. DCI 
and E-Max, discover more spaghetti-like Petri nets 
with higher connectivity values. Alternatively, 
proposed approach synLogGen discovers more 
structured and lasagna-like process models 
according to less deviation with reference process 
model. 
 

 

Figure 7: Connectivity Values per Benchmark Process. 
While higher connectivity values of candidate approaches, 
DCI and E-Max, imply spaghetti-like process model 
discovery, less deviance between reference and proposed 
apparoach synLogGen emphasizes more structured 
process models. 
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5 CONCLUSION AND FUTURE 
WORK 

Process-aware information systems record detailed 
process execution information concerning the 
processes they support. Typically, the assignment of 
case identifiers to the process instances is missing, 
due to data centric architecture of the underlying 
information systems (van der Aalst, 2006). In this 
paper, we introduce an approach to simulate 
synthetic event log from scratch rather than repairing 
incomplete unlabeled event log. We use as input the 
process profile that defines the activity vocabulary, 
i.e. a list of valid activity labels, types and occurrence 
priority, and Petri net in tabular form. Proposed 
approach synLogGen also takes both noise and 
surprise effects into account at applying Petri net 
firing rule. According to completeness and soundness 
outcomes obtained at the experimental runs with 
varying noise factor values, the combination of 
proposed approach synLogGen with the process 
discovery approach introduced in (Esgin, Senkul & 
Cimenbicer, 2010) is robust to the corresponding 
noise effect at distilling the process behaviors in a 
relatively noisy process execution environment. 

In the evaluation step, four process models that 
are referenced in (Bayomie et al., 2016) are 
determined as benchmark processes. Two prior 
approaches, i.e. DCI given in (Bayomie et al., 2016) 
and E-Max given in (Ferreira & Gillblad, 2009), 
which priorly handled the corresponding benchmark 
processes, are selected as candidate. According to the 
accuracy aspect, DCI and the combination of 
proposed approach synLogGen with the process 
discovery approach introduced in (Esgin, Senkul & 
Cimenbicer, 2010) are respectively more accurate 
than E-Max in terms of dissimilarity metric (Esgin & 
Senkul, 2011), which measures the discrepancies 
between reference process model and mined process 
behaviors on a graph-based structural similarity 
measurement. Additionally, proposed approach 
synLogGen generates more structured and lasagna-
like process models with respect to moderate 
connectivity values and less variance with reference 
process model. 

As the future work, we intend to implement an 
integer-programming (IP) based synthetic log 
generation, in which the process behaviors at 
reference process model and the activity frequencies 
at the unlabeled event log act as the main constraints. 
The corresponding IP-based approach will simulate 
maximal process traces without any relaxations at 
these constraints. 
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