
CMS-oriented Modeling Languages: An Attempt to Assist

Model-driven Development in CMS Domain

Vassiliki Gkantouna1 a and Giannis Tzimas2 b
1Department of Computer Engineering and Informatics, University of Patras, Greece

2Department of Electrical and Computer Engineering, University of Peloponnese, Greece

Keywords: Web Modeling, Content Management Systems, CMS-based Web Applications, Model-driven Development.

Abstract: Nowadays, Content Management Systems (CMSs) are widely used as the underlying development platform

for building complex Web applications. However, despite their widespread use, existing MDWE

methodologies have focused mainly on traditional Web applications, and thus, they cannot support the model-

driven development of CMS-based Web applications. Given that MDWE methodologies are driven by the

expressiveness of the modeling languages which are being used within their context, the failure of the existing

MDWE methodologies to support the automated development of CMS-based Web application is probably

caused by the absence of modeling languages able to capture the particular development context of CMS

platforms. To address this problem, we propose a new genre of modeling languages, called CMS-oriented

modeling languages, which are particularly defined over the specific development context of CMS platforms.

We provide a general framework to support their definition in three main stages, involving the analysis of the

target CMS platform, the creation of its domain model and the formal definition of the CMS-oriented

modeling language. In this way, the proposed framework supports the definition of CMS-oriented modeling

languages, which can lay the foundation for the development of MDWE methodologies for CMS-based Web

applications, thus enabling model-driven development in CMS domain.

1 INTRODUCTION

Content Management Systems (CMSs) play an

increasingly important role in the evolution of the

World Wide Web, since almost half of the websites

today use some form of CMS as their main

development platform (W3Techs, 2019). They

provide development teams with standardized

software platforms that significantly facilitate and

speed up the development of Web applications, the

so-called CMS-based Web applications, while

maintaining high quality and low-cost

implementation without requiring extensive

programming expertise.

Despite the widespread use of CMSs, the

development of CMS-based Web applications is still

entirely performed via the manual configuration and

customization of the underlying CMS platform.

However, as the complexity of CMS-based Web

applications is increasing, these tasks are becoming

more and more troublesome and error-prone, often

a https://orcid.org/0000-0003-1612-2822
b https://orcid.org/0000-0002-4073-7256

resulting in higher development and maintenance

costs. On this basis, we argue that the adoption of the

model-driven paradigm in CMS development,

supporting the automated generation of CMS-based

Web applications, can be of a great potential. More

specifically, in the model-driven approach, CMS

users will be able to design CMS-based Web

applications from a higher level of abstraction, and

then, their design models will be turned into running

applications, not based on manually performed

repetitive, tedious and error-prone development tasks

such as configuration and customization, but rather,

based on automated model transformations that end-

up with automatic code generation. This can

significantly increase prototyping speed and

eliminate errors that could have been probably

derived from the traditional manual development

process, while increasing productivity, consistency

and overall application quality.

To support the adoption of the model-driven

development paradigm in CMS domain, in this paper,

372
Gkantouna, V. and Tzimas, G.
CMS-oriented Modeling Languages: An Attempt to Assist Model-driven Development in CMS Domain.
DOI: 10.5220/0008363103720379
In Proceedings of the 15th International Conference on Web Information Systems and Technologies (WEBIST 2019), pages 372-379
ISBN: 978-989-758-386-5
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

we address a fundamental issue that is currently

hindering its realization. This issue refers to the

failure of the existing Web modeling languages to

capture the development context of CMS platforms,

and thus, their inability to provide a modeling

framework to support the model-driven development

of CMS-based Web applications. This is mainly due

to the fact that these languages are generic (they have

been designed for the general case of Web

applications where development starts from scratch

and not based on a preconfigured software platform

such as CMSs), and thus, they provide generic and

abstract notation which is actually quite far from the

standard development context of CMS platforms.

This makes it hard for designers to determine how

CMS-based Web applications could be modeled

within the context of these languages, and

subsequently, how the design models could be

automatically turned into CMS source code

implementation, given that there is not any kind of

mapping between their modeling framework and the

actual development context of CMSs. To address this

problem, we introduce a new genre of modeling

languages, called CMS-oriented modeling languages,

which are specifically designed for the category of

CMS-based Web applications. More specifically,

they are designed in such a way so that their modeling

framework is in direct correspondence with the

particular development context of the target CMS.

This serves a twofold purpose. First, it allows for a

modeling environment in which designers can

produce the design model of CMS-based Web

applications in terms of modeling primitives that

correspond to the actual elements supported by the

target CMS with which they are already familiar with.

Second, it facilitates the development of tools to

perform the automated interpretation of design

models into running CMS-based Web applications,

since now there is a clear mapping between modeling

and implementation level, facilitating the transition

from modeling to source code level. Based on this, we

argue that the proposed genre of CMS-oriented

modeling languages is a significant first step towards

laying the foundations of model-driven development

in CMS domain in order to support the automated

generation of CMS-based Web applications.

To support the definition of CMS-oriented

modeling languages for the various CMS platforms

available today, we propose a general framework

comprising by three major stages: (i) the analysis of

the target CMS platform, (ii) the creation of its

domain model including all the key elements of its

development context that need to be captured by the

CMS-oriented modeling language, and (iii) the

formal definition of the CMS-oriented modeling

language, i.e., the formalization of its modeling

primitives. In this way, the proposed framework

supports the definition of modeling languages which

have the expressiveness to capture the development

context of CMSs, and thus, represent the CMS-based

Web applications as models consisting of modeling

primitives which are in direct correspondence with

the actual CMS-specific elements of the target CMS,

making the transition from modeling to source-code

level considerably easier and enabling the model-

driven development in CMS domain.

To support our case, we present a case study in

which we have applied the proposed framework on

the popular open-source Joomla! CMS platform,

resulting in the definition of a language for modeling

Joomla!-based Web applications. The remaining of

this paper is organized as follows: Section 2 provides

an overview of related work and discusses the

contribution of this work. Section 3 presents an

overview of the proposed framework, while Section

4 presents in detail the case study for the Joomla!

CMS. Finally, Section 5 discusses conclusions and

future work.

2 RELATED WORK

Despite the widespread use of CMSs and their

relevant acceptance in the global market, the vast

majority of Model-Driven Web Engineering

(MDWE) methodologies (Rossi et al., 2016) have so

far ignored the domain of CMSs and they have been

primarily designed to support the development of

traditional Web applications in which development

starts from scratch and not based on a preconfigured

software platform such as CMSs. This makes them

inappropriate for supporting model-driven

development of CMS-based Web applications. It is

only during the last decade that a limited number of

MDWE methodologies has emerged for addressing

model-driven development in CMS domain. Among

them, in (Trias, 2014), authors present a model-driven

approach for the automated migration of websites

built on the open-source CMS platforms of Drupal,

Joomla! and WordPress. In (Souer et al., 2009),

authors argue that customizing CMS-based Web

applications is a difficult task and that there is a gap

between the requirements analysis in this type of Web

applications and its implementation. Therefore, they

propose a model-driven method to configure

automatically a CMS-based Web application based

on requirements. In (Saraiva and Silva, 2009), authors

present a model-driven method for the development

CMS-oriented Modeling Languages: An Attempt to Assist Model-driven Development in CMS Domain

373

of CMS-based Web applications based on two

modelling languages situated at different abstraction

levels, i.e., the CMS Modelling Language (CMS-ML)

at a higher abstraction level and the CMS

Intermediate Language (CMS-IL) at a lower one.

This method is composed of two phases: the

modelling phase, where the CMS-based Web

application is modelled at two different abstraction

levels, and the deployment phase, where the

deployment artefacts that implement the CMS-based

Web application are generated from the model

defined at lower abstraction level in the previous

phase. However, in all aforementioned approaches, a

major problem is that they all have model

transformation issues which hinders their widespread

adoption by the CMS community. Since they rely on

modeling frameworks which are not directly related

to the development context of the target CMS, it is

difficult to automatically transform the design model

into running CMS-based Web application.

At this point lies the contribution of the proposed

framework. Our main goal is to define modeling

languages having a modeling framework which is in

a 1:1 correspondence with the actual CMS

development context, so that the transition from

modeling to source-code level will become

considerably easier. This clear mapping between

modeling and implementation level will significantly

facilitate the development of tools to perform the

automated interpretation of design models into

running CMS-based Web applications, and thus,

enable model-driven development in CMS domain.

3 PROPOSED FRAMEWORK

In this section, we present an overview of the

proposed framework for supporting the definition of

CMS-oriented modeling languages. It is composed of

three major stages as depicted in Fig. 1. As one can

notice, the first two stages involve (i) the analysis of

the target CMS platform and (ii) the creation of its

domain model in an effort to determine its particular

development context. This is required in order to

acquire all the necessary information that will allow

us subsequently in the third stage to define a modeling

framework for the CMS-oriented modeling language

that will be CMS-specific, i.e., it will be composed of

modeling primitives which will be in a 1:1

correspondence with the actual elements supported

by the CMS development context.

The first stage involves the analysis of the target

CMS platform under a number of different

viewpoints in order to determine the key elements of

its development context. These viewpoints are the

following: (i) CMS architecture allowing the

identification of the standard building blocks (i.e., the

basic content item types) provided to developers for

composing the pages of CMS-based Web

applications, (ii) CMS database schema allowing the

identification of the underlying data schemas upon

which the standard building blocks operate so that we

can acquire knowledge on how the modeling

elements corresponding to them will be mapped into

the development context of the CMS in order to

facilitate the transition from modeling to source code

level, (iii) CMS front-end interface design

determining how the target CMS supports the

organization of pages in terms of the available content

item types, so that we can acquire knowledge on how

to conceptualize the page template within the

modeling framework of the proposed CMS-oriented

modeling language, and (iv) CMS core features

determining the built-in functionalities provided by

the target CMS in order to define modeling primitives

for capturing such features.

Subsequently, the second stage involves the

creation of the domain model for the target CMS

platform, including the detail description of each one

of its key elements identified in the previous stage.

These elements include the content types supported

by the target CMS, the content items defined over

these types, the built-in front-end views for

publishing these items, etc. For each of these

elements, the domain model accommodates a detailed

list of their attributes and the relationships existing

among them. To collect all these information, a

thorough inspection of the CMS back-end

administration environment must be performed.

At the end of these two first stages, one can

acquire all important information about the

development context of the target CMS, providing

knowledge on how to shape the modeling framework,

(i.e., the various modeling primitives) of the CMS-

oriented modeling framework in the next stage so that

these two can be in 1:1 correspondence.

Finally, the third stage involves the formal

definition of the CMS-oriented modeling language

based on the specifications elaborated in the two

previous stages. More specifically, for every CMS-

specific element identified in the CMS domain

model, a corresponding modeling primitive is

defined. Their formalization can be realized by using

the notation of existing modeling languages (which

will be extended for modeling CMS-based Web

applications) or by defining a whole new syntax and

WEBIST 2019 - 15th International Conference on Web Information Systems and Technologies

374

Figure 1: Overview of the proposed framework.

notation. In this way, the proposed framework

supports the definition of CMS-oriented modeling

languages in which the modeling framework is in a

1:1 correspondence with the particular development

context of the target CMS platform, making the

transition from modeling to source-code level

considerably easier, and thus, facilitating

significantly the development of tools for the

automated interpretation of design models into

running CMS-based Web applications.

In order to exemplify the concepts behind the

proposed framework, in the next section, we present

its application on the popular open-source Joomla!

CMS platform.

4 CASE STUDY: THE JOOMLA!

CMS

With more than 3% of the Web running on Joomla!

and a CMS market share of more than 6%, Joomla!

powers the web presence of millions organizations

worldwide and is the second most used CMS platform

on the Web. Therefore, to illustrate the potential of

our approach, we present the application of the

proposed framework on the Joomla! CMS resulting in

the definition of a modeling language oriented

towards Joomla!-based Web applications.

4.1 Stage 1: Analysis of Joomla! CMS
Platform

In this stage, we performed the analysis of Joomla!

under the following viewpoints in order to determine

the key elements of its development context.

Architecture Viewpoint: The main building blocks

provided to web developers for building Joomla!-

based Web applications are components and modules.

Components are the main functional units of Joomla!,

which are used to render the main content area of the

page. Each component has one or more "views" that

control how the content is displayed on the main

content area of the page. Modules are typically used

to render content in the secondary content areas of a

page, i.e., peripherally from the main content area. As

one can find in (Marriott and Waring, 2013), Joomla!

supports various categories of components and

modules.

Database Schema Viewpoint: We have identified

and recorded all the standard data schemas which are

required for supporting the creation, management and

operation of the various types of components and

modules supported by Joomla!. For each table

included in the database schema, we have identified

its properties and the relationships existing among

them. This information will subsequently guide us on

how to properly shape (in terms of attributes and

relationships) the various modeling primitives of the

Joomla!-oriented modeling language in order to

facilitate transition from modeling to implementation

level. For example, the display of a menu module on

CMS-oriented Modeling Languages: An Attempt to Assist Model-driven Development in CMS Domain

375

Figure 2: The key elements of Joomla! CMS.

a page involves 4 different tables of the underlying

database. As a result, when we will subsequently

define a modeling primitive for representing the menu

module, we will know how this modeling element

must be mapped into the development context of

Joomla!, e.g., on which tables of the underlying

database schema a model compiler must create

records, in order to automatically create this menu.

Figure 3: Template of a page in Joomla!-based Web

applications.

Front-end Design Viewpoint: The template (i.e., the

structure) of pages in Joomla!-based Web

applications is depicted in Fig. 2, where one can

notice a page is composed by exactly one component

rendering content in its main content area and by a

number of modules rendering content in its secondary

content areas, i.e., in the sidebars or at the top and

bottom area of the page. Subsequently in the third

stage, we will rely on this template in order to

conceptualize the structure of pages within the

context of the Joomla!-oriented modeling language.

Core Features Viewpoint: Joomla! provides a large

number of built-in features, such as user management,

access control, content archiving, RSS feeds, etc. (the

detail list can be found in (Marriott and Waring,

2013)). Subsequently, we will take into account all

these built-in functionalities during the formalization

of the modeling framework of the proposed Joomla!-

oriented modeling language, so that it can provide the

modeling capabilities for capturing these built-in

features too.

4.2 Stage 2: Creation of the domain
model for the Joomla! CMS

In this stage, we performed a thorough inspection of

the Joomla! back-end administration environment,

focusing particularly on the configuration settings

used for the creation, management and publishing of

its key elements. Fig. 3 presents these elements where

one can notice the basic content types supported by

Joomla! CMS, the content items defined over these

types, and the built-in front-end views (i.e.,

components and modules) used for publishing these

items. For each of these elements, we have identified

and recorded the detail list of its properties, the

configuration parameters used by the built-in

mechanisms supporting its creation, management and

publishing, the data schemas upon it operates and its

relationships with other elements.

WEBIST 2019 - 15th International Conference on Web Information Systems and Technologies

376

Figure 4: The properties of the Single Article component.

All this information has been documented in the

domain model of Joomla! CMS platform which is

freely available in (Gkantouna, 2019). An instance of

the domain model is presented in Fig. 4 which

presents the properties of the “Single Article”

component along with a short description of them.

It is important to mention that since the domain

model produced in this stage provides a

comprehensive documentation of the development

context of Joomla! CMS, it can be used as a reference

model for the definition of new modeling languages

oriented towards the Joomla! CMS platform or even

for developing extensions to existing modeling

languages for Joomla!-based Web applications.

In the next stage, we rely on the information

provided in the domain model in order to produce the

definition of the modeling primitives of the proposed

Joomla!-oriented modeling language.

4.3 Stage 3: Formal Definition of the
Joomla!-oriented Modeling
Language

In this stage, we produce the formal definition of the

CMS-oriented modeling language based on the

specifications elaborated in the two previous stages.

More specifically, for every key element previously

identified in the domain model of Joomla! CMS, we

define its corresponding modeling primitive, having

as attributes and relationships all the properties and

relationships documented for this element in the

domain model. This way, there is a direct

correspondence between the modeling primitives and

the actual elements specified in the development

context of Joomla!.

To formalize the modeling framework of the

proposed Joomla!-oriented modeling language, we

have adopted the notation of WebML and formalize

the specification of the various modeling primitives

by means of WebML elements. There are two main

reasons for choosing WebML. On one hand, WebML

is one of the most popular MDWE approaches so far

that is being used in the industry (Rossi et al., 2016).

On the other hand, for every key element of Joomla!

that need to be captured by the Joomla!-oriented

modeling language, WebML allows us to define two

equivalent representations of them, as follows:

 an intuitive visual formalism that can be easily

communicated among the members of the

development team, even by the non-technical

users which are actually the common case in

CMS domain,

 a textual formalism, i.e., an XML-based textual

specification of the captured component or

module type, including the detailed list of its

attributes as they have been identified in the

domain model of Joomla! CMS.

The main benefit of this dual representation of the

key elements of Joomla! CMS platform is that it

significantly facilitates the subsequent development

of a modeling environment to support: (i) the design

of Joomla!-based Web applications in terms of

intuitive visual representations (formalisms) of the

actual components and modules types specified in the

development context of Joomla! CMS platform, and

(ii) the mapping of the visual design models into

automated source-code implementations of Joomla!-

based Web applications, simply by providing the

corresponding textual formalism of the involved

visual formalisms into code generators.

CMS-oriented Modeling Languages: An Attempt to Assist Model-driven Development in CMS Domain

377

Figure 5: Conceptualization of page structure.

Additionally, it must be also noted that the use of

WebML for the definition of modeling primitives that

capture the development context of Joomla! CMS

results into the extension of WebML with new

modeling elements for Joomla!-based Web

applications.

4.3.1 Capturing the Standard Database
Schema of Joomla! CMS

Prior to the description of modeling primitives, it must

be noted that as data model of the proposed Joomla!-

oriented modeling language, we have adopted the

Entity-Relationship model. More specifically, we have

defined an entity for every table included in the

standard database schema of Joomla! CMS platform.

The relationships among the various tables of the

standard Joomla! database are also maintained as

relationships among their corresponding entities.

4.3.2 Capturing the Front-end Interface
Design of Joomla! CMS

We have relied on the page template described in Fig.

2 and we have conceptualized the structure of pages

within the modeling framework of the proposed

Joomla!-oriented modeling language as depicted in

Fig. 5, i.e., as the union of a “Modules” area containing

all the modules displayed on a page and a

“Component” area containing the Joomla! component

used for displaying the main content of the page.

4.3.3 Capturing Joomla! Key Elements
(Components and Modules)

For each type of Joomla! components and modules, we

have defined a corresponding modeling primitive

based on the information collected for this element in

the Joomla! domain model. For instance, Fig. 6

presents the modeling primitive defined for the login

module. As one can notice in Fig. 6, there is the front-

end presentation of the login module and its

corresponding visual and textual formalism in

WebML. The detail list of the modeling primitives

defined for all the types of Joomla! components and

modules can be found in (Gkantouna, 2019).

5 CONCLUSIONS AND FUTURE

WORK

In this paper, we have proposed a new genre of

modeling languages, called CMS-oriented modeling

languages, which are especially defined for the

category of CMS-based Web applications. We have

also presented a framework to support their defini-tion

in three main stages. The first stage involves the

analysis of the CMS platform in order to determine its

particular development context. Then, the second stage

involves the creation of the domain model for the target

CMS, including all the key elements of its

development context that need to be captured by the

CMS-oriented modeling language. Finally, the third

involves the definition of the CMS-oriented modeling

language, i.e., the formalization of its modeling

primitives, based on the specifications elaborated in

WEBIST 2019 - 15th International Conference on Web Information Systems and Technologies

378

Figure 6: Modeling primitive (visual and textual formalism) for the login module.

the previous two stages. In this way, the proposed

CMS-oriented modeling languages have the

expressiveness to represent CMS-based Web

applications as models consisting of modeling

elements which are in direct correspondence with the

elements specified in the actual development context

of the target CMS, making the transition from

modeling to source-code level considerably easier,

enabling the model-driven development in CMS

domain. To support our case, we have applied the

proposed framework on the popular open-source

Joomla! CMS platform, resulting in the definition of a

modeling language oriented towards Joomla!-based

Web applications.

In near future, we are experimenting on developing

model compilers which given as input models

specified in the proposed Joomla!-oriented modeling

language, they can automatically transform them into

source-code implementation of running Joomla!-based

Web applications. We also plan to develop CMS-

oriented modeling languages for other popular CMS

platforms, such as Drupal and WordPress.

REFERENCES

Gkantouna, V. Content Management Systems Modeling,

https://alkistis.ceid.upatras.gr/research/modeling/pattern

s, last accessed 2019/02/01.

Gkantouna, V., Tsakalidis, A.K., Tzimas, G.: Automated

Analysis and Evaluation of Web Applications Design:

The CMS-based Web Applications Case Study.

WEBIST 2016: 130-139

Marriott, J., Waring, E.: The Official Joomla! Book, 2nd ed.,

Boston: Addison-Wesley Professional, 2013

Rossi, G., Urbieta, M., Distante, D., Rivero, J.M., Firmenich,

S., “25 Years of Model-Driven Web Engineering: What

we achieved, what is missing”, Clei Electronic Journal,

Vol. 19, No. 3, (2016)

Saraiva, J. D. S., & Silva, A. R. DA.: Development of CMS-

Based Web-Applications Using a Model-Driven

Approach. In 4th International Conference on Software

Engineering Advances (pp. 500–505). doi:10.1109/

ICSEA.2009.79, (2009)

Souer, J., Kupers, T., Helms, R., & Brinkkemper, S.: Model-

Driven Web Engineering for the Automated

Configuration of Web Content Management Systems. In

Springer-Verlag (Ed.), ICWE 2009 (pp. 124–135).

Heidelberg.

Trias, F.:“An ADM-Based Method for Migrating CMS-

Based Web Applications”, PhD thesis, Universidad Rey

Juan Carlos, (2014).

Web Technology Surveys, Historical yearly trends in the

usage of content management systems for websites,

https://w3techs.com/technologies/history_overview/cont

ent_management/all/y, last accessed 2019/02/01.

CMS-oriented Modeling Languages: An Attempt to Assist Model-driven Development in CMS Domain

379

