
User Experience-based Information Retrieval from Semistar Data

Ontologies

Edgars Rencis a
Institute of Mathematics and Computer Science, University of Latvia, 29 Raina blvd., Riga, LV-1459, Latvia

Keywords: Semistar Ontologies, Query Language, Information Retrieval, Query Translation.

Abstract: The time necessary for the doubling of medical knowledge is rapidly decreasing. In such circumstances, it is

of utmost importance for the information retrieval process to be rapid, convenient and straightforward.

However, it often lacks at least one of these properties. Several obstacles prohibit domain experts extracting

knowledge from their databases without involving the third party in the form of IT professionals. The main

limitation is usually the complexity of querying languages and tools. This paper proposes the approach of

using a keywords-containing natural language for querying the database and exploiting the system that could

automatically translate such queries to already existing target language that has an efficient implementation

upon the database. The querying process is based on data conforming to a Semistar data ontology that has

proven to be a very easily perceptible data structure for domain experts. Over time, the system can learn from

the user actions, thus making the translation more accurate and the querying – more straightforward.

1 INTRODUCTION

The time necessary for the doubling of medical

knowledge has been rapidly decreasing in the last

decades. While in the 1950s the doubling time of

medical knowledge was about 50 years, it has shrunk

to 3.5 years in 2010, and it is estimated to be only

about 73 days in 2020 (Densen, 2011).

The amount of gathered information rapidly

increases. Nowadays, even the smallest organizations

acquire vast amounts of data. Nobody complains

about the lack of information. However, a question

arises – is there a benefit from all this information?

Can we extract some knowledge from it?

What is knowledge, after all? It is the information

that one can apply to make decisions. There is no use

of the information in the database if nobody knows

that it is there and thus cannot extract any valuable

knowledge from it. To extract knowledge from the

information, we usually hire system analytics to do

the job. They acquire the IT skills necessary for

inspecting the database, understanding its structure,

retrieving the information and discovering the needed

knowledge by using the SQL or another querying

language.

a https://orcid.org/0000-0002-1606-4944

However, it is not always the best option to hire a

system analyst. The real users in need of the

knowledge are those who make the decisions in the

organization. If we take a hospital as an example

organization, those end-users would be physicians,

ward managers, hospital managers. To make a

decision, such an end-user would need to receive

answers to his/her questions. To get those answers,

they need to consult the system analyst and ask

him/her to find the necessary information in the

database for them.

Several problems may arise here. Firstly, the

domain experts often lack any idea about what kind

of data are gathered and are available in the database

to start with, what kind of information can they ask

from the database and what kind of knowledge can be

extracted. To clarify these questions, they have to

interview the system analyst. It can be a one-time

engagement, but it is nevertheless time-consuming,

and it does not necessarily cover every aspect of what

domain experts want to know, because the system

analytic will only provide answers to the questions

asked, and the domain expert can miss some vital

question that could be beneficial for the next time.

Besides, the process would have to be repeated for

Rencis, E.
User Experience-based Information Retrieval from Semistar Data Ontologies.
DOI: 10.5220/0008345004190426
In Proceedings of the 11th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2019), pages 419-426
ISBN: 978-989-758-382-7
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

419

every new domain expert who starts to work in the

organisation.

Secondly, even if one has understood the structure

of the database and the types of questions he/she may

ask, it takes some time for receiving the answers to

particular questions. The system analytic can be

overloaded with work, and answering all the

questions from the domain experts can take hours or

even days in some cases.

Thirdly, not every domain expert even has access

to such a resource as the system analytic. The hospital

manager more likely has an authority to give

commands to the system analytic, but not every

physician has such a privilege. Therefore, this process

may be even more time-consuming if at all possible

for them.

Finally, hiring a system analytic also costs a lot,

and exploiting this resource just for answering those

types of questions might not be the best way of

spending the money.

Taking into account all of the abovementioned

observations it is clear that it would be much better if

the domain expert could access the database and

query it him/herself – to understand its structure, to

form questions and to understand the answers to those

questions. This ability could undeniably accelerate

the information retrieval process, which in turn would

speed up the decision-making process that is one of

the most critical aspects of the operation of any

organisation.

There have been many attempts to solve the

abovementioned problem. The most popular of them

has been the introduction of the SQL in 1974

(Chamberlin, 1974). The original goal of this

language has been precisely the same – to make

querying possible for non-programmers. There was

the slogan that every housewife will now be able to

work with databases. However, the experience shows

that this goal has not been fulfilled – hardly any

domain expert that is not an IT specialist is able to use

the SQL nowadays because it is too technical and

complicated. It is so partly because it is based on the

relational database that is not a very easily-

perceptible data structure for end-users. Other related

work is inspected in Section 2.

In this paper, it is proposed to retreat from the

traditional approach of storing the data in the form of

the relations database and instead to use another data

format for storing the data – the Semistar data

ontology. This data structure is described in Section

3. Upon the Semistar data ontology, it is possible to

develop a simple querying language using the main

principle of the SQL – to create sentence templates

where the end-user would insert specific concepts of

the underlying data structure. The query language has

already been implemented, and Section 4 provides an

insight into it. It is also explained here what are the

most significant flaws of the language in terms of its

practical usage. To avoid these flaws, it is proposed

to write queries in the natural language. These queries

would then be translated automatically to the

abovementioned language. Section 5 describes the

main idea of the translation process. It is also

explained here how the user would be able to

ascertain that his/her query has been interpreted

correctly by the system and how the system could

learn from the user experience over time.

2 RELATED WORK

The first related work in the field is dated by the year

1974 when the SQL was created. It was the first

attempt to allow non-professionals to query their

databases. As already stated in Section 1, this attempt

has not been as successful as it could have been.

Much effort has been devoted to making the

querying easier so that it would become available to

end-users. There are several ways how this can be

done. One way is to use graphical query languages

that allow users to create queries by clicking the

mouse and entering only some specific concepts by

the keyboard. Such languages can be based either on

SQL or on its analogue for RDF data – the SPARQL.

Some examples of the graphical query languages

based on SQL or SPARQL are ViziQuer (Zviedris,

2011), Graphical Query Designer (Smart, 2008), SAP

Quick Viewer SQVI (Kaleske, 2011) and others.

Another way how to make querying easier is to

approach the natural language. There are many

solutions that are based on the idea that one can use

more or less strongly controlled natural language for

formulating queries. There have been attempts to

develop a Natural Language Interface to Databases

(NLIDB) which is to be used to querying relational

databases (Androutsopoulos, 1995; Li, 2014; Llopis,

2013; Papadakis, 2011; Popescu, 2004).

It is also possible to combine the two

abovementioned approaches allowing one to build a

part of the query graphically and a part of it textually.

It allows avoiding to some extent the biggest

drawback of fully graphical languages – their lack of

expressiveness – while at the same time the user can

create the largest and the most complicated part of the

query graphically. A couple of examples of this

approach are the NaLIR (Fei, 2014) and the DataTone

(Gao, 2015) tools.

KDIR 2019 - 11th International Conference on Knowledge Discovery and Information Retrieval

420

It must be noticed that most of the

abovementioned solutions are built exclusively for

the English language or in the best case – for some

other prominent languages. In this paper, the focus is

put on developing the tool for the needs of the

hospitals of Latvia, where the domain experts mostly

use the Latvian language, which is very different from

English. The English language belongs to the analytic

language family, while the Latvian language is highly

synthetic. It means that in English one primarily

conveys relationships between words in sentences by

way of helper words (such as particles or

prepositions) and word order. However, in Latvian,

this is done by changing the form of a word to convey

its role in the sentence. Therefore, it is not always

possible to exploit the principles that are valid for

analytic languages to synthetic languages.

3 STAR AND SEMISTAR DATA

ONTOLOGIES

As was already mentioned in Section 1 there is not

much hope to find a solution to the problem of natural

language-based querying for relational databases if

this has not been done for the last 40 years since the

emergence of the SQL. Therefore, it is worth

considering other data formats in the search for one

that would satisfy the following two conditions

simultaneously:

1) It is not so trivial as to be of no use in practical,

real-world applications;

2) It is simple enough so that there could be a hope

of solving the abovementioned problem of natural

language-based querying.

3.1 Star Data Ontology

One example of such data structure that satisfies the

two abovementioned conditions is the Star data

ontology. It has been introduced in (Barzdins, 2014-

1; Barzdins, 2014-2) and later refined in (Barzdins,

2016-3). The main idea of the Star ontology is that it

always contains one so-called central class which

serves as the starting point for “reading” the ontology.

From the central class, there are outgoing associations

to other classes, but only one type of associations is

allowed – the “consists of” association. The same

type of associations can be formed also further on

from those classes to other classes and so on, as long

as the associations do not form loops. All the classes

of a Star ontology together form a tree- or a star-like

structure with one class being the centre of the star.

Finally, there is also a specific condition put on the

cardinalities of the associations – the cardinality of

the proximal end of the association (the end that is

nearer to the centre of the star) is exactly one while

the cardinality of its distal end is *.

It can seem at first that such a data structure is very

limiting and that it does not have much practical use.

However, the reality is just the opposite. This

phenomenon has been observed in (Barzdins, 2016-

1; Barzdins, 2016-2) where the authors admit that

“even in more general cases when some ontology is

not a semistar ontology, one can usually find an

important subset of it to comply to principles of

semistar ontology. We can always think of a semistar

ontology as a subject-oriented ontology where the

role of the subject can be performed by a patient (in

case of the medical management domain), a customer

(in case of some service domain), etc.” It is admitted

that the practice shows that the Star data ontology (or

more precisely – the Semistar data ontology which is

explained in Section 3.2) is very suitable for such

subject-oriented domains, i.e. the domains where

there is always one central subject around which

everything else is sorted out. The hospital

management domain is an excellent example of a

subject-oriented domain because everything is sorted

around the patient being its central subject. Therefore,

the hospital management domain serves very well as

the base for developing the natural language-based

query language.

3.2 Semistar Data Ontology

The Semistar data ontology is a data structure that

allows a small derogation from the standard definition

of the Star ontology (Barzdins, 2016-1). In the

Semistar data ontology, some additional classes

(called classifications and registers) are allowed

besides the basic classes that form the basic star-like

structure. Those classes are, in fact, nothing more

than enumerations that can serve as the data types for

attributes of the basic classes. An example of a

Semistar data ontology of the medical management

domain is seen in Figure 1.

Practice shows that the Semistar data ontology is a

data structure that is very easily-perceptible by end-

users (Rencis, 2018-3). It contains concepts that are

well known to the domain expert, and it allows

avoiding the usage of technical details such as the

names of associations because there can only be one

association between any two classes of the ontology.

Therefore, the Semistar data ontology serves as an

appropriate basic data structure upon which one can

build a more straightforward query language.

User Experience-based Information Retrieval from Semistar Data Ontologies

421

Figure 1: Semistar data ontology for the hospital management domain.

4 QUERY LANGUAGE FOR

SEMISTAR ONTOLOGIES

The first step in the way towards allowing the domain

experts to understand the data located in the database

of the organisation is to develop a data structure that

is easily perceptible to him/her. As was concluded in

Section 3, the Semistar data ontology can be exploited

for this purpose. If the domain expert now

understands what data are located in the database,

he/she is prepared for the next step – querying those

data.

To be able to query the database, one must use a

query language that is understandable by that

database. To fulfil the goal of simple querying, a

natural language-based query language (further in the

text – the Base Language) was implemented because

the natural language acquires all the required features

simultaneously – it is easily perceptible by the end-

user, it is convenient to use, and it is sufficiently

expressive. The approach of the SQL was used in

developing the query language, i.e. several sentence

templates were developed that define the level of

control of the natural language. The user would then

be able to fill in the missing parts in those templates

with particular concepts of the underlying Semistar

data ontology, thus formulating queries as sentences

in the controlled natural language. This approach,

although being very similar to SQL, is, however,

much easier for the end-user because the underlying

data structure (being the Semistar data ontology

instead of the relational database) is much more

intuitive and easily perceptible.

We will not go into more detail in this paper about

how these sentence templates look like. A full

description of the Base Language and the templates

can be found in our previous work (Rencis, 2018-3).

To gain some insight and to better understand the

query translation process described in Section 5,

below are some examples of valid queries in the Base

Language that are based on the Semistar data

ontology seen in Figure 1.
COUNT Patients WHERE EXISTS

HospitalEpisode WHERE

referringPhysician=familyDoctor.

SUM totalCost FROM

HospitalEpisodes WHERE

dischargeReason=healthy AND

birthDate.year()=2012.

SELECT FROM HospitalEpisodes

WHERE dischargeReason=deceased

ATTRIBUTE

responsiblePhysician.surname ALL

DISTINCT VALUES.

It can be noticed that these queries are indeed

quite readable by a domain expert, mainly thanks to

the fact that it lacks technical details like the

association and role names and the cardinalities.

However, to justify our belief about the usability

of the language by the domain experts, we conducted

an experiment involving students of the Faculty of

Medicine, University of Latvia. Those students are

the future target group of our language and tool.

Firstly, we delivered a two-hour-long lecture to the

students about the general concepts like the concept

of the ontology, the Semistar data ontology and the

particular ontology of the hospital management

domain. Also, the Base Query Language was

explained, and the tool implementing the language

was demonstrated.

Afterwards, the students were asked to perform

two tasks – the reading task and the writing task. In

the reading task, they were given sentences in the

Base Language, and they had to answer in their own

words what is asked to the database in those queries.

In the writing task, they were given informal

descriptions about what information should they get

KDIR 2019 - 11th International Conference on Knowledge Discovery and Information Retrieval

422

from the database, and they had to write queries in the

Base Language within the provided tool to get

answers to those questions.

The results were ambiguous. One the one hand,

we got affirmation for the fact that the Base Language

is indeed very readable because almost all of the

students did excellently in the reading task. On the

other hand, we understood that the language is not yet

handy for creating queries because only three of 15

students had been able to do the writing task more or

less well. The results of the experiment are described

in more detail in our previous work (Rencis, 2018-1).

This experiment proved our hypothesis that the

Base Language is very well readable, but not so well

writable. That meant we had to go one step further in

the process of formulating queries, i.e. to approach

the natural language more closely. In other words, we

had to lessen the level of control of our query

language.

5 QUERY GENERATION FROM

KEYWORDS-CONTAINING

TEXT

The main idea how to lessen the level of control of

the query language thus making the language easier

to use by the domain experts is to allow end-users

writing queries in the natural language that contains

only specific keywords. A translator could then be

built that translates this keywords-containing text into

a valid query in the Base Language. For example, the

end-user could write such a query:
Can you, please, find for me those

patients who have been hospitalised

at least 2 times?

This sentence is completely normal in the English

language. Of course, it does not comply with any of

the sentences templates of the Base Language.

However, it contains keywords from which we can

guess what the user had meant by this query. For

example, the word “find” is probably a synonym to

the word “show” that is one of the keywords of the

Base Language. The word “patients” most certainly

means the class “Patient” of the underlying ontology

(by the way, as can be seen in the query examples

above, also in the Base Language it is allowed to

exploit different forms of keywords and concepts, as

well as it is allowed to have some typos which can be

corrected automatically). Next, the word “who” has

the same meaning as our keyword “where”. The

concept “hospitalised” is a bit more complicated, and

it could mean the phrase “exists HospitalEpisode”.

Finally, “at least” denotes the logical operator “>=”,

and the keyword “times” is perhaps a synonym of our

keyword “count”. Everything else can be regarded as

a noise which can thus be omitted.

As a result, the abovementioned query could be

translated automatically to the following query in the

Base Language:
SHOW Patients WHERE (COUNT

HospitalEpisodes) >= 2.

The translation process is described in more detail

in (Rencis, 2019).

5.1 The Concept of Entropy

The translation example described at the beginning of

Section 5 is, of course, very simplified. In the real

world, it is not always guaranteed that the system will

understand the query of the user unequivocally. For

example, the user might not have used the keywords

that the system understands. Moreover, he/she might

have used too many keywords so that the system can

understand the query in several different ways.

Finally, some keywords are even ambiguous

themselves – they can mean different things in

different contexts.

For example, one can perceive the keyword “is”

as a synonym of the keyword “exists” which might

not be so natural to the end-user. Thus, the user could

write a phrase “there is HospitalEpisode” instead of

the phrase “exists HospitalEpisode”. However, the

same keyword “is” can also be found in other

contexts, e.g. in the phrase “is greater than 2”. The

translation of the keyword “is” would be different in

those two cases. The conclusion here is that in most

cases, the query written in the natural language can be

translated to the Base Language in more than one

way.

To cope with the several possible translation

results, we have introduced the concept of the entropy

being the opposite of the notion of the plausibility of

the query (or more precisely – of its translation

result). The entropy characterises the level of disorder

of the original query, i.e. the distance of the original

query to its translation into the Base Language. In

other words, the entropy indicates how many

corrections have to be made in the original query in

order to turn it into a valid query of the Base

Language. Let us call those corrections the primitive

operations. Some examples of such primitive

operations can be the correction of a typo in a

keyword, swapping words in the part of the sentence,

swapping parts of the sentence or adding missing

keywords. If the query written by the user is already

executable in the Base Language, its entropy is zero.

User Experience-based Information Retrieval from Semistar Data Ontologies

423

The greater the distance from the original query to the

executable query in the Base Language, the higher its

entropy.

The entropy is calculated for objects of various

granularities. Firstly, it is calculated for the keywords

found in the original query taking into account the

typos in them. Secondly, the entropy is calculated for

the parts of the sentence taking into account the

entropies of individual words of that part and the

mutual sequence of the words. Thirdly, the entropy is

calculated for the sentence taking into account the

entropy of its parts and the mutual sequence of those

parts, as well as the entropy of the sub-sentences of

the sentence if the sentence contains any sub-

sentences (e.g. the sentence example at the beginning

of Section 5 contained the sub-sentence “count

HospitalEpisodes”).

Finally, there is a list of primitive operations that

turns the original query into an executable query in

the Base Language. Every primitive operation has a

penalty that is added to the query translation result

when the operation is applied in the translation

process. If there is an ambiguity so that the original

query can be understood in several different ways

(which is the case in most situations), the translation

process branches, and the translation tree is made.

The leaves of the translation tree represent all

possible translation results for that particular original

query. Each of those results contains a valid query

that is executable in the Base Language and a list of

primitive operations (and their total entropy) that has

been applied to obtain the result.

5.2 Learning from User Experience

Every user is unique in his/her way of formulating

queries in the natural language. Every user exploits

different concepts, different forms of concepts and

different phrases, and every user builds sentences

differently. Some of those phrases can be closer to the

requirements of our existing strongly-controlled Base

Language, and others are not so close. The closer to

the Base Language is the particular sentence the user

has formulated, the lesser amount of corrections

needs to be performed in order to translate the

sentence into a valid query in the Base Language, and

the lesser is the entropy of the translation result (thus

the result is shown higher in the list of all the possible

translation results for that query). However, if a user,

when offered the list of the translation results,

regularly picks a result that is not the highest in the

list (i.e. that does not have the smallest entropy), it

would be beneficial to adapt to the specifics of the

user and to learn from his/her habits so that next time

the correct translation result is ranked higher in the

list of all the results.

The experiment described in Section 4 proved that

the Base Language is very well readable by the

domain experts. This knowledge has allowed us to

rank the translation results in cases of ambiguity

when there is more than one result and to offer the list

of those results back to the user so that he/she can

choose the one that represents the query he/she has

really intended to ask. The user is able to read the

provided translation results in the Base Language and

to pick the correct one from them. To implement the

facility of teaching to the system the specifics of the

user, the penalties of the primitive operations that

have been applied to obtain the correct translation

result (i.e. the one that the user has picked) are slightly

decreased. That way, the resulting entropy for such

type of queries will be slightly smaller next time when

the same user will formulate the sentence in the

natural language using the same specific habits.

A special case is the correction of typos. The

penalty of correcting a typo in a keyword is not

decreased in the abovementioned situation, but

instead, the word that is supposedly written with a

typo is added to the list of synonyms for the particular

keyword. The justification for this approach is the

specificity of the Latvian language. As was described

in Section 2, Latvian is a synthetic language, which

means there can be different endings of words

depending on the role the word takes in the sentence.

Therefore, it is not right to consider only one of those

different forms of the word the correct one and to

assume that all other forms are typos. Since all the

forms of the keyword that the user exploits are being

stored as the synonyms of that keyword, the system

learns those forms as valid keywords over time, and

not considering those forms as typos will again

decrease the entropy of the whole query.

6 CONCLUSIONS

Knowledge discovery and information retrieval are

becoming progressively more topical since the time

necessary for the doubling of medical knowledge is

rapidly decreasing and will presumably reach only 73

days in 2020 (Densen, 2011). In such conditions, it is

of utmost importance to ensure that the information

does not flow in only one direction – to the database

–, but that the information located in the database is

also accessible by domain experts who could exploit

it in their decision-making process. The information

retrieval process must be fast, convenient and

KDIR 2019 - 11th International Conference on Knowledge Discovery and Information Retrieval

424

straightforward, but it often lacks at least one of these

properties.

This paper proposes an approach where the

domain experts are able to formulate their queries in

the natural language sentences that contain particular

keywords. The system would then translate the query

into one or more valid queries in the Base Language

that is also based on the natural language and that

already has an efficient implementation. The Base

Language has proven to be very easily readable by

non-IT specialists (i.e. the domain experts of the

medical management domain). Thus the domain

expert would be able to understand the translation

results and to select the correct one, that is, the query

he/she had intended to formulate.

For it to be possible to implement such natural

language-based querying, this paper proposes a data

schema called the Semistar data ontology that

alleviates the process of formulating queries. The

practice has shown that such a data structure is

prevalent in subject-oriented domains such as

hospital management.

To test the base query language, a tool was

developed that allows users to create queries and to

receive answers to them. An experiment was

conducted where the tool was taught to a group of

students. After having worked with the tool and the

Base Language for some time, they acknowledged the

language as very well readable. Therefore, it justifies

the approach of showing the list of the query

translation results in the Base Language back to the

user so that he/she can point out to the correct one. As

a result, the system learns from the user experience so

that the correct query will have higher credibility (i.e.,

smaller entropy) next time.

This paper describes the work in progress that

continues the work described in (Rencis, 2018-2). A

prototype implementing the natural language-based

querying has been developed, as well as the

calculation of the entropy for the query translation

results has been implemented. The user experience-

based learning is a part of the future work that has yet

to be implemented.

ACKNOWLEDGEMENTS

This work is supported by the ERDF PostDoc Latvia

project Nr. 1.1.1.2/16/I/001 under agreement Nr.

1.1.1.2/VIAA/1/16/218 “User Experience-Based

Generation of Ad-hoc Queries From Arbitrary

Keywords-Containing Text”.

REFERENCES

Androutsopoulos, I., Ritchie, G. D., Thanisch, P. 1995.

Natural language interfaces to databases – an

introduction. In: Natural Language Engineering, 1(1),

29-81. DOI: 10.1017/S135132490000005X.

Barzdins, J., Rencis, E., and Sostaks, A. 2014. Data

Ontologies and Ad Hoc Queries: a Case Study. In: H.M.

Haav, A. Kalja, T. Robal (Eds.) Proc. of the 11th

International Baltic Conference, Baltic DB&IS, 55-66,

TUT Press.

Barzdins, J., Rencis, E., Sostaks, A. 2014. Fast Ad Hoc

Queries Based on Data Ontologies. In: H.M. Haav, A.

Kalja, T. Robal (Eds.), Frontiers of AI and

Applications, Vol. 270, Databases and Information

Systems VIII, 43-56, IOS Press.

Barzdins, J., Grasmanis, M., Rencis, E., Sostaks, A.,

Barzdins, J. 2016. Self-service Ad-hoc Querying Using

Controlled Natural Language. In: G. Arnicans et al.

(Eds.) Proc. of the 12th International Baltic

Conference, Baltic DB&IS, 18-34, CCIS 615.

Barzdins, J., Grasmanis, M., Rencis, E., Sostaks, A.,

Barzdins, J. 2016. Ad-hoc Querying of Semistar Data

Ontologies Using Controlled Natural Language. In:

Frontiers in Artificial Intelligence and Applications.

Databases and Information Systems IX, Vol. 291, IOS

Press, 3-16. DOI: 10.3233/978-1-61499-714-6-3.

Barzdins, J., Grasmanis, M., Rencis, E., Sostaks, A.,

Steinsbekk, A. 2016. Towards a more effective

hospital: helping health professionals to learn from their

own practice by developing an easy to use clinical

processes querying language. In: International

Conference on Health and Social Care Information

Systems and Technologies, Procedia Computer Science

Journal, 100, 498-506. DOI: 10.1016/j.procs.2016.

09.188.

Chamberlin, D.D., Boyce, R.F. 1974. SEQUEL: A

structured English query language. In: Proc. ACM

SIGFIDET Workshop, Ann Arbor, Mich., 249-264.

Densen, P. 2011. Challenges and opportunities facing

medical education. In: Transactions of the American

Clinical and Climatological Association, 122, 48-58.

Fei, L., Jagadish, H.V. 2014. NaLIR: An interactive natural

language interface for querying relational databases. In:

Proceedings of the ACM SIGMOD International

Conference on Management of Data. DOI:

10.1145/2588555.2594519.

Gao, T., Dontcheva, M., Adar, E., Liu, Z., Karahalios, K.G.

2015. DataTone: Managing Ambiguity in Natural

Language Interfaces for Data Visualization. In:

Proceedings of the 28th Annual ACM Symposium on

User Interface Software & Technology (UIST '15).

ACM, New York, NY, USA, 489-500. DOI:

10.1145/2807442.2807478.

Kaleske, S. 2011. SAP Query Reporting – Practical Guide,

Galileo Press.

Li, F., Jagadish, H. V. 2014. Constructing an interactive

natural language interface for relational databases. In:

Journal Proceedings of the VLDB Endowment, 8(1),

73-84.

User Experience-based Information Retrieval from Semistar Data Ontologies

425

Llopis, M., Ferrández, A. 2013. How to make a natural

language interface to query databases accessible to

everyone: An example. In: Computer Standards &

Interfaces, 35 (5), 470-481.

Papadakis, N., Kefalas, P., Stilianakakis, M. 2011. A tool

for access to relational databases in natural language.

In: Expert Systems with Applications, 38, 7894-7900.

Popescu, A. M., Armanasu, A., Etzioni, O., Ko, D., Yates,

A. 2004. Modern natural language interfaces to

databases: Composing statistical parsing with semantic

tractability. In: COLING '04 Proceedings of the 20th

international conference on Computational Linguistics,

article no. 141.

Rencis, E. 2018. Towards a Natural Language-Based

Interface for Querying Hospital Data. In: Proc. of 2018

International Conference on Big Data Technologies,

ICBDT’18, Hangzhou, China, 25-28. DOI:

10.1145/3226116.3226133.

Rencis, E. 2018. On Keyword-Based Ad-Hoc Querying of

Hospital Data Stored in Semistar Data Ontologies. In:

International Conference on Health and Social Care

Information Systems and Technologies, Procedia

Computer Science Journal, ISSN 1877-0509, Vol. 138,

27-32, DOI: 10.1016/j.procs.2018.10.005.

Rencis, E., Barzdins, J., Grasmanis, M., Sostaks, A. 2018.

Facilitation of Health Professionals Responsible

Autonomy with Easy-To-Use Hospital Data Querying

Language. In: Audrone Lupeikiene et al. (Eds.): Proc.

of the 13th International Baltic Conference on

Databases and Information Systems, Baltic DB&IS,

CCIS 838, 1-14, DOI: 10.1007/978-3-319-97571-9_17.

Rencis, E. 2019. Natural Language-Based Knowledge

Extraction in Healthcare Domain. In: Proc. of the 3rd

International Conference on Information System and

Data Mining, ICISDM, Houston, Texas, USA, 138-142,

DOI: 10.1145/3325917.3325948.

Smart, P.R., Russell, A., Braines, D., Kalfoglou, Y., Bao,

J., Shadbolt, N.R. 2008. A Visual Approach to

Semantic Query Design Using a Web-Based Graphical

Query Designer. In: Gangemi A., Euzenat J. (eds)

Knowledge Engineering: Practice and Patterns. EKAW

2008. Lecture Notes in Computer Science, vol 5268.

Springer, Berlin, Heidelberg, 275-291. DOI:

10.1007/978-3-540-87696-0_25.

Zviedris, M., Barzdins, G. 2011. ViziQuer: A Tool to

Explore and Query SPARQL Endpoints. In: The

Semantic Web: Research and Applications, 6644, 441-

445.

KDIR 2019 - 11th International Conference on Knowledge Discovery and Information Retrieval

426

