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Abstract: The time necessary for the doubling of medical knowledge is rapidly decreasing. In such circumstances, it is 

of utmost importance for the information retrieval process to be rapid, convenient and straightforward. 

However, it often lacks at least one of these properties. Several obstacles prohibit domain experts extracting 

knowledge from their databases without involving the third party in the form of IT professionals. The main 

limitation is usually the complexity of querying languages and tools. This paper proposes the approach of 

using a keywords-containing natural language for querying the database and exploiting the system that could 

automatically translate such queries to already existing target language that has an efficient implementation 

upon the database. The querying process is based on data conforming to a Semistar data ontology that has 

proven to be a very easily perceptible data structure for domain experts. Over time, the system can learn from 

the user actions, thus making the translation more accurate and the querying – more straightforward. 

1 INTRODUCTION 

The time necessary for the doubling of medical 

knowledge has been rapidly decreasing in the last 

decades. While in the 1950s the doubling time of 

medical knowledge was about 50 years, it has shrunk 

to 3.5 years in 2010, and it is estimated to be only 

about 73 days in 2020 (Densen, 2011). 

The amount of gathered information rapidly 

increases. Nowadays, even the smallest organizations 

acquire vast amounts of data. Nobody complains 

about the lack of information. However, a question 

arises – is there a benefit from all this information? 

Can we extract some knowledge from it? 

What is knowledge, after all? It is the information 

that one can apply to make decisions. There is no use 

of the information in the database if nobody knows 

that it is there and thus cannot extract any valuable 

knowledge from it. To extract knowledge from the 

information, we usually hire system analytics to do 

the job. They acquire the IT skills necessary for 

inspecting the database, understanding its structure, 

retrieving the information and discovering the needed 

knowledge by using the SQL or another querying 

language. 
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However, it is not always the best option to hire a 

system analyst. The real users in need of the 

knowledge are those who make the decisions in the 

organization. If we take a hospital as an example 

organization, those end-users would be physicians, 

ward managers, hospital managers. To make a 

decision, such an end-user would need to receive 

answers to his/her questions. To get those answers, 

they need to consult the system analyst and ask 

him/her to find the necessary information in the 

database for them. 

Several problems may arise here. Firstly, the 

domain experts often lack any idea about what kind 

of data are gathered and are available in the database 

to start with, what kind of information can they ask 

from the database and what kind of knowledge can be 

extracted. To clarify these questions, they have to 

interview the system analyst. It can be a one-time 

engagement, but it is nevertheless time-consuming, 

and it does not necessarily cover every aspect of what 

domain experts want to know, because the system 

analytic will only provide answers to the questions 

asked, and the domain expert can miss some vital 

question that could be beneficial for the next time. 

Besides, the process would have to be repeated for 
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every new domain expert who starts to work in the 

organisation. 

Secondly, even if one has understood the structure 

of the database and the types of questions he/she may 

ask, it takes some time for receiving the answers to 

particular questions. The system analytic can be 

overloaded with work, and answering all the 

questions from the domain experts can take hours or 

even days in some cases. 

Thirdly, not every domain expert even has access 

to such a resource as the system analytic. The hospital 

manager more likely has an authority to give 

commands to the system analytic, but not every 

physician has such a privilege. Therefore, this process 

may be even more time-consuming if at all possible 

for them. 

Finally, hiring a system analytic also costs a lot, 

and exploiting this resource just for answering those 

types of questions might not be the best way of 

spending the money. 

Taking into account all of the abovementioned 

observations it is clear that it would be much better if 

the domain expert could access the database and 

query it him/herself – to understand its structure, to 

form questions and to understand the answers to those 

questions. This ability could undeniably accelerate 

the information retrieval process, which in turn would 

speed up the decision-making process that is one of 

the most critical aspects of the operation of any 

organisation. 

There have been many attempts to solve the 

abovementioned problem. The most popular of them 

has been the introduction of the SQL in 1974 

(Chamberlin, 1974). The original goal of this 

language has been precisely the same – to make 

querying possible for non-programmers. There was 

the slogan that every housewife will now be able to 

work with databases. However, the experience shows 

that this goal has not been fulfilled – hardly any 

domain expert that is not an IT specialist is able to use 

the SQL nowadays because it is too technical and 

complicated. It is so partly because it is based on the 

relational database that is not a very easily-

perceptible data structure for end-users. Other related 

work is inspected in Section 2. 

In this paper, it is proposed to retreat from the 

traditional approach of storing the data in the form of 

the relations database and instead to use another data 

format for storing the data – the Semistar data 

ontology. This data structure is described in Section 

3. Upon the Semistar data ontology, it is possible to 

develop a simple querying language using the main 

principle of the SQL – to create sentence templates 

where the end-user would insert specific concepts of 

the underlying data structure. The query language has 

already been implemented, and Section 4 provides an 

insight into it. It is also explained here what are the 

most significant flaws of the language in terms of its 

practical usage. To avoid these flaws, it is proposed 

to write queries in the natural language. These queries 

would then be translated automatically to the 

abovementioned language. Section 5 describes the 

main idea of the translation process. It is also 

explained here how the user would be able to 

ascertain that his/her query has been interpreted 

correctly by the system and how the system could 

learn from the user experience over time. 

2 RELATED WORK 

The first related work in the field is dated by the year 

1974 when the SQL was created. It was the first 

attempt to allow non-professionals to query their 

databases. As already stated in Section 1, this attempt 

has not been as successful as it could have been. 

Much effort has been devoted to making the 

querying easier so that it would become available to 

end-users. There are several ways how this can be 

done. One way is to use graphical query languages 

that allow users to create queries by clicking the 

mouse and entering only some specific concepts by 

the keyboard. Such languages can be based either on 

SQL or on its analogue for RDF data – the SPARQL. 

Some examples of the graphical query languages 

based on SQL or SPARQL are ViziQuer (Zviedris, 

2011), Graphical Query Designer (Smart, 2008), SAP 

Quick Viewer SQVI (Kaleske, 2011) and others. 

Another way how to make querying easier is to 

approach the natural language. There are many 

solutions that are based on the idea that one can use 

more or less strongly controlled natural language for 

formulating queries. There have been attempts to 

develop a Natural Language Interface to Databases 

(NLIDB) which is to be used to querying relational 

databases (Androutsopoulos, 1995; Li, 2014; Llopis, 

2013; Papadakis, 2011; Popescu, 2004). 

It is also possible to combine the two 

abovementioned approaches allowing one to build a 

part of the query graphically and a part of it textually. 

It allows avoiding to some extent the biggest 

drawback of fully graphical languages – their lack of 

expressiveness – while at the same time the user can 

create the largest and the most complicated part of the 

query graphically. A couple of examples of this 

approach are the NaLIR (Fei, 2014) and the DataTone 

(Gao, 2015) tools. 
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It must be noticed that most of the 

abovementioned solutions are built exclusively for 

the English language or in the best case – for some 

other prominent languages. In this paper, the focus is 

put on developing the tool for the needs of the 

hospitals of Latvia, where the domain experts mostly 

use the Latvian language, which is very different from 

English. The English language belongs to the analytic 

language family, while the Latvian language is highly 

synthetic. It means that in English one primarily 

conveys relationships between words in sentences by 

way of helper words (such as particles or 

prepositions) and word order. However, in Latvian, 

this is done by changing the form of a word to convey 

its role in the sentence. Therefore, it is not always 

possible to exploit the principles that are valid for 

analytic languages to synthetic languages. 

3 STAR AND SEMISTAR DATA 

ONTOLOGIES 

As was already mentioned in Section 1 there is not 

much hope to find a solution to the problem of natural 

language-based querying for relational databases if 

this has not been done for the last 40 years since the 

emergence of the SQL. Therefore, it is worth 

considering other data formats in the search for one 

that would satisfy the following two conditions 

simultaneously: 

1) It is not so trivial as to be of no use in practical, 

real-world applications; 

2) It is simple enough so that there could be a hope 

of solving the abovementioned problem of natural 

language-based querying. 

3.1 Star Data Ontology 

One example of such data structure that satisfies the 

two abovementioned conditions is the Star data 

ontology. It has been introduced in (Barzdins, 2014-

1; Barzdins, 2014-2) and later refined in (Barzdins, 

2016-3). The main idea of the Star ontology is that it 

always contains one so-called central class which 

serves as the starting point for “reading” the ontology. 

From the central class, there are outgoing associations 

to other classes, but only one type of associations is 

allowed – the “consists of” association. The same 

type of associations can be formed also further on 

from those classes to other classes and so on, as long 

as the associations do not form loops. All the classes 

of a Star ontology together form a tree- or a star-like 

structure with one class being the centre of the star. 

Finally, there is also a specific condition put on the 

cardinalities of the associations – the cardinality of 

the proximal end of the association (the end that is 

nearer to the centre of the star) is exactly one while 

the cardinality of its distal end is *. 

It can seem at first that such a data structure is very 

limiting and that it does not have much practical use. 

However, the reality is just the opposite. This 

phenomenon has been observed in (Barzdins, 2016-

1; Barzdins, 2016-2) where the authors admit that 

“even in more general cases when some ontology is 

not a semistar ontology, one can usually find an 

important subset of it to comply to principles of 

semistar ontology. We can always think of a semistar 

ontology as a subject-oriented ontology where the 

role of the subject can be performed by a patient (in 

case of the medical management domain), a customer 

(in case of some service domain), etc.” It is admitted 

that the practice shows that the Star data ontology (or 

more precisely – the Semistar data ontology which is 

explained in Section 3.2) is very suitable for such 

subject-oriented domains, i.e. the domains where 

there is always one central subject around which 

everything else is sorted out. The hospital 

management domain is an excellent example of a 

subject-oriented domain because everything is sorted 

around the patient being its central subject. Therefore, 

the hospital management domain serves very well as 

the base for developing the natural language-based 

query language. 

3.2 Semistar Data Ontology 

The Semistar data ontology is a data structure that 

allows a small derogation from the standard definition 

of the Star ontology (Barzdins, 2016-1). In the 

Semistar data ontology, some additional classes 

(called classifications and registers) are allowed 

besides the basic classes that form the basic star-like 

structure. Those classes are, in fact, nothing more 

than enumerations that can serve as the data types for 

attributes of the basic classes. An example of a 

Semistar data ontology of the medical management 

domain is seen in Figure 1. 

Practice shows that the Semistar data ontology is a 

data structure that is very easily-perceptible by end-

users (Rencis, 2018-3). It contains concepts that are 

well known to the domain expert, and it allows 

avoiding the usage of technical details such as the 

names of associations because there can only be one 

association between any two classes of the ontology. 

Therefore, the Semistar data ontology serves as an 

appropriate basic data structure upon which one can 

build a more straightforward query language. 
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Figure 1: Semistar data ontology for the hospital management domain. 

4 QUERY LANGUAGE FOR 

SEMISTAR ONTOLOGIES 

The first step in the way towards allowing the domain 

experts to understand the data located in the database 

of the organisation is to develop a data structure that 

is easily perceptible to him/her. As was concluded in 

Section 3, the Semistar data ontology can be exploited 

for this purpose. If the domain expert now 

understands what data are located in the database, 

he/she is prepared for the next step – querying those 

data. 

To be able to query the database, one must use a 

query language that is understandable by that 

database. To fulfil the goal of simple querying, a 

natural language-based query language (further in the 

text – the Base Language) was implemented because 

the natural language acquires all the required features 

simultaneously – it is easily perceptible by the end-

user, it is convenient to use, and it is sufficiently 

expressive. The approach of the SQL was used in 

developing the query language, i.e. several sentence 

templates were developed that define the level of 

control of the natural language. The user would then 

be able to fill in the missing parts in those templates 

with particular concepts of the underlying Semistar 

data ontology, thus formulating queries as sentences 

in the controlled natural language. This approach, 

although being very similar to SQL, is, however, 

much easier for the end-user because the underlying 

data structure (being the Semistar data ontology 

instead of the relational database) is much more 

intuitive and easily perceptible. 

We will not go into more detail in this paper about 

how these sentence templates look like. A full 

description of the Base Language and the templates 

can be found in our previous work (Rencis, 2018-3). 

To gain some insight and to better understand the 

query translation process described in Section 5, 

below are some examples of valid queries in the Base 

Language that are based on the Semistar data 

ontology seen in Figure 1. 
COUNT Patients WHERE EXISTS 

HospitalEpisode WHERE 

referringPhysician=familyDoctor. 

SUM totalCost FROM 

HospitalEpisodes WHERE 

dischargeReason=healthy AND 

birthDate.year()=2012. 

SELECT FROM HospitalEpisodes 

WHERE dischargeReason=deceased 

ATTRIBUTE 

responsiblePhysician.surname ALL 

DISTINCT VALUES. 

It can be noticed that these queries are indeed 

quite readable by a domain expert, mainly thanks to 

the fact that it lacks technical details like the 

association and role names and the cardinalities. 

However, to justify our belief about the usability 

of the language by the domain experts, we conducted 

an experiment involving students of the Faculty of 

Medicine, University of Latvia. Those students are 

the future target group of our language and tool. 

Firstly, we delivered a two-hour-long lecture to the 

students about the general concepts like the concept 

of the ontology, the Semistar data ontology and the 

particular ontology of the hospital management 

domain. Also, the Base Query Language was 

explained, and the tool implementing the language 

was demonstrated. 

Afterwards, the students were asked to perform 

two tasks – the reading task and the writing task. In 

the reading task, they were given sentences in the 

Base Language, and they had to answer in their own 

words what is asked to the database in those queries. 

In the writing task, they were given informal 

descriptions about what information should they get 
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from the database, and they had to write queries in the 

Base Language within the provided tool to get 

answers to those questions. 

The results were ambiguous. One the one hand, 

we got affirmation for the fact that the Base Language 

is indeed very readable because almost all of the 

students did excellently in the reading task. On the 

other hand, we understood that the language is not yet 

handy for creating queries because only three of 15 

students had been able to do the writing task more or 

less well. The results of the experiment are described 

in more detail in our previous work (Rencis, 2018-1). 

This experiment proved our hypothesis that the 

Base Language is very well readable, but not so well 

writable. That meant we had to go one step further in 

the process of formulating queries, i.e. to approach 

the natural language more closely. In other words, we 

had to lessen the level of control of our query 

language. 

5 QUERY GENERATION FROM 

KEYWORDS-CONTAINING 

TEXT 

The main idea how to lessen the level of control of 

the query language thus making the language easier 

to use by the domain experts is to allow end-users 

writing queries in the natural language that contains 

only specific keywords. A translator could then be 

built that translates this keywords-containing text into 

a valid query in the Base Language. For example, the 

end-user could write such a query: 
Can you, please, find for me those 

patients who have been hospitalised 

at least 2 times? 

This sentence is completely normal in the English 

language. Of course, it does not comply with any of 

the sentences templates of the Base Language. 

However, it contains keywords from which we can 

guess what the user had meant by this query. For 

example, the word “find” is probably a synonym to 

the word “show” that is one of the keywords of the 

Base Language. The word “patients” most certainly 

means the class “Patient” of the underlying ontology 

(by the way, as can be seen in the query examples 

above, also in the Base Language it is allowed to 

exploit different forms of keywords and concepts, as 

well as it is allowed to have some typos which can be 

corrected automatically). Next, the word “who” has 

the same meaning as our keyword “where”. The 

concept “hospitalised” is a bit more complicated, and 

it could mean the phrase “exists HospitalEpisode”. 

Finally, “at least” denotes the logical operator “>=”, 

and the keyword “times” is perhaps a synonym of our 

keyword “count”. Everything else can be regarded as 

a noise which can thus be omitted. 

As a result, the abovementioned query could be 

translated automatically to the following query in the 

Base Language: 
SHOW Patients WHERE (COUNT 

HospitalEpisodes) >= 2. 

The translation process is described in more detail 

in (Rencis, 2019). 

5.1 The Concept of Entropy 

The translation example described at the beginning of 

Section 5 is, of course, very simplified. In the real 

world, it is not always guaranteed that the system will 

understand the query of the user unequivocally. For 

example, the user might not have used the keywords 

that the system understands. Moreover, he/she might 

have used too many keywords so that the system can 

understand the query in several different ways. 

Finally, some keywords are even ambiguous 

themselves – they can mean different things in 

different contexts. 

For example, one can perceive the keyword “is” 

as a synonym of the keyword “exists” which might 

not be so natural to the end-user. Thus, the user could 

write a phrase “there is HospitalEpisode” instead of 

the phrase “exists HospitalEpisode”. However, the 

same keyword “is” can also be found in other 

contexts, e.g. in the phrase “is greater than 2”. The 

translation of the keyword “is” would be different in 

those two cases. The conclusion here is that in most 

cases, the query written in the natural language can be 

translated to the Base Language in more than one 

way. 

To cope with the several possible translation 

results, we have introduced the concept of the entropy 

being the opposite of the notion of the plausibility of 

the query (or more precisely – of its translation 

result). The entropy characterises the level of disorder 

of the original query, i.e. the distance of the original 

query to its translation into the Base Language. In 

other words, the entropy indicates how many 

corrections have to be made in the original query in 

order to turn it into a valid query of the Base 

Language. Let us call those corrections the primitive 

operations. Some examples of such primitive 

operations can be the correction of a typo in a 

keyword, swapping words in the part of the sentence, 

swapping parts of the sentence or adding missing 

keywords. If the query written by the user is already 

executable in the Base Language, its entropy is zero. 
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The greater the distance from the original query to the 

executable query in the Base Language, the higher its 

entropy. 

The entropy is calculated for objects of various 

granularities. Firstly, it is calculated for the keywords 

found in the original query taking into account the 

typos in them. Secondly, the entropy is calculated for 

the parts of the sentence taking into account the 

entropies of individual words of that part and the 

mutual sequence of the words. Thirdly, the entropy is 

calculated for the sentence taking into account the 

entropy of its parts and the mutual sequence of those 

parts, as well as the entropy of the sub-sentences of 

the sentence if the sentence contains any sub-

sentences (e.g. the sentence example at the beginning 

of Section 5 contained the sub-sentence “count 

HospitalEpisodes”). 

Finally, there is a list of primitive operations that 

turns the original query into an executable query in 

the Base Language. Every primitive operation has a 

penalty that is added to the query translation result 

when the operation is applied in the translation 

process. If there is an ambiguity so that the original 

query can be understood in several different ways 

(which is the case in most situations), the translation 

process branches, and the translation tree is made. 

The leaves of the translation tree represent all 

possible translation results for that particular original 

query. Each of those results contains a valid query 

that is executable in the Base Language and a list of 

primitive operations (and their total entropy) that has 

been applied to obtain the result. 

5.2 Learning from User Experience 

Every user is unique in his/her way of formulating 

queries in the natural language. Every user exploits 

different concepts, different forms of concepts and 

different phrases, and every user builds sentences 

differently. Some of those phrases can be closer to the 

requirements of our existing strongly-controlled Base 

Language, and others are not so close. The closer to 

the Base Language is the particular sentence the user 

has formulated, the lesser amount of corrections 

needs to be performed in order to translate the 

sentence into a valid query in the Base Language, and 

the lesser is the entropy of the translation result (thus 

the result is shown higher in the list of all the possible 

translation results for that query). However, if a user, 

when offered the list of the translation results, 

regularly picks a result that is not the highest in the 

list (i.e. that does not have the smallest entropy), it 

would be beneficial to adapt to the specifics of the 

user and to learn from his/her habits so that next time 

the correct translation result is ranked higher in the 

list of all the results. 

The experiment described in Section 4 proved that 

the Base Language is very well readable by the 

domain experts. This knowledge has allowed us to 

rank the translation results in cases of ambiguity 

when there is more than one result and to offer the list 

of those results back to the user so that he/she can 

choose the one that represents the query he/she has 

really intended to ask. The user is able to read the 

provided translation results in the Base Language and 

to pick the correct one from them. To implement the 

facility of teaching to the system the specifics of the 

user, the penalties of the primitive operations that 

have been applied to obtain the correct translation 

result (i.e. the one that the user has picked) are slightly 

decreased. That way, the resulting entropy for such 

type of queries will be slightly smaller next time when 

the same user will formulate the sentence in the 

natural language using the same specific habits. 

A special case is the correction of typos. The 

penalty of correcting a typo in a keyword is not 

decreased in the abovementioned situation, but 

instead, the word that is supposedly written with a 

typo is added to the list of synonyms for the particular 

keyword. The justification for this approach is the 

specificity of the Latvian language. As was described 

in Section 2, Latvian is a synthetic language, which 

means there can be different endings of words 

depending on the role the word takes in the sentence. 

Therefore, it is not right to consider only one of those 

different forms of the word the correct one and to 

assume that all other forms are typos. Since all the 

forms of the keyword that the user exploits are being 

stored as the synonyms of that keyword, the system 

learns those forms as valid keywords over time, and 

not considering those forms as typos will again 

decrease the entropy of the whole query. 

6 CONCLUSIONS 

Knowledge discovery and information retrieval are 

becoming progressively more topical since the time 

necessary for the doubling of medical knowledge is 

rapidly decreasing and will presumably reach only 73 

days in 2020 (Densen, 2011). In such conditions, it is 

of utmost importance to ensure that the information 

does not flow in only one direction – to the database 

–, but that the information located in the database is 

also accessible by domain experts who could exploit 

it in their decision-making process. The information 

retrieval process must be fast, convenient and 
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straightforward, but it often lacks at least one of these 

properties. 

This paper proposes an approach where the 

domain experts are able to formulate their queries in 

the natural language sentences that contain particular 

keywords. The system would then translate the query 

into one or more valid queries in the Base Language 

that is also based on the natural language and that 

already has an efficient implementation. The Base 

Language has proven to be very easily readable by 

non-IT specialists (i.e. the domain experts of the 

medical management domain). Thus the domain 

expert would be able to understand the translation 

results and to select the correct one, that is, the query 

he/she had intended to formulate. 

For it to be possible to implement such natural 

language-based querying, this paper proposes a data 

schema called the Semistar data ontology that 

alleviates the process of formulating queries. The 

practice has shown that such a data structure is 

prevalent in subject-oriented domains such as 

hospital management. 

To test the base query language, a tool was 

developed that allows users to create queries and to 

receive answers to them. An experiment was 

conducted where the tool was taught to a group of 

students. After having worked with the tool and the 

Base Language for some time, they acknowledged the 

language as very well readable. Therefore, it justifies 

the approach of showing the list of the query 

translation results in the Base Language back to the 

user so that he/she can point out to the correct one. As 

a result, the system learns from the user experience so 

that the correct query will have higher credibility (i.e., 

smaller entropy) next time. 

This paper describes the work in progress that 

continues the work described in (Rencis, 2018-2). A 

prototype implementing the natural language-based 

querying has been developed, as well as the 

calculation of the entropy for the query translation 

results has been implemented. The user experience-

based learning is a part of the future work that has yet 

to be implemented. 
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