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Abstract: Iterated Local Search (ILS) is a conceptually simple and efficient well-known Metaheuristic. The main idea 

behind ILS is to drive the search not on the full space of all feasible solutions but on the solutions that are 

returned by some underlying algorithm; typically, local optimal solutions obtained by the application of a 

local search heuristic. This method has been applied to many different optimization problems having about 

10,000 entries in Google Scholar. In this talk, we will review briefly the ILS method emphasizing the 

extensions of ILS. We will describe three relevant types of extensions:  the hybrid ILS approaches combining 

ILS with other metaheuristics and/or exact methods; the SimILS (Simulation+ILS) to solve Stochastic 

Combinatorial Optimization Problems; the MoILS to solve Multiobjective Combinatorial Optimization, 

including multiobjective and stochastic problems. We will discuss the advantages and disadvantages of these 

extensions and present some applications, including real ones in areas like Marketing, Supply Chain 

Management, Logistics or Health Care.  

1 INTRODUCTION 

Optimization problems have been always relevant for 

businesses and other organizations, to improve the 

use of the resources and also to reduce the overall 

system cost. In today’s world, with the availability of 

large amount of data and with the increase complexity 

of the problems, it is more important than ever to be 

able to solve efficiently the optimization problems. 

Optimization problems can appear in all areas of 

business from marketing to logistics, in public 

organizations, in health care organizations and even 

in NGO’s entities. Therefore, being able to solve 

these large-scale complex problems is a relevant and 

very actual area for researchers and managers. In 

many cases, within the Optimization area, the best 

(and only) solution approach to solve these complex 

problems are the metaheuristics.  

In the optimization literature we can find two 

general types of solution methods: exact methods 

and, heuristics and metaheuristics. An exact or 

optimal method in the optimization context refers to 

an algorithm that computes an optimal solution. A 

heuristic algorithm (often shortened to heuristic) is a 

solution method that does not guarantee 

mathematically an optimal solution, but in general 
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has a good level of performance in terms of solution 

quality or convergence, within a very short 

computational time. Heuristics may be constructive 

(producing a single solution) or local search (starting 

from one constructive or random solution and moving 

iteratively to other nearby solutions) or a combination 

(constructing one or more solutions and using them to 

start a local search). A metaheuristic is a framework 

for producing heuristics, such as simulated annealing, 

tabu search or genetic algorithms. To develop an 

heuristic for a particular problem some problem-

specific characteristics must be defined, but some 

other can be general for all problems. The problem-

specific may include the definition of a feasible 

solution, the neighborhood of a solution, rules for 

changing solutions, and rules for setting certain 

parameters during the course of execution. In the last 

years, many metaheuristics have been proposed and 

successfully applied to solve complex and large-scale 

problems in many areas (Martí et al. 2018).  

In this work, we focus on a metaheuristic known 

as Iterated Local Search (ILS). ILS is one of the most 

popular single-solution based metaheuristics. ILS is 

recognized by many authors as a relatively simple yet 

efficient framework able to deal with complex 

optimization problems. In particular it is a very 
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successful method when applied to Combinatorial 

Optimization Problems (COPs), including problems 

in Logistics, Transportation, Scheduling, Heath care, 

Marketing, etc. The success of the ILS can be 

explained because it has many of the desirable 

features of a metaheuristics: accuracy, speed, 

simplicity and flexibility (Cordeau et al. 2002). 

The main objective of this work is to give an 

accessible description of the underlying principles of 

ILS and a discussion of basic implementation issues. 

Next, we present extensions of the application of the 

ILS:  the hybrid ILS approaches combining ILS with 

other metaheuristics and/or exact methods; the 

SimILS (Simulation+ILS) to solve Stochastic 

Combinatorial Optimization Problems; the 

MoILS/MoSimILS to solve Multiobjective 

(Stochastic) Combinatorial Optimization. We will 

discuss the advantages and disadvantages of these 

extensions and present some applications, including 

real ones in areas like Marketing, Supply Chain 

Management, Logistics or Health Care. We will 

review the main work done by the author in the area 

of Iterated Local Search. 

2 ITERATED LOCAL SEARCH 

The Iterated Local Search can be seen as an extension 

of the well know algorithm know as Local Search 

(LS). Local Search have been applied extensively to 

combinatorial optimization problems (COPs). A LS 

method consists in finding an initial solution, usually 

using a constructive or random heuristic, and then 

perform a neighborhood search until a local optimal 

solution is found. For each specific problem, a 

neighborhood must be defined. This neighborhood 

consists usually in a set of solutions that can be 

obtained from the incumbent solution by performing 

small modifications, known as moves. For all or 

almost all COPs, it is relatively simple to obtain an 

initial solution and define a neighborhood. Therefore, 

a LS can be defined by using these two concepts.  

The main issue with such a simple LS method, is 

that usually the local optimal solution obtained is far 

away from the overall optimal solution, i.e. the 

quality of the solutions obtained is not too good. To 

avoid this issue, we can use a random initial solution 

and apply to each one a LS approach. This is known 

as Random Restart approach. This simple random 

sampling approach can perform poorly, in 

particularly if the instance size is large. ILS belongs 

to a category of multi-start metaheuristics that 

improve the performance of the simple Random 

Restart by incorporating more sophisticated 

procedures (Martí et al. 2013). In this way, ILS tries 

to avoid the disadvantages of random restart by 

exploring the solution space using a walk that steps 

from one local optimal solution to a “nearby” one. To 

implement this idea, another phase is included in the 

LS that allows to “restart” the search but try not to 

“lose” the good properties and components of the 

solutions already obtained. This component we call it 

“Perturbation” Phase.  

We can know present the Iterated Local Search 

that consists in four main phases: Generate an Initial 

Solution, Local Search, Perturbation and Acceptance 

Criterion.  

First of all, an initial solution is constructed 

(Generate an Initial Solution), afterwards a Local 

Search method is applied to obtain a local optimal 

solution (current solution). Next, a random 

Perturbation phase is applied to obtain a different 

solution changing some components of the current 

solution followed by applying again a Local Search 

method. If   the solution obtained passes an 

Acceptance Criterion test, it becomes the next 

current solution; otherwise, one returns to previous 

one. In any case, the process is repeated/iterated from 

the Perturbation phase. The resulting walk is a case of 

a stochastic search in local optimal solution space of 

the problem. In Figure 1, we describe the pseudo code 

of the algorithm.  

 
1. s =GenerateInitialSolution; 
2. s =LocalSearch(s ); 
3. Repeat 

3.1. s =Perturbation(s ,history); 
3.2. s =LocalSearch(s ); 
3.3. s =AcceptanceCriterion(s ,s , 

history); 
4. Until TerminationCondition met; 
5. Output s . End. 

Figure 1: Iterated Local Search Method. 

As you can see, it is a very simple and elegant 

method that can be applied to a large number of 

optimization problems, since for most of these ones 

an initial solution, local search and perturbation 

method can be easily defined. In practice, much of the 

potential complexity of ILS is hidden in the history 

dependence and in particular in the Perturbation 

phase design as we will explain later. If no 

dependence on the past search is used, the walk has 

no memory: the perturbation and acceptance criterion 

do not depend on any of the solutions visited 

previously during the walk, and one accepts or not 

with a fixed rule. This leads to random walk dynamics 

on solution space that are “Markovian”. Most of the 

work using ILS has been of this type, though recent 
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studies show that incorporating memory enhances 

performance (Ramalhinho Lourenço et al. 2019). 

Next, we explain in detail how to implement an 

ILS method to solve optimization problems. In each 

of the following sections, we will present an 

extension of the ILS and one application.  

2.1 Implementation Details 

A general description of a metaheuristic can be seen 

as a methodological approach for designing 

(problem-specific) heuristics. It is preferable that a 

metaheuristic to be simple, both conceptually and in 

practice. But of course, it should also be effective, i.e. 

it should generate very good solution in short 

computational time. Most of the heuristics are 

measured against accuracy, the degree of departure of 

the obtained solution value from the optimal value, 

and against speed, the computation time. However, 

two also important attributes of the metaheuristics are 

the simplicity and flexibility (Cordeau et al. 2002). 

The simplicity is related with the number of 

parameters to be set and facility to be implemented, 

which are very few in the case of ILS. The flexibility 

is related with the possibility to accommodate new 

side constraints and adaptation to similar problems, 

which is also quite simple to implement in a ILS 

algorithm.  

The ILS algorithm is composed by four main 

components: GenerateInitialSolution, LocalSearch, 

Perturbation, and AcceptanceCriterion. A simple 

implementation of the ILS for a COP can be quite 

straight-forward to design. The four main 

components can be defined as follows:  

(i) GenerateInitialSolution: a random feasible 

solution;  

(ii) LocalSearch: for most problems a local search 

algorithm is readily available; Just need to 

define the Neighborhood structure. 

(iii) Perturbation: a random move in a higher-order 

neighborhood than the one used by the local 

search algorithm can be surprisingly effective;   

(iv) AcceptanceCriterion: a reasonable first guess 

for the acceptance criterion is to force the cost 

to decrease, corresponding to a first-

improvement descent.  

Basic ILS implementations of this type usually 

lead too much better performance than random restart 

approaches. The developer can then run this basic ILS 

to build his/her intuition and try to improve the 

overall algorithm performance by improving each of 

the four modules and tuning their interaction. 

 

The next step to improve the performance of the 

metaheuristic is to introduce some complexity and 

problem-related properties in the design of the four 

components of the ILS. Next, we will describe the 

main issues that it should be considered for the 

improvement of the four components of the 

algorithm, and comment on their interaction. 

 

GenerateInitialSolution: Random solutions tend 

to be of very low quality. Therefore, if very high-

quality solutions are to be reached by the local search, 

then starting from a best possible solution becomes an 

important issue. One good option is to apply a greedy 

heuristic. For most of the COPs it exists a greedy 

heuristic or it can easily define. Greedy solutions are 

in general of higher quality than random solutions. 

Other options are also available, like we will explain 

latter in the hybrid ILS, other metaheuristics or even 

approximation methods can be used to obtain the 

initial solution. A good initial solution does not 

guarantee a good final local optimal solution, but in 

general it can help to reduce the search time.  

 

LocalSearch: The overall performance of the ILS 

is highly related with the choice of the local search 

method, since this is one of the main components of 

the method. One might think that the better the local 

search, the better the corresponding ILS but if too 

much time is spent in the LocalSearch phase, it is not 

really an ILS but more like an extended local search. 

The equilibrium between the LocalSearch phase and 

the number of iterations is a main issue when 

designing an ILS. It might be probably more effective 

to apply a faster and more frequently local search 

algorithm than a slower and more powerful one 

(Stützle & Roos 2002). Therefore, the design of the 

LocalSearch phase should be carefully done and the 

interaction with the other components of the ILS 

should be carefully considered and studied.  

 

Perturbation:  The main goal of this phase is to 

escape from local optimal solution area by applying 

perturbations or changes in the current local optimal 

solution. An important decision is how strong the 

perturbations should be. If they are too small, one will 

often fall back to the previous local optimal solution 

and therefore very few new solutions or a small 

region of the solution space will be explored. On the 

other way, if the perturbations are too big, it will be 

almost like a random search, and we will end up 

having a random restart type algorithm. The most 

important issue to take into consideration when 

designing the perturbation phase is to guarantee that 

the obtained solution will not be directly undoable by 
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the local search and but should complement it in some 

way. The solution obtained by the perturbation should 

have a relatively different structure from the actual 

local optimal solution and should also help the search 

to explore new regions of the solution space. Not 

necessarily this solution should be of great quality, 

i.e. small cost in the minimization problem. The 

design of the Perturbation phase is one of the most 

important issue when implemented an ILS algorithm. 

Small perturbation can lead to large computational 

times and a random restart type algorithm, and large 

perturbation can lead to jumping from a solution to 

another without descent to a good local optimal 

solution. We also recommend that the Perturbation 

phase should be problem-dependent and they could 

be complex perturbations as for example the 

application of exact algorithms to solve subproblems 

or relaxation models of the optimization problem in 

consideration (Ramalhinho Lourenço 1995).  

 

Acceptance Criterion: This procedure 

determines whether is accepted or not the solution 

just obtained as the new current solution. 

AcceptanceCriterion has a strong influence on the 

nature and effectiveness of the search in the solution 

space. In a way, together with Perturbation, the 

procedure controls the balance between 

intensification and diversification of the search. We 

can consider two strategies: a first improvement type 

descent which only accepts better solutions; or at the 

opposite extreme, one can always accept the new 

solution irrespective of its cost. Many intermediate 

choices between these two extreme cases are 

possible, and in particular rather complex acceptance 

criteria that involve limited amount of directed 

diversification or intensification are also possible 

(Stützle & Roos 2002). 

After all, to improve the performance of the ILS 

it should be taken into account the interactions 

between the four components. Next, we briefly 

mention some guidelines and suggestions that should 

be considered:  

 The perturbation should not be easily undone by 

the local search; if the local search has obvious 

shortcomings, a good perturbation should 

compensate for them. The idea is that the 

perturbation modifications should be of different 

nature of the ones in the neighborhood and change 

considerably the structure of the solution even at 

the cost of worst the quality of the solution.  

 The iteration between Perturbation and 

Acceptance Criterion determines the relative 

balance of intensification and diversification and 

should receive a particularly strong attention. 

Large perturbations are only useful if they can be 

accepted, and that occurs only if the acceptance 

criterion is not too biased towards better solutions. 

 LocalSearch should be as powerful as possible as 

but also not too costly in CPU time. Then, given a 

choice for that module, find a well-adapted 

perturbation. The equilibrium between 

LocalSearch and Perturbation is really important 

to study. 

 Finally, define the AcceptanceCriterion procedure 

so that solution space is sampled adequately.  

As a final suggestion, the construction of an ILS 

algorithm should start by implement a simple version 

and increase complexity as needed to improve the 

performance of the algorithm. One way to improve 

this performance is to optimize each module 

assuming the others are fixed; this is a “local 

optimization” approach to the global optimization 

problem. When performing such optimizations, the 

interactions between the modules are essential, and 

for instance the balance between intensification and 

diversification is very important and remains a 

challenging problem. 

For a more detailed description of the ILS 

algorithm see the following references: (Lourenço et 

al. 2010; Lourenço et al. 2003; Ramalhinho Lourenço 

et al. 2019).  

Next, we will describe some history related with 

the development of the ILS, followed by some 

applications of ILS to several COPs.  

2.2 Some History 

The Iterated Local Search algorithm appeared in the 

literature with several names until it was settled as 

ILS as it is known today. Some are the following 

ones:  

 Large Step Markov Chains  

 Chained Local Optimization 

 Iterated Descent 

 Iterated Lin-Kernighan 

 Local Search with Perturbation 

 Iterated Greedy Algorithm 

 Iterated Local Search 

One of the main and first references to ILS was 

(Martin et al. 1991) with the name of Large-Step 

Markov Chains. Before, there were references to 

similar algorithms that maybe can considered within 

the structure of ILS, which were: (Baxter 1996), 

(Baum 1986) and (Johnson 1990).  (Lourenço 1993) 
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extended the ILS method by using an hybrid ILS with 

other metaheuristics and exact methods and applied it 

to job-shop scheduling problem. Just a few years 

later, T. Stützle applied it to flow-shop scheduling 

problems, (Stützle 1998), and as far as we know this 

was the first time that the name ILS appeared in the 

literature. In the following years, many authors 

contribute to the development of the ILS. Actually, 

the name Iterated Local Search (ILS) is accepted all 

over the research community and for a recent and 

complete survey, the readers are referred to 

(Ramalhinho Lourenço et al. 2019). 

We performed a search on google scholar to have 

an idea of the application of the ILS, and we found 

out that the application of ILS has been steadily 

increasing in the last years as shown in Figure 2.  

 

Figure 2: Number of publications in the Google Scholar 

(search done in January 2019). 

2.3 Application 1: The Cut-Clique 
Problem 

The first example of application that we would like to 

present is the development of an iterated local search 

heuristics to solve the maximum cut-clique problem 

published in (Martins et al. 2015). The problem 

consists in finding the maximum cut-clique of a 

graph. Given an undirected graph G=(V,E) and a 

clique C of G, the cut-clique is the set of edges 

running between C and V\C, establishing the cut 

(C,V\C). The maximum cut-clique in G is to find a 

clique with the largest number of edges in the 

neighborhood of the clique, also known as the 

maximum edge-neighborhood clique. In this work, 

the authors introduce an Iterated Local Search 

algorithm to solve the maximum cut-clique problem. 

They compare the results with the exact methods 

approach and explore a new application within 

marketing analysis. They provide an application 

within the area of analyzing market basket problems 

in the marketing area providing interesting insides 

and analysis not presented before. 

3 HYBRID ILS 

The ILS can be extended by using other 

metaheuristics in some of the phases of the ILS, as for 

example in the GenerateInitialSolution or 

LocalSearch phases, or even use exact methods to 

solve sub- or relaxation problems in the Perturbation 

phase.  

Any local search-based metaheuristic approach 

like tabu search, variable neighborhood search, 

GRASP or simulated annealing may be used in the 

LocalSearch phase and often the performance of the 

algorithm increases by using a more complex method 

in this phase. This type of combination can be 

included in a larger area known as Hybrid 

Metaheuristics, (Blum et al. 2011). One of the first 

application of hybrid ILS can be found in  (Lourenço 

& Zwijnenburg 1996), that uses a tabu search as the 

embedded heuristic in an Iterated Local Search 

algorithm to solve the job-shop scheduling problem.  

Another extension that leads to very good results 

is the use of exact method to solve sub- or relaxed 

problems during the Perturbation phase. Many 

optimization problems are difficult to solve, but some 

relaxation or small instances of these problems can be 

solved exactly very efficiently. So, designing a 

Perturbation phase by applying an exact method to 

solve simple instances of the optimization problem 

leads to solutions with structures orb properties that 

are not easily undo in the local search phase. This 

combination of exact methods and ILS is known as 

MathILS and can be included in the larger area of 

Matheuristics (Talbi 2013; Dumitrescu & Stützle 

2003; Puchinger & Raidl 2005). One of the first 

references in the literature of a MathILS can be found 

on (Ramalhinho Lourenço 1995) where, in the 

Perturbation phase, an exact method is applied to 

solve an one-machine scheduling problem 

representing a relaxation of a job-shop scheduling 

problem.  

3.1 Application 2: Distribution 
Problem 

Distribution planning is an important activity for 

many companies in the area of retailing, production 

etc. The cost associated with the delivery and 

distribution of goods can be an important component 

of the final cost of the products. The work (Coelho et 

al. 2016) presents a study on a Vehicle Routing 

Problem (VRP) variant inspired on a real case of a 

large distribution company. In particular, they 

consider a VRP with a heterogeneous fleet of vehicles 

that are allowed to perform multiple trips. The 
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problem also includes docking constraints in which 

some vehicles are unable to serve some particular 

customers, and a realistic objective function with 

vehicles’ fixed and distance-based costs and a cost 

per customer visited. They present an Iterated Local 

Search based algorithm, that combines ILS, Greedy 

Randomized Adaptive Search Procedure (GRASP) 

and Variable Neighborhood Descent (VND) 

procedures. The method was tested with real 

instances, and it was able to obtain competitive and 

realistic solutions that improved the company 

solutions and led to significant savings in distribution 

costs. 

4 SIMULATIONS AND ILS 

A natural extension of the Iterated Local Search 

metaheuristic is to be able to study problems with 

some non-deterministic or stochastic data.  In real-life 

most of the problems present some kind of 

uncertainty; therefore, in these cases it is common to 

simplify the mathematical model assuming 

deterministic data to be able to solve the problem. But 

this assumption turns the model into a less accurate 

one that does not reflect the stochastic nature of the 

real-life problem. In order to overcome this issue, the 

work (Grasas et al. 2014) proposed a framework that 

combines ILS and Simulation to enable the resolution 

of Stochastic Optimization Problems, known as 

SimILS. This methods is included in the area of 

SimHeuristics (Juan et al. 2015). The proposed 

algorithm is an easy-to-implement simheuristic able 

to deal with stochastic COPs in a natural way. The 

integration between simulation and the ILS 

algorithms must be done carefully in order to avoid 

incurring in prohibitive computational times due to 

the simulation component. 

The general SimILS framework is presented in 

Figure 3 and as described, it integrates simulation at 

some specific steps, resulting in a simulation-

optimization procedure capable of dealing with 

stochastic COPs.  

In the SimILS, the simulations are inserted after 

the application of the LocalSearch phase to evaluate 

the current local optimal solution in the simulation 

environment. These simulations take the current 

solution and a parameter indicating whether the 

simulation should be run for a long or a short time, 

and then obtains the corresponding simulated 

objective function (cost), along with other relevant 

statistics or Key Performance Indicators (KPI) to 

evaluate the solution in terms of stochastic 

environment. Also, these statistics or KPI can be used 

later to improve the search by updating the 

LocalSearch or Perturbation phases. A long 

simulation component is also inserted at the end of 

the ILS process to reevaluate the final solution in a 

realistic environment.  

 
1. s =GenerateInitialSolution; 
2. s =LocalSearch(s ); 
3. (s ,cost,statistics)= 

Simulation(s ,long);; 
4. Repeat 

4.1.s =Perturbation(s ,history); 
4.2.s =LocalSearch(s ); 
4.3.(s ,cost,statistics)= 

Simulation(s ,short); 
s =AcceptanceCriterion(s ,s , 
history); 

5. Until TerminationCondition met; 
6. (s ,cost,statistics)= 

Simulation(s ,long); 
7. Output s . End. 

Figure 3: General SimILS Method. 

The “simplicity” of the ILS combined with 

Simulation makes this method a good alternative to 

solve very complex and large-scale Stochastic 

Combinatorial Optimization Problems. Some 

applications can be found in: (Pagès-Bernaus et al. 

2017; De Armas et al. 2017; Quintero-Araujo et al. 

2017; Juan et al. 2011; Juan et al. 2014; Juan et al. 

2013). 

4.1 Application 3: Designing a Supply 
Chain  

The design of a supply chain is a relevant problem for 

many industries and in particular for the retailing one. 

Many references can be found in Supply Chain 

Design or Location Theory. But very few studies 

consider the e-commerce within the supply chain 

design. E-commerce activities present characteristics 

that are different from those related to traditional 

retailing business. The work of (Pagès-Bernaus et al. 

2017) presents two facility-location models to 

represent supply chains in e-commerce. The proposed 

optimization models consider stochastic demands as 

well as a restricted number of regular suppliers per 

customer. They also propose two solving 

methodologies; the first one is a two-stage Stochastic 

Programming Approach that solve a Deterministic 

Equivalent Model using CPLEX. However, this 

approach has several limitations to solve large-scale 

instances due to the significant computational effort 

required. They then propose a SimILS algorithm that 

is able to solve large-scale instances in short 

computing times. The proposed models and 

algorithms are illustrated and tested using a set of 
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benchmark instances. Results show that better 

designs can be obtained with the proposed models 

and solving methodologies, and the SimILS is able to 

solve efficiently large-scale instances. 

5 MULTIOBJECTIVE ILS 

The last extensions of ILS that we would like to 

mention are the Multi-Objective Iterated Local 

Search (MoILS) for (deterministic) multiobjective 

problem and the Multi-objective Simulated Iterated 

Local Search (MoSimILS) for multiobjective 

stochastic problems.  

In the case of the application of metaheuristics to 

multiobjective (deterministic) problems, the 

objective is to find the approximation of the Pareto 

frontier and this method is included in the area of 

Multiobjective Metaheuristics (Gandibleux et al. 

2004). 

As proposed in (Ehrgott & Gandibleux 2000), the 

main idea of mutiobjective local search methods is to 

consider a weighted sum of the objective functions to 

search for an approximation of the nondominated 

frontier. This local aggregation of the objectives 

produces the effect to focus the search on a part of the 

nondominated frontier. Then the weighted are 

updated and the search is repeated to approximate 

completely the nondominated frontier. 

As the algorithms are extensions of Iterated Local 

Search, all phases of the ILS and SimILS have to be 

defined when a specific optimization problem has to 

be solved. In the multiobjective case, the ILS will 

output a pool of approximate Pareto Optimal 

solutions. It is important to incorporate the 

multiobjective and stochastic aspects in the definition 

of the different phases of the extended ILS 

algorithms. For example, the weights in the 

aggregation of the objectives can help to drive the 

search in a direction or other, and the statistics 

obtained by the simulation can help to define that 

weights. This is still an ongoing work, and in the near 

future it is expected to have more applications of 

these methods.  

5.1 Application 4: Home Health Care  

Home Health Care (HHC) service consists of 

assistance provided by medical personal, such as 

nurses, physical therapists and home care aides, to 

people with special needs, for example old adults, 

chronically ills or disabled people. The main criteria 

to evaluate an HHC service solution are basically the 

following ones: the service quality and the service 

cost. The quality of life perceived by patients who 

stays home is higher than if they stay at the hospital. 

Also, a patient in a hospital has a high cost to the 

community. Therefore, the benefit of the Home 

Health Care service is the significant decrease in the 

hospitalization rate that leads to a cost reduction in 

the whole health system for one side, and the 

perception of a better quality from the patient on the 

other side.  

During the last decade the Health Care service 

industries experienced significant growth in many 

European countries due to the governmental pressure 

to reduce healthcare costs, the demographic changes 

and the development of new services and 

technologies. Therefore, a set of new optimization 

problems arise that need to be solved inefficiently 

(Rais & Viana 2010; Oberscheider & Hirsch 2016).  

Home Health Care Problem (HHCP) consist in 

defining the medical assistance route considering all 

human resources constraints, working time limit and 

all medical constraints. The main objectives are to 

minimize the costs, the maximization of loyalty 

between the medical personal and patient and, the 

balance of workload between the medical personal. 

The service time and transportation time is stochastic, 

so the problem turns out to me a multiobjective 

stochastic problem. (Galvani & Ramalhinho 2019) 

studied this problem and propose a MoSimILS to 

solve it. They also present the application of the 

method to solve a realistic problem in Italy. 

6 CONCLUSIONS 

ILS has many of the most desirable features of a 

metaheuristic: it is simple, easy to implement, robust, 

and highly effective. The essential idea of ILS lies in 

focusing the search not on the full space of solutions 

but on a smaller subspace defined by the solutions 

that are locally optimal for a given optimization 

objective function. The efficiency of this method 

depends on the design of the four main components 

of the method: GenerateInitialSolution, LocalSearch, 

Perturbation, and AcceptanceCriterion. However, 

even with the simplest implementations of these 

parts, ILS can obtain quite good solutions. And, if 

more complex components are designed, the 

algorithm becomes very competitive or even a state 

of the art one for many optimization problems. The 

modular nature of the Iterated Local Search leads to 

short development times and gives ILS an edge over 

more complex metaheuristics in the world of 

industrial applications. We present briefly some 
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applications to exemplify the potential of the ILS 

metaheuristic. 

Finally, we also review some of the most relevant 

extensions of the ILS that have been developed or are 

under studied to be applied to many other problems, 

including stochastic and multiobjective problems. 

Notice that most of the real-life problems present 

these two characteristics. There are still too many 

questions that need more research in this last mention 

extensions and there are definitely worth to study. For 

example, the design of the MathILS is still an open 

problem for many optimization problems. Also, the 

study of MoILS and MoSimILS is still relatively new 

and it requires a deeper study and more applications.  
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