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Abstract: The experience of flow has been centrally linked to peak task performances and heightened well-being. To 

more effectively elicit these outcomes, flow is increasingly studied using neurophysiological measures. For 

example, portable EEG is employed to enable automatic state detection required for adaptive system design. 

However, so far, there is a lack of highly diagnostic findings, and moderately diagnostic ones relate more 

strongly to a central flow pre-condition – namely optimal task difficulties. Unfortunately, even these metrics 

might be infeasible in real-world scenarios and for portable EEG systems without midline electrodes. In this 

work, we discuss how frequency band personalization and separation could provide options to overcome these 

problems. Results from an experiment with a task manipulated in difficulty highlight that upper Alpha and 

Beta ranges show differentiating patterns to their lower frequency counterparts (i.e. within bands). These sub-

bands could be used to detect instances of higher flow and optimized difficulty using portable EEG. 

1 INTRODUCTION 

Flow, the experience of effortless attention, peak task 

performance and heightened well-being is deemed an 

individually beneficial experience and also a 

desirable state from an organizational perspective 

(Ceja and Navarro, 2012). As the requirements for 

flow are complex, flow facilitation at work is still a 

central challenge (Ceja and Navarro, 2012). One 

promising avenue to study flow and to advance the 

development of flow-adaptive support systems is to 

use electroencephalographical (EEG) measures 

(Cheron, 2016; Harris et al., 2017). EEG provides 

comparatively low cost, high portability (e.g. wireless 

EEG headsets) and high temporal resolution 

(Blankertz et al., 2016). Nonetheless, empiric EEG 

results regarding flow have so far been short and have 

shown conflicting results. For example, opposing 

patterns of frontal Alpha activity with increased flow 

have been reported (e.g. Berta et al., 2013; Léger et 

al., 2014; Ewing et al., 2016; Katahira et al., 2018). 

Overall, so far, no robust neural marker of flow has 

been identified, despite shared conceptions that a 

distinctive experience like flow ought to have some 

representative underlying neural configuration 

(Cheron, 2016; Harris et al., 2017). One of the closest, 

yet not sufficient approaches to identify intensified 

flow comes from the detection of situations with 

moderate task demands. This is derived from research 

on mental workload and the reverse inference that a 

task with too low or too high demands is unlikely to 

elicit flow (Csikszentmihalyi, 1996). The diagnostic 

potential is given by observations of frontal midline 

Theta increases with task demands, or by posterior 

Alpha reductions with increasing task demands 

(Borghini et al., 2014). Despite these advances, the 

transferability of laboratory findings – particularly for 

flow – is still limited, in particular because some of 

the aforementioned features show limitations through 

confounds with prolonged task exposure (e.g. Theta 

power increases with task duration), natural behavior 

(e.g. posterior Alpha blocking through visual 

stimulation), and topographical localization (e.g. 

Theta changes are strongest over midline positions). 

The latter is important, as portable EEG is often using 

few electrodes in non-uniformly distributed positions.  

To extend the work on unobtrusive, automated 

flow detection through portable EEG devices, we 

propose that through a refined frequency separation 

approach, (1) refined empiric contributions can be 

made to the research on flow neurophysiology, (2) 

new avenues to observe the concept of neural 

efficiency during flow are opened, and (3) 

alternatives to the prominent Theta and Alpha 

markers for mental workload can be derived. 
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2 THEORETIC BACKGROUND 

Flow research has found the state to occur remarkably 

similar across numerous contexts like arts, gaming, 

work, or sports (Csikszentmihalyi, 1996; Moller et 

al., 2010). Flow theory describes the experience along 

nine dimensions, that are classified in order of 

occurrence (cf. Csikszentmihalyi, 1996  – Figure 1).  

 

 

Figure 1: Flow Theory. 

Among the antecedents, the optimal balance 

between perceived difficulty and an individuals’ 

skills has played a major role in explaining how 

experiences might range from boredom in very easy 

tasks to anxiety in very hard tasks (Csikszentmihalyi, 

1996). Due to its central place in flow theory, the 

manipulation of a task’s difficulty, has been primarily 

employed for the experimental flow elicitation 

(Moller et al., 2010), as it has been in workload 

contexts, albeit not with a focus on optimal 

difficulties. Markers from workload research have 

already been employed in flow research and have for 

example led to conclusions of increased frontal Theta 

levels in flow (Katahira et al., 2018), potentially even 

with a maximum in higher flow (Ewing et al., 2016). 

A second stream in neurophysiology research has 

focused on elucidating whether or not flow is 

represented by neural activity reductions. In one 

theoretic instance, it has been proposed that during 

flow, neural activity in frontal brain regions might be 

downregulated to shift explicit demand processing in 

frontal regions to implicit and automated processing 

of learned behaviours in posterior regions (Transient 

Hypofrontality – Dietrich, 2004). While this approach 

has been criticized to be overly simplistic (Harris et 

al., 2017), extensions of a reductionist understanding 

have proposed that still, some brain regions would 

show reduced activation during flow, as only areas 

crucially necessary to meet the task demands would 

be activated. Such an optimization could make a way 

to experience highly automated and error-free task 

processing (Neural Efficiency Hypothesis – (Cheron, 

2016; Harris et al., 2017). Following both 

propositions, in the EEG Alpha band activity, as the 

prototypical inhibitory rhythm during wakefulness, 

could be the measure of choice to identify neural 

configurations during flow (Cheron, 2016). In 

relation to this, while some studies find increased 

Alpha power with higher flow self-reports (Léger et 

al., 2014), within the difficulty manipulation (DM) 

group comparison studies, results point more to 

Alpha activity decreases with increasing task 

difficulty (Ewing et al., 2016; Katahira et al., 2018 

report the inverse relationship, but use amplitudes as 

unit of analysis). This highlights that there is still 

much to uncover to explain Alpha patterns in flow. 

In this article it is argued, that the refined 

specification of frequency band ranges might explain 

some of the previous differences and could open new 

avenues with additional explanatory potential and 

higher robustness of findings. Often in EEG research 

and in flow EEG research in particular, frequency 

band ranges are extracted using generalized, broad 

ranges (e.g. Theta 4-7.5 Hz or Alpha 7.5-12.5 Hz), 

despite evidence, that such generalized ranges can 

mask frequency specific changes (Klimesch, 1999). 

Importantly, evidence from laboratory experiments 

has highlighted that Alpha band components can 

show different and even sometimes opposing patterns 

(Klimesch, 1999). For example, by segmentation of 

personalized Alpha bands into three 2 Hz wide 

subcomponents, lower Alpha bands (Lo1 and Lo2) 

have been found to relate to general attentional 

demands and alertness (over the whole scalp) and the 

upper Alpha has been found to react to changes in 

task-specific processes (in topographically restricted 

regions) (Klimesch, 1999). 

As flow is not only repeatedly associated with 

cognitive demands in the form of working memory 

recruitment (i.e. Theta range activity), but also often 

in relation with attentional processes (Harris et al., 

2017), it would seem of high interest to employ Alpha 

band segmentation to not only identify regions of 

reduced neural activity, but perhaps even identify 

changes in global changes in attentional demands, 

and task-specific pattern changes. The need for band 

personalization has already been acknowledged in 

flow research (Berta et al., 2013; Ewing et al., 2016), 

yet no extensive evaluations have been completed, for 

example studying personalized, narrow, and multiple 

sub-bands. Such approaches would seem however to 

cover several conceptually related processes of flow 

like workload, attention and neural efficiency. 

 

• Difficulty – Skill Balance 

• Clear Goals 

• Unambiguous Feedback 

• Focused Concentration 

• Merging of Action & Awareness 

• Loss of Self-Consciousness 

• Perceived Control 

• Distortion of Time 

• Cognition (e.g., Ease of Use) 

• Affect (e.g., Enjoyment) 

• Behavior (e.g., Actual Usage) 

Consequences 

Flow  
Experience 

Antecedents 

CHIRA 2019 - 3rd International Conference on Computer-Human Interaction Research and Applications

184



3 METHOD 

In the herein presented study, the adaptation of a 

mental arithmetic DM task was chosen due to its pre-

validated nature in flow research (Katahira et al., 

2018). In this math task, the DM can be easily 

achieved by increasing or decreasing the number of 

digits that have to be summed in a fixed time frame 

(here 28s per trial – with 4s breaks between trials). 

The final result is in all cases a three-digit number, 

yet the number of digits is adapted based on 

performance (cf. Table 1). In the EASY condition, 

very simple equations are shown, that could only have 

the result 303 or 304. In the HARD condition, very 

hard equations are shown that always are at minimum 

9 levels higher (i.e. 9 digits more) than the level that 

is calibrated to have the optimal difficulty for each 

participant. Finally, in the OPTIMAL-Calc. 

condition, the equations are of a moderate difficulty 

as determined by an early calibration phase. Lastly, in 

the OPTIMAL-Chos. condition, participants can 

select the optimal task difficulty themselves. 

Table 1: Examples of the Math task Difficulties. 

EASY  
(Level = 0) 

OPTIMAL 
(Level = 2) 

HARD 
(Level = 16) 

100 + 1 + 
100 + 1 + 
100 + 2 

100 + 13 + 
100 + 22 + 
100 + 3 

100 + 35 + 22 + 16 + 2 + 
100 + 64 + 45 + 26 + 
100 + 25 + 51 + 31 

Study participants were sampled from a public 

student pool and received a compensation of 22 Euro. 

After a preparation phase (consent, sensor 

attachment, 5min eyes open resting and 1min eyes 

closed resting), an introduction to the math task was 

shown and participants could practice the task using 

the EASY condition. Afterwards, the task was shown 

in the OPTIMAL condition starting at level 1 in order 

to calibrate the optimal difficulty. Next, all four math 

task conditions were presented in randomized order 

(Williams Design). The preparatory and all following 

task conditions lasted for ca. 5 minutes. After each 

condition, self-reports were collected for perceived 

difficulty (1 item) and flow (10 item flow short scale 

– FKS – both instruments by Engeser and Rheinberg, 

2008). EEG data was collected with a saline-based 

14-channel Emotiv Epoc+ headset (256Hz sampling). 

Data was collected for 41 participants. Data from 

two participants who repeatedly failed control 

questions in the surveys were removed. For all self-

report variables, outliers were removed (>2 standard 

deviations – SD – from the construct mean). Next, 

Cronbach’s Alpha coefficients were inspected for the 

flow construct and found acceptable after one item 

was removed (0.80). The distribution normality was 

assessed (univariate Shapiro-Wilk tests) and 

supported for all conditions. 

Table 2: EEG Data Pre-processing Pipeline. 

Data Preparation (R) 

Step Parameters Ref. 

Data 

Extraction 

Baseline & Task 

Phases 
– 

Channel 

Centering 

Channel Mean 

Subtraction 
– 

Signal Processing (Matlab) 

Step Parameters Ref.  

Line Noise 

Removal 
50 Hz & 100 Hz Bigdely-

Shamlo et 

al., 2015 
Re-

Referencing 

Robust Common 

Average Reference 

Detrending 1 Hz High-Pass – 

Trim Outliers 800mV / 250ms  – 

Channel & 

Paroxysmal 

Artefact 

Removal 

Artefact Subspace 

Reconstruction 

(ASR) - Burst 

Criterion 10 SD 

Mullen et 

al., 2015 

Stationary 

Artefact 

Removal 

(Independent 

Components) 

AMICA - ICs: 

[Horizontal & 

Vertical Eye 

Movement, Blinks, 

Discontinuities] 

Mognon et 

al., 2011 

Feature Extraction (R) 

Step Parameters Ref. 

Processing 

Inspection 

Visual Comparison 

of Input & Output 
– 

Frequency 

Power 

Extraction 

(Morlet 

Wavelets) 

55 Frequencies,  

Range [3, 60], 

Wavelet Cycle 

Range [3,10] log. 

spaced with 

frequencies 

Cohen, 

2014 

dB Power 

Conversion 
10*log10(mV2/Hz) – 

Frequency 

Band 

Extraction 

Theta, Alpha & 

Beta Bands from 

IAF Peak 

Klimesch, 

1999 

Change Score 

Computation 

∆ = Task – Eyes 

Open Baseline 
– 

EEG data was processed primarily along the 

guidelines of Cohen (2014). 7 data sets had to be 

excluded due to recording errors, insufficient data 

quality, or lack of survey report data. The retained, 

complete sample for EEG analysis comprised 34 

participants. Data preparation, feature extraction, and 

analysis were conducted in R, signal processing and 
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artefact removal in Matlab (EEGLab). The automated 

EEG data preparation process is outlined in detail in 

Table 2. Signal data was additionally screened before 

and after signal processing to ensure no critical errors 

occurred in the pipeline. Parameters for the 

processing steps were tuned for the Epoc+ headset. 

For almost all feature aggregation steps median 

averaging was used to reduce the impact of outliers in 

the data (Cohen, 2014). 

Frequency bands were extracted following 

Klimesch (1999). To account for inter-individual 

differences, individualized Alpha frequency (IAF) 

peaks were identified. As Alpha is known to also vary 

regionally (being slower at anterior sites), yet as not 

all participants showed such clear peaks for all sites, 

a global IAF maximum was determined as lying 0.5 

Hz below the occipital Alpha maximum during an 

eyes-closed resting phase (cf. Figure 2).  

 

Figure 2: PSDs for one participant during an eyes-closed 

resting phase with pooled anterior (AF3, AF4, F3, F4, F7, 

F8, FC5, FC6), temporal (T7, T8), parietal (P7, P8), and 

occipital electrodes (O1, O2). Dots show regional peaks. 

 

Figure 3: Grand Average PSD for all participants during an 

eyes-closed resting phase with all 14 electrodes pooled, 

demonstrating the frequency band decomposition into 

narrow Theta, Alpha and Beta bands. 

Based on this IAF, 2 Hz Theta and Alpha sub-

bands were extracted (cf. Figure 3). To extend the 

personalized and band-refined approach, the Beta 

band was similarly decomposed. In line with previous 

research that has extracted low, mid, and upper Beta 

bands with 3 Hz, 5 Hz, and 10 Hz ranges respectively 

(Berta et al., 2013), the previous IAF-based 

decomposition was continued using these ranges. 

4 RESULTS 

In the following analyses, one-way repeated measures 

analyses of variance (ANOVA) with Greenhouse-

Geisser (GG) correction were used to assess main 

effects, followed up by pairwise Welch’s t-Tests with 

Benjamini-Hochberg (BH) correction. Error bars in 

all figures show standard errors. To check the 

manipulation success, perceptions of task difficulty 

and flow are evaluated. For task difficulty, a 

difference between the conditions is found (F(3, 102) 

= 161.81, p < .01, 2
G = .71) with stepwise increases 

in perceived task difficulty per condition (p < .01). 

Also, for flow, a main effect for condition is found 

(F(3, 99) = 29.63, p < .01, 2
G = .30). Follow-up tests 

show a stepwise increase in flow from the EASY to 

the OPTIMAL conditions, with OPTIMAL-Cal. 

being increased from EASY at trend level (p = .085), 

and OPTIMAL-Chos. being increased to both former 

conditions (i.e. maximal) (p < .01). In the HARD 

condition, flow is decreased compared to all other 

conditions (p < .01), showing the expected inverted 

U-shape pattern of flow with increasing difficulties 

(cf. Figure 4). Together, the findings lead to the 

assumption, that flow is increased in the OPTIMAL 

conditions, with a maximum in OPTIMAL-Chos. 

 

Figure 4: Perceived difficulty & flow reports. 

To assess the changes in frequency band activity 

over several scalp locations, separate one-way 

repeated measures ANOVAs (GG corrected) were 

conducted for each available electrode pair (i.e. data 
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were pooled for electrodes at AF3 & AF4 (= AF), F3 

& F4 (= F-M), F7 & F8 (= F-L), FC5 & FC6 (= FC), 

T7 & T8 (= T), P7 & P8 (= P), O1 & O2 (= O) (cf. 

Table 3). All ANOVA significance levels were BH-

adjusted, as were the significance levels in the follow-

up pairwise Welch’s t-tests. 

Table 3: EEG Frequency Power ANOVAs – Only showing 

significant results. Exact p-values when p > .01. 

Site Test Result 

Theta (IAF-6 to IAF-4) 

T F(3, 75) = 3.72, p = .0686, 2
G = .02 

Lo2Alpha (IAF-2 to IAF) 

P F(3, 87) = 11.69, p < .01, 2
G = .04 

O F(3, 90) = 9.24, p < .01, 2
G = .02 

HiAlpha (IAF to IAF+2) 

F-M F(3, 87) = 7.04, p < .01, 2
G = .03 

P F(3, 84) = 12.86, p < .01, 2
G = .04 

O F(3, 87) = 14.16, p < .01, 2
G = .04 

Alpha (IAF-4 to IAF+2) 

P F(3, 87) = 11.52, p < .01, 2
G = .04 

O F(3, 90) = 8.89, p < .01, 2
G = .02 

LoBeta (IAF+2 to IAF+5) 

F-M F(3, 87) = 10.65, p < .01, 2
G = .05 

P F(3, 90) = 7.70, p < .01, 2
G = .03 

O F(3, 93) = 11.55, p < .01, 2
G = .03 

MidBeta (IAF+5 to IAF+10) 

F-M F(3, 84) = 3.34, p = .0840 , 2
G = .03 

HiBeta (IAF+10 to IAF+20) 

AF F(3, 81) = 5.97, p = .0213, 2
G = .08 

F-M F(3, 81) = 4.03, p = .0524, 2
G = .05 

F-L F(3, 78) = 7.00, p < .01, 2
G = .06 

FC F(3, 75) = 5.39, p = .0196, 2
G = .05 

T F(3, 75) = 10.14, p < .01, 2
G = .09 

P F(3, 84) = 5.96, p = .0152, 2
G = .06 

O F(3, 87) = 5.65, p = .0193, 2
G = .04 

Altogether, Theta power shows almost no 

difference across the conditions, with only a trend 

level effect being present at temporal locations. For 

this location, post-hoc tests showed trend level 

increases of OPTIMAL-Cal. (p = .0537) and 

OPTIMAL-Chos. (p = .0952) from EASY as the only 

differences. To complete this assessment, the 

neighbouring Lo1Alpha band did not show changes 

at any site, and neither did the Theta band when 

extracted for a more traditional and non-

individualized 4-7.5 Hz range (all p > .1). 

While no effects were found in the lowest Alpha 

range (Lo1Alpha), both Lo2Alpha and HiAlpha 

showed Alpha suppression at posterior regions (both 

at P & O) with similar effects. Namely, a decrease in 

Alpha from EASY, with all other conditions being on 

the same level (all p < .01). For Lo2Alpha at occipital 

sites (p = .0247) and HiAlpha at occipital sites (p = 

.0513 - trend level), there was also a lower level in 

HARD than OPTIMAL-Cal. indicating that occipital 

alpha suppression was somewhat in line with 

perceived difficulty increases. In relation, for LoBeta 

at posterior sites, power reductions are found. At 

parietal sites LoBeta power drops from EASY to 

OPTIMAL-Cal. (p < .01) and OPTIMAL-Chos. (p = 

.0321). At occipital sites, LoBeta power drops from 

EASY compared to all other conditions (all p < .01) 

(cf. Figure 5). 

 

Figure 5: Posterior Alpha decreases from EASY are visible 

in all Alpha frequencies. Occipital sites show more 

sensitivity to difficulty changes. 

While the same pattern of posterior Alpha 

reductions is also generally visible in the broad 6 Hz 

Alpha band (also here with occipital Alpha being 

slightly higher at OPTIMAL-Cal. than HARD – p = 

.0174), the most noticeable difference revealed 

through the Alpha split is a reduction of frontal Alpha 

power at sites closer to the midline (F-M), that is 

visible in HiAlpha, but not in the lower Alpha bands, 

nor the broad 6 Hz Alpha band. HiAlpha at F-M is 

suppressed in all other conditions when compared to 

EASY (all p < .05) (cf. Figure 6). This effect is 

identically found in the adjacent LoBeta band (and in 

MidBeta at trend level – here the post-hoc contrast is 

visible for EASY compared to OPTIMAL only – and 

HiBeta at trend level, p = .0893 and p = .0701 – also, 

for F-M HiBeta a minimum in OPTIMAL is visible 

due to an increase in HARD compared to OPTIMAL-

Cal. p = .0302 and OPTIMAL-Chos. p = .0185).  

Furthermore, the (almost complete) absence of 

effects in the MidBeta range further highlights the 

utility of the narrower frequency inspection. In 

particular, HiBeta is found to be increased at AF sites 

in HARD compared to EASY (p = .0411), and 
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OPTIMAL-Cal. compared to EASY at trend level (p 

= .0721), at F-L sites in HARD compared to EASY 

(p < .01), to OPTIMAL-Cal. (p = .0744 – trend level), 

and to OPTIMAL-Chos. (p = .0150), with EASY 

showing lower power than the OPTIMAL conditions 

at trend level (p = .0608 and p = .0.798). At FC sites, 

HiBeta is found to be increased in HARD compared 

to all other conditions (all p < .05). At T sites, HiBeta 

shows an increase from EASY to OPTIMAL-Chos. 

(p = .0335) and from there an increase to HARD (p = 

.0385). HARD is also higher compared to EASY (p < 

.01) and OPTIMAL-Cal. (p = .0335). OPTIMAL 

Chos. is found to be higher than OPTIMAL-Cal. at 

trend level (p = .0778), which means that temporal 

HiBeta slightly indicates a stepwise increase in power 

that would be in line with difficulty perception 

changes. HiBeta is also elevated in HARD at parietal 

and occipital sites when compared to all other 

conditions (all p < .05), with the other conditions 

being equal. Altogether, this means that HiBeta 

mostly reveals maxima during HARD task conditions 

over the whole scalp (cf. Figure 7), which represents a 

useful contrast to the lower frequency effects, in 

particular the Alpha increase at posterior and fronto-

medial sites during the EASY condition.  

 

Figure 6: Fronto-Medial Alpha and HiBeta progressions. 

This points to an interesting potential of 

combining (Hi-)Alpha and (Hi-)Beta powers, to 

identify states of OPTIMAL difficulty. Such 

approaches have been previously undertaken on the 

Workload Index (Berka et al., 2007), that have also 

been employed in flow research (Chanel et al., 2011) 

and are traditionally either used for pooled electrodes 

over the whole scalp or for central midline electrodes. 

For the sake of comparison this Workload Index (WI 

= Beta / (Theta + Alpha)) was also computed for 

pooled electrodes here using non-individualized 

broad bands (Theta = 4-7.5 Hz, Alpha = 7.5-12.5 Hz, 

Beta = 12.5-30 Hz). No significant effect was found 

in a one-way repeated measures ANOVA using the 

difficulty conditions as within-subjects factor. 

 

Figure 7: Whole Scalp HiBeta progressions – for better 

visibility only the most distinctive patterns are shown (O 

was very similar to P and FC very similar to F-L). 

5 DISCUSSION AND 

CONCLUSIONS 

Of particular importance is the finding that through 

frequency band separation, HiAlpha suppression in 

frontal medial sites emerged independent of LoAlpha 

frequencies, similarly to the work by Ewing et al. 

(2016). This is an interesting finding that not only 

points to the utility of frequency band separation, but 

might provide an alternative to detection of increased 

task demands in real-world scenarios where posterior 

Alpha blocking has been named as a prominent 

confounding factor (Blankertz et al., 2016). 

Furthermore, through segmentation of the Beta band 

it was also found that while a larger similarity is 

visible between HiAlpha and LoBeta ranges, the 

MidBeta range showed mostly no variation across 

conditions, and the HiBeta range primarily showed 

increases with very high task demands. 

Using the refined approach, we did not find 

features that clearly reflect the variation in reported 

flow. This is not completely surprising given that 

related work has not uncovered such markers using 

frequency power comparisons in DM tasks. 

Although, here, two observations tentatively indicate 

such reactivity, namely temporal Theta and frontal 

medial HiBeta activity at trend levels. Both are in line 

with previous findings of increased Theta activity 

during moderate to high task difficulty (Ewing et al., 

2016), and with documentations of negative 

correlations between frontal Beta and flow self-

reports (Léger et al., 2014). Therefore, these results 

would appear to warrant further investigation. As an 
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initial proposition, it would be plausible to consider 

simultaneous, localized HiAlpha suppression 

together with HiBeta reductions as a sign of neural 

efficiency. The reasoning behind this thought builds 

on the proposition of HiAlpha reflecting task-specific 

information processing (Klimesch, 1999), and Beta 

reflecting increased local communication (Buzsáki 

and Draguhn, 2004). Therefore, HiAlpha suppression 

could be indicative of a cortical region being recruited 

to process a particular task, while at the same time a 

reduction in local Beta would reflect a reduction in 

communication among local neuron populations. In a 

similar manner as frontal Theta and widespread Beta 

increases are considered as coping mechanisms 

during (too) hard tasks (Sauseng et al., 2005), a 

reduction of local Beta might be indicative of the fact 

that local regions are coping well and only recruit 

absolutely required neuron groups. 

Besides these theoretical potentials, the remaining 

present findings show an alternative practical 

potential to differentiate levels of perceived difficulty 

(and thereby indirectly flow) through feature 

combination. In this regard, it should be pointed out 

first, that barely any significant changes were 

detected in the Theta band. This was an unexpected 

finding, as a large amount of literature is available 

documenting frontal Theta increases with increasing 

task demands (Klimesch, 1999; Borghini et al., 2014). 

As to why such a pattern is here only reflected in trend 

level temporal Theta power changes, several 

explanations are possible. Theta changes have been 

documented to occur strongly with prolonged task 

exposure (e.g. in studies with airplane simulators – 

Borghini et al., 2014). By adding the first task round 

(the task introduction using the EASY treatment), to 

a one-way repeated-measures ANOVA we do find a 

difference for frontal Theta at F3 & F4 (F-M) (F(4, 

104) = 4.33, p < .01, 2
G = .05), with the lowest Theta 

power in the introduction phase. This points to the 

fact that time might have acted as a confounding 

effect on Theta power changes. Further, frontal Theta 

effects are typically identified in midline positions 

(e.g. Fz – see Ewing et al., 2016). Thus, as these 

electrodes are missing for the Epoc+ headset, it might 

not be possible to find Theta effects in some EEG 

devices. This is a limitation that could easily occur in 

real-world measurement scenarios using portable 

EEG systems with few electrodes. 

However, employing the frequency separation 

approach, an interesting pattern emerged in that some 

narrow frequency features showed significant 

reaction to changes in perceived difficulty, with some 

indicating stepwise, monotonous increases, some 

indicating increases with moderate level plateaus for 

OPTIMAL conditions and some indicating maxima 

for either the EASY or the HARD condition when 

compared to all other conditions. The functional 

explanation of these patterns should be the subject of 

future work as would be the development of sensitive 

and robust compound indices, ideally based on more 

than one task type (see e.g. Berka et al., 2007). 

Presently, it is primarily argued that these patterns 

allow to discuss flow related changes in a refined 

manner and that they pose interesting alternatives for 

the detection of situations of optimal difficulty, 

especially in scenarios where less information might 

be available than typically is in laboratory setups (e.g. 

fewer and unevenly distributed electrodes). When 

considering how for example neuro-adaptive systems 

employ thresholds to inform adaptation rules (cf. e.g. 

Ewing et al., 2016), features indicating maxima 

during EASY or HARD conditions could be valuable 

indicators, given that they would be subject to lower 

variation except in the boundary cases. In this regard 

they could firstly be employed to robustly identify 

when difficulty is unbalanced and flow unlikely. 

In conclusion, this study posits that flow research 

could benefit from nuanced frequency power 

analyses, in general by identifying Alpha and Beta 

power changes that could relate to neural efficiency 

(in a local form), and in particular when (portable) 

EEG systems are used that lack midline electrodes. In 

line with previous research (Klimesch, 1999), the 

herein presented initial analyses support the 

understanding that a personalized and narrow 

frequency power analysis helps to avoid to miss 

frequency specific effects. Specifically, this research 

contributes to the literature on flow by highlighting 

that frontal medial HiAlpha decreases in increased 

task difficulty (and HiBeta decreases during 

optimally balanced task difficulties) as well as 

widespread HiBeta increases in very hard task 

conditions provide additional avenues to 

automatically and unobtrusively detect boundary 

situations to flow. Thus, these metrics, indirectly 

allow to improve the identification of situations with 

optimal preconditions for flow to emerge. 

Importantly, the frequency segmentation approach 

would appear to be a valuable alternative when 

portable EEG systems are used that don’t include 

midline electrodes. As an additional effect, Alpha and 

Beta bands appear unaffected by influences from task 

exposure durations providing an interesting 

alternative to the more established metric of frontal 

midline Theta power increases with higher task 

demands (e.g. Ewing et al., 2016). Ideally by taking 

narrow frequency power analysis into account, future 

flow research will thus move closer to identifying 
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robust concomitants and markers of flow that can be 

employed in neuro-adaptive systems using portable 

EEG in real-world scenarios. Eventually, systems 

able to adapt to flow intensities could then reduce 

flow interruptions (e.g. by blocking incoming 

messages) or provide feedback information to 

improve flow self-regulation (e.g. by self-adjusting 

task difficulty, or by optimizing arousal levels and 

catalysing task focus through EEG-neurofeedback). 
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