
Assisted Composition of Linked Data Queries

Imen Sarray a and Aziz Salah b
Computer Science Department, Université du Québec à Montréal, 201 President Kennedy Avenue, Montreal, Canada

Keywords: Linked Data, RDF, SPARQL Queries, Semantic Web, Schema Construction, Resource Clustering, Query
GUI Tool.

Abstract: Much research has been undertaken to facilitate the construction of SPARQL queries, while other research
has attempted to facilitate the construction of the RDF dataset schema to understand the structure of RDF
datasets. However, there is no effective approach that brings together these two complementary objectives.
This work is an effort in this direction. We propose an approach that allows assisted SPARQL query
composition. Linked data interrogation is not only difficult because it requires mastering a query language
such as SPARQL, but mainly because RDF datasets do not have an explicit schema as what you can expect
in relational databases. This paper provides two complimentary solutions: synthesis of an interrogation-
oriented schema and a form-based RDF Query construction tool, name EXPLO-RDF.

1 INTRODUCTION

An increasing number of RDF datasets is available on
the Web for users and their applications. A key
challenge for the users to reuse these data is in
exploring, querying and understanding the large and
unfamiliar RDF sources.

Today, the SPARQL query language is almost the
de facto tool for RDF data queries and exploration.
However, the formulation of SPARQL queries is a
complex task. Indeed, the user should know the
syntax of SPARQL and requires technical knowledge
and some understanding of RDF, RDFS and URIs,
among others. Moreover, RDF data is not only
intended for the Semantic Web community, but also
for non-expert users and experts of other fields who
are not necessairly familiar with the different
technologies used. Subsequently, it becomes very
difficult for these users to query and explore an RDF
dataset with SPARQL.

Before an RDF dataset can be reused and in order
to write a SPARQL query, the user must understand
the data and must have information about the RDF
dataset schema to locate the relevant information for
their specific needs and to determine whether such
data can be easily reused.

a https://orcid.org/2222-3333-4444-5555
b https://orcid.org/0000-1111-2222-3333

Users currently face the problem that schema
information for RDF data is often not available or
even missing. Even when it is available, it tends to be
incomplete or does not adequately represent the RDF
data because the latter does not have to conform to a
constraining schema. It can therefore be hard for users
to obtain the big picture when handling a large and
complex RDF dataset.

The lack of schema can limit the interrogation of
RDF linked data: for example, writing a query
without knowing of the existing classes and their
properties (known as predicates) is not
straightforward. In this case, the user must first
submit multiple queries and manually browse the
results in order to collect all the relevant classes and
properties, which will be used to formulate the main
query that will provide the final result.

In recent years, some work has been done to
provide the user with exploration approaches of RDF
schema. Thus, the user will build a global view of the
RDF source and can select relevant classes and their
properties. The user must use a query language like
SPARQL or data exploration tools to explore and get
more details about the data.

There is also work to explore directly RDF data
sources. These works help users to query and
understand RDF data without needing to know the

Sarray, I. and Salah, A.
Assisted Composition of Linked Data Queries.
DOI: 10.5220/0008169601850194
In Proceedings of the 11th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2019), pages 185-194
ISBN: 978-989-758-382-7
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

185

query language. To query a dataset, the user needs a
minimum of knowledge about the data structure.
However, this information is often not available.

To the best of our knowledge, no approach allows
the exploration of the schema on the one hand and
data on the other, although these two types of
exploration are complementary and depend on each
other. In this context, we propose EXPLO-RDF, a
tool for assisted composition of SPARQL queries.
This tool offers two complementary approaches:
schema construction and form-based query
composition. The two approaches together allow a
user to understand the content of an RDF source as
quickly as possible and to better fulfil their needs of
RDF dataset interrogation.

The reminder of this paper is organized as
follows. Section 2 reviews related work. Section 3
describes how to extract and visualize schema
information from RDF dataset, based on a number of
SPARQL queries. The visualisation will use UML
class diagram extended with some statistics to better
understand the profile of the RDF dataset. Section 4
describes our approach for form-based query
composition featuring keyword search and
completion suggestions, a simple and intuitive way to
RDF dataset interrogation. Section 5 presents and
reports our experimental results.

2 PRELIMINARIES AND
RELATED WORK

RDF 1 (Ressource Description Framework) is a
standard data model that represents the spinal cord of
the semantic web. An RDF dataset is composed of
triples in the form (subject, predicate, object),
representing statements, example (<Bill> <name>
”Bill Gates”.) The predicate is a property
representing a relationship between the subject (a
resource) and the object (either a resource or a literal).
Resources and predicates are identified with URIs
(Uniform Resource Identifier). An RDF dataset is a
directed graph where subjects and objects are the
nodes, connected with directed edges representing the
predicates.

RDF is very flexible as it accepts any triple
respecting its syntax. RDFS which stands for RDF
Schema is an extension of RDF that allows the
definition the vocabulary to be used in an RDF
dataset. RDFS defines rdfs:Class, rdfs:range etc,
but are not used in most published RDF datasets. An
important feature in RDF is declaring the type of

1 https://www.w3.org/TR/rdf11-primer/

resources (eg. <Bill> rdf:type <Person>.) which
allows to easily construction the schema of the RDF
dataset. This schema is similar to the schema of
relational databases. Resources for which type
declarations are missing are untyped resources.
Inferring the schema of an RDF dataset with untyped
resources is a challenging task. The schema is very
important for RDF dataset query because it provides
a summary of the RDF dataset that reveals it
structure.

SPARQL2 represents for RDF datasets what SQL
is for relational databases. A SPARQL query is
mainly composed of triple patterns in which the three
components subject, predicate and object are either
variables or closed constants (i.e. URIs or literals).
The SPARQL engine executes the query by matching
its triple patterns with the triples of the RDF graph.
Each match can be part of the query response.

Related work to RDF dataset querying concerns
two tasks: schema exploration and construction, and
RDF dataset interrogation. We also discuss their
limitations.

2.1 RDF Schema Construction

Visualization of the RDF dataset schema can help get
a better overview of the data structure and may be a
useful starting point for queries and further analysis.
There are two main methods for constructing the
schema of an RDF dataset: graph-based model, and
UML class diagram based.

2.1.1 Graph based Model

Several approaches allow the graph-based schema
construction, such as: LD-VOWL (Weise, Lohmann,
& Haag, 2016), LODSight (Dudáš, Svátek, &
Mynarz, 2015) and LODeX (Benedetti, Bergamaschi,
& Po, 2014).

LD-VOWL is a web-based tool that extracts and
visualizes schema information of Linked Data
sources based on the VOWL notation. SPARQL
queries are used to infer the schema information from
the RDF data which is then gradually added to an
interactive VOWL graph visualization (Weise,
Lohmann, & Haag, 2016).

LODSight is a dataset summary visualization tool.
It uses also SPARQL to find all type-property and
datatype-property paths in the dataset. The RDF
schema will be represented as a graph and visualized
in a format allowing the user to see the generalized
structure of the dataset. The visualization is

2 https://www.w3.org/TR/sparql11-query/

KEOD 2019 - 11th International Conference on Knowledge Engineering and Ontology Development

186

interactive, and the user can also filter the displayed
paths to show only those with lower or higher
frequency (Dudáš, Svátek, & Mynarz, 2015).

LODeX summaries the schema as a graph where
the vertices are the classes. An undirected non-tagged
edge relates two classes if there exists a property
linking at least two of their respective instances.
LODeX provides also the average number of a
property or an attribute in the instances of a given
class. It offers a visual query editor where the user can
add/remove filters.

The schema summary relies on RDF schema,
meaning that it assumes all instances are linked to
their classes in the dataset. This assumption is not true
for most existing RDF datasets, where the type
declaration is often missing. Thus, the data source
sometimes does not follow an explicit schema and, in
this case, the tool does not really support such RDF
datasets. In addition, we could not see the properties
that link two classes directly from the graph, because
we have to select one class at a time to display its
properties.

LODSight, LD-VOWL, and LODeX do not
handle untyped resources. Subsequently, the schema
of the dataset is not complete. Then, these tools would
only show a schema composed of typed resources
only, which provides a better understanding of the
data structure covering typed resources only.
However, they do not cover all RDF data in the
dataset. Finally, with the exception of LOdDeX, most
of these tools do not offer the possibility to
manipulate SPARQL queries.

2.1.2 UML Class Diagram based Schema

There is surprisingly few work on extracting and
visualizing schema information from linked data as a
UML diagram, principally (Li & Zhang, 2013) and
(Jin-Sung & Mi-Kyung, 2005).

(Li & Zhang, 2013) proposes a SPARQL-based
tool that, given an RDF dataset, it builds a data
inferred schema represented as a UML class diagram,
extended with a collection of statistics. The number
of instances per class and the number of instances of
each property allow users to better understand the
RDF dataset.

This type of exploration makes it possible to
present the schema in a visual way that we judge to
be the best for understanding the data structure.
However, it does not provide the means to write
effective queries and to explore the data locally in the
RDF graph. The authors mentioned the problem of
processing untyped instances but did not propose a
well-explained solution.

Figure 1: Graph pattern builder (Auer, et al., 2007).

2.2 Query Construction

We can classify SPARQL query construction tools
into three main categories according to their
approaches: semantic browsers based, forms based
and visual composition based query.

2.2.1 Semantic Browsers based Query

Semantic browsers provide a GUI that implicitly
supports query composition in a text editor while the
user is navigating the RDF dataset.

As a tree-based semantic browser, Tabulator (Tim
Berners-Lee & Sheets, 2016) displays an increasing
level of refinement as the user navigates the tree
structure. It features assisted SPARQL query
composition and editing, supporting simple and
complex queries as well.

Query composition based on semantic browser is
designed to be easy and fast to learn for new users and
for developers who would like to expand their own
ideas about a dataset. However, before exploring the
RDF dataset and formulating queries, the user needs
to understand the structure of the dataset to determine
the different links.

The user needs to explore an entire tree, which can
be a tedious task and expensive in time and effort. On
the other hand, if the user needs a specific
property/resource, he has to navigate through the
entire data tree every time in order to select what he
needs; a non-simple task since RDF data can be large
and eventually the path may be too long. Having a
schema of the RDF dataset would have made things
easier for users.

Assisted Composition of Linked Data Queries

187

2.2.2 Form-based Query

This is a popular approach where queries are created
from the elements of a form such as text fields, drop-
down lists, etc. Examples of this approach are
SPARQL Viz (Jethro, 2006), Konduit VQB (Ambrus,
Möller, & Handschuh, 2010) and Graph Pattern
Builder (Auer, et al., 2007). Graph Pattern Builder
(Figure 1) was developed specifically to query
Wikipedia data. Users query the knowledge base
through a basic graph that consists of a set of triple
patterns where each one is composed three form
fields. These fields represent the subject, predicate
and object of a triple pattern. Each field can receive
either a variable, an identifier or a filter.

Form based query is an effective approach for data
exploration and for SPARQL query composition.
However, the user must first understand the structure
of the RDF dataset: the classes and their
optional/mandatory properties. Such information,
that represents the schema of the dataset, is generally
not easily grasped with these methods of data
exploration. Therefore, the user will be forced to try
to understand and collect the schema pieces
manually, a task not easy and not obvious for the user
as the schema is not fixed, as recourses may be
untyped and have optional properties.

2.2.3 Visual Query Construction

A visual query construction tool, such as
NITELIGHT (Smart, Russell, & Braines, 2008),
RDF-GL (Hogenboom, Milea, Frasincar, & Uzay,
2010) and LUPOSDATE (Groppe, Groppe, &
Schleifer, 2011), defines a visual language in which a
query is represented with a graph that the tool
translate into a SPARQL query.

Visual query construction can cover most of the
expressiveness of SPARQL while maintaining an
intuitive simplicity. However, the same problem
persists, since the user has no idea about the schema
nor links between different classes, he will be forced
at first to understand the structure of RDF dataset by
making SPARQL queries. A tedious and repetitive
task.

In this section, we have pointed out several
limitations of the presented approaches. The main
limitation common to all these approaches, regardless
of the category to which they belong, is the fact that
no one combines the RDF schema construct and the
RDF data query composition, although they are

3 Calling schema this model is inspired by relational DB

and should not be confused with RDFS (RDF Schema)
by W3C.

complementary and dependent on one another. Their
complementarity is a consequence of the flexibility of
RDF that does not impose a fixed schema, which
makes it difficult to query RDF datasets.

3 RDF DATASET SCHEMA
CONSTRUCTION

Our goal is to identify classes and their properties in
an RDF graph in order to construct a model which
summarises the RDF dataset. We call this summary a
schema3 and its main purpose is query construction
not dataset design.

The identification of the classes in an RDF graph
can be easy if its vocabulary was properly declared
using RDFS. Each resource would have a class to
which it belongs using rdf:type property.

However, the specification of the class of a
resource is not mandatory in the RDF model.
Consequently, real world RDF dataset may show
untyped resources, the ones that are without any
rdf:type property. Untyped resources make it
difficult to identify their classes to be represented in
the schema summarizing the RDF dataset. That's why
we’ll be talking about a group of a resource rather
than the class of a resource. Of course, declared
classes are groups of ressources. Other groups will be
defined by clustering untyped resources.

We can formulate the problem of identifying
resource clustering as follows: Given an RDF graph,
group identification is the discovery of resource
groups, not necessarily disjoint, each representing a
set of resources having at least a property in common.
The set of properties of the resources of a group
define the group’s properties. A resource may have
more than one type and subsequently may belong to
more than one group, making groups not necessarily
disjoint.

To illustrate our approach, we consider
throughout this section a small RDF graph
(Figure 2), adapted from Jamendo RDF dataset
(Raimond, 2016), which describes artists and their
recordings.

3.1 Groups of Typed Resources

For typed resources, their groups are defined by their
classes. The groups and their properties are
determined using the following SPARQL query:

KEOD 2019 - 11th International Conference on Knowledge Engineering and Ontology Development

188

SELECT distinct ?class ?prop
WHERE {
 ?ressource rdf:type ?class .
 OPTIONAL { ?ressource ?prop ?objet } .
 Filter (?prop != rdf:type).
}

Figure 2: An RDF graph adapted from Jamendo dataset.

Applied on the RDF graph in Figure 2, the former
SPARQL query returns the results shown in Table 1.
There are four classes (mo:MusicArtist, mo:Record,
mo:Lyrics and mo:Signal) each one will represent a
group. For example, mo:MusicArtist is a group
having two resources (artist:1009 and
artist:1044), and characterized with three optional
properties (mo:biography, foaf:made and
foaf:name.)

Table 1: Typed resource groups and their properties.

class prop
mo:MusicArtist| mo:biography
mo:MusicArtist foaf:made
mo:MusicArtist foaf:name
mo:Record dc:title
mo:Record mo:image
mo:Record foaf:maker
mo:Lyrics
mo:Signal

3.2 Groups of Untyped Resources

Assigning untyped resources to groups is not a
straightforward task. The resources of a group should
share a similarity from schema point of view. To
solve this problem, we studied many alternatives. A
simple solution would be to group all untyped
resources in a single group. The group of untyped
resource would be composed of heterogeneous
unrelated resources. This basic representation does
not help the user to understand the structure of the
RDF graph.

On the other extremum, another basic solution,
would be to create a group for each property in
untyped resources. In this case, a resource with many
properties will be assigned to many groups.
Consequently, it would lead to an explosion of the
number of groups which is against the principle of
constructing a schema, summarizing the RDF dataset.

Figure 3: Example of an RDF graph with untyped
resources.

By avoiding the drawbacks of the two previous
trials, the chosen solution is to group untyped resources
based on their common properties. Two untyped
instances belong to the same group if they have at least
one property in common. In order to capture business
domain groups in the RDF dataset, properties such as
rdfs:label, rdfs:comment, etc are excluded.

Using a binary relation R, we formalize the
extraction of the groups of untyped resources in an
RDF graph. Two instances i and j are R-related if and
only if prop(i)∩prop(j)≠∅, where prop(i) represents
the set of properties of resource i. A property p
belongs to prop(i) if and only if there exists in the
dataset an RDF triple having i as its subject and p as
its property (i.e. predicate).

Figure 3 shows an RDF graph having five untyped
resources. For this dataset, we draw in Table 2 a
matrix presenting the binary relation R.

We define the relation R* to be the transitive
closure of R. The transitive closure R* is the smallest
transitive binary relation that contains R. The binary
relation R* is an equivalence relation by construction
and its equivalence classes are exactly the groups of
untyped resources in the RDF dataset and can be
obtained by computed the transitive closure of R.

In the case of R in Table 2, there are two
equivalence classes {i1, i2} and {i3, i4, i5} in R*.
These two classes represent the groups of untyped
instances in the RDF graph. Since groups are
equivalence classes, they are necessarily disjoint.
This disjointness was not targeted, but it is a good
feature resulted from our formalization of the
clustering problem. We characterize each group by
the properties of their respective untyped resources.

Table 2: A matrix representation of the relation R based on
the RDF graph in Figure 3.

Ressources i1 i2 i3 i4 i5
i1 1 1 0 0 0
i2 1 1 0 0 0
i3 0 0 1 1 0
i4 0 0 1 1 1
i5 0 0 0 1 1

Assisted Composition of Linked Data Queries

189

The class diagram graphical representation enables
visual exploration of the RDF dataset structure and
facilitates query construction.

Table 3 defines and illustrates our detailed
translation rules for constructing the UML class
diagram from the RDF dataset and the groups of
typed and untyped resources.

Table 3: Translation rules for constructing the UML class
diagram from RDF data.

Scenarios UML Mapping

UML
Classes:
Groups of
typed
instances

A UML class whose name is the type
specified in the RDF source.

Example

artist:1044 rdf:type

mo:MusicArtist .

MusicArtist is a UML class

UML
Classes:
Groups of
untyped
instances

A UML class whose name will be
Class 1 in which 1 is representing the
group index. These classes will be
represented with another color to
distinguish them from the UML classes
representing typed resource groups.

Example

performance:100252

mo:recorded_as signal:100252.

performance:100252

belongs to group1 presented by Class1.

UML
Attributes:
The object
is a literal

The property targeting this object will
be an attribute in the UML class
representing the subject of an RDF
triple.

Example

artist:1044 rdf:type

mo:MusicArtist .

artist:1044 foaf:name

"Stian" .

As "Stian" is a literal, so
foaf:name property will be an
attribute in class MusicArtist.

UML
Association:
The object
is a
resource

The property targeting this object will
be an association relating two classes.

Example

artist:1044 rdf:type
mo:MusicArtist .

artist:1044 foaf:maker
record:1084 .

record:1084 rdf:type
mo:Record .

As record:1084 is a resource then
the class MusicArtist and Record
are related with an association labeled
with property foaf:maker.

3.2.1 Extending the Class Diagram with
Statistics

We add statistics to the schema such as the number of
resources in each group and the number of resources
that are the subjects of a property. These statistics are
computed through the following SPARQL queries:
Query1 :
SELECT ?C, count (distinct ?i) as ?count
WHERE { ?r rdf:type ?C . }

Query2 :
SELECT ?C,?p, count(distinct ?r) as ?count
WHERE { ?r ?p ?o .
 ?r rdf:type ?C.
 ?o rdf:type ?C1. }
GROUP BY ?C,?p

It is obvious that Query1 and Query2 computes
statistics for typed resource groups. However, a
simple trick allowed us using the same queries for
untyped resource groups as well. The trick consists of
inserting in the RDF dataset fictive triples to make
each untyped resource typed with its group.

Statistics allow the user to have an idea about the
structure of the RDF dataset. Since resources within
the same group may not have the same properties,
statistics may inform whether a property is optional
by comparing the number of resources in a group with
the number of participating resources in the property.
If they are the same, all of the resources of the group
participate in the property otherwise, the property is
optional. SPARQL queries can be refined in case of
optional properties using the OPTIONAL graph
pattern, for example.

3.2.2 Example of Application

We have applied our approach for RDF dataset
schema construction on Jamendo, an RDF dataset, as
an example of application. After clustering typed and
untyped resources into groups, we constructed the

MusicArtist

Class1

MusicArtist

foaf:name

M
u

si
cA

rt
is

t

fo
af

:n
am

e

R
e

co
rd

fo
af

:m
ak

er

KEOD 2019 - 11th International Conference on Knowledge Engineering and Ontology Development

190

Figure 4: Jamendo RDF dataset schema.

dataset schema showed in Figure 4 by applying the
transformation rules explained in Table 3.

The schema contains 17 classes of which 11
classes represent typed resource groups and 6 classes

represent untyped resource groups, obtained using the
equivalence relation R*. For each class, the number
of instances is provided as well as the number of
instances for each property of each class. This
diagram is convenient for users since it allows to
explore and understand the structure of the RDF
dataset in a fast, intuitive, efficient and visual way
which facilitates the formulation of appropriate
SPARQL queries and the retrieval of interesting
detailed information.

4 GUI BASED SPARQL QUERY
CONSTRUCTION

Our approach to construct SPARQL queries is guided
by the RDF dataset schema and uses two friendly GUI
based features: keyword search and form-based query
construction. Keyword search is an easy way to
explore the neighbourhood of a resource in the RDF
graph in order to assist the user in constructing
SPARQL queries by filling triple patterns slots.

The approach consists of three tasks: indexing the
RDF dataset, searching RDF data by keywords and
assisting in the construction of SPARQL queries.

4.1 Indexing the RDF Dataset and
Keyword Search

The RDF dataset is composed of triples that the
SPARQL engine try to match with triple patterns in a
SPARQL query. A triple pattern in the WHERE clause
has three slots, one for the subject, the property and
the object. In Figure 5, landmark B pinpoints triple
pattern slots in the GUI of our prototype, EXPLO-
RDF. Each slot in a triple pattern can receive as input
either a variable (when it starts with ‘?’), a URI or a
literal. A literal in the triple pattern triggers a keyword
search and retrieves relevant matching values in the
position of its slot from the RDF dataset. For
example, if there is a literal in the subject slot of the
triple pattern, only information about subjects in the
RDF dataset are looked into to retrieve a matching
candidate list. The user can select from the retrieved
list the value she wants, either a literal or a URI to
build a triple pattern to add to the query under
construction.

Consequently, we built three indices: subject
index, property index and object index. Information
from rdfs:label and rdfs:comment triples are also
indexed with their resources and can be used to
retrieve relevant resources in keyword search.

Assisted Composition of Linked Data Queries

191

Figure 5: GUI of EXPLO-RDF, our prototype.

4.2 SPARQL Query

The GUI of EXPLO-RDF allows SPARQL query
assisted composition. The WHERE clause (Figure 5:B)
is constructed as the triplet patterns are filled. If the
user indicates that a triple pattern is optional then this
information will be added for this triple in the query.
The select clause is constructed based on the list of
user-defined variables. The "distinct" option can be
activated to remove duplicates from the results. LIMIT,
OFFSET and ORDER BY clauses (Figure 5:C) can also
be added to the query. Triple patterns can be
activated/deactivated (with radio buttons “Active” in

Figure 6: Excerpt from Jamendo RDF dataset.

Figure 5:B) to allow the exploration a neighbourhood
in the RDF graph.

Once a SPARQL query is composed through the
GUI, it is translated into a text format and showed in
the editor text box. The user can eventually create and
update SPARQL queries manually in the editor text
box. EXPLO-RDF submits queries to the SPARQL
engine and displays the results.

5 VALIDATION AND
DISCUSSION

The EXPLO-RDF (Figure 5) supports two tasks. The
first one is the automatic construction of the schema
summarizing the RDF dataset under use, in the form
of an extended UML class diagram (Figure 4). The
second task consists of assisting the user in
composing SPARQL queries based on triple pattern
form GUI. The schema is very important for query
construction as it provides the user with a blue print
of the RDF dataset which inspires a first version of
the query. When executed, the first version query may
return no results. This is very common because of the
flexibility of RDF. The user then studies the triple
patterns of the first version using EXPLO-RDF forms
and incrementally fine-tunes his query to make it
right for extracting targeted information from the
RDF dataset. Fine-tuning triple patterns uses
keyword search and neighbourhood exploration
within the RDF graph.

In summary the schema provides a global view of
the RDF dataset while the triple pattern form GUI in
EXPLO-RDF compensates with local views for the
construction of effective SPARQL queries.

5.1 Validation

To validate our schema construction, we converted a
relational database into an RDF dataset and
constructed its schema. Then we compared the RDF
dataset schema we have constructed with EXPLO-
RDF with the relational database schema. It was a
perfect match.

In our approach, resource groups (Figure 4) can
be compared to the classes in the UML class diagram
by (Li & Zhang, 2013) modelling a schema for
Jamendo RDF dataset. Their schema shows 18
classes of which 7 are anonymous classes grouping
untyped resources. EXPLO-RDF, our tool identified
17 classes (Figure 4) of which 16 classes match
perfectly the schema of (Li & Zhang, 2013). The only
difference (red-circled classes in Figure 4) was the
group of untyped class8 in which EXPLO-RDF

KEOD 2019 - 11th International Conference on Knowledge Engineering and Ontology Development

192

gathered the resources participating in properties
mo:recorded_as and event:factors because there
exists a resource having both properties as shown by
the excerpt from Jamendo RDF dataset in Figure 6.
In (Li & Zhang, 2013) schema there was two
anonymous classes one for mo:recorded_as and the
other for event:factor. The fact that EXPLO-RDF
produces less untyped resource groups (i.e.
anonymous classes) in its schemas than (Li & Zhang,
2013), make our schemas more concise and
consequently easier to grasp and comprehend for
users.

5.2 Complementarity of Form-based
Query Construction and RDF
Dataset Schema

The final goal of a user is to formulate queries. On the
one hand, with a tool that just provides an RDF
dataset schema, the user will be forced to manually
create queries, a tedious time-consuming task that
requires expertise. In addition, these queries could
return empty result because of optional properties.
Our prototype EXPLO-RDF with its form-based
query construction offers the possibility to explore
data in detail that helps to check the RDF data
structure and validate the class diagram as it is a
valuable summary of the RDF graph.

On the other hand, in the absence of the schema,
the user will have to get an idea about the schema
manually to understand the RDF data structure. A
simple method is to explore the RDF dataset through
simple queries using pattern triples in the form-based
query construction GUI. In this case, the user will
look for typed resources and their classes and explore
their neighbourhood to determine their properties.
The user is in fact unconsciously trying to build a
schema for the RDF dataset. Providing the user with
a well-constructed schema simplifies her task and
saves him time and effort.

6 CONCLUSION

In this article, we’ve presented an approach that
allows assisted SPARQL query composition. Our
main contribution is to combine two approaches,
namely the construction of a schema that summarises
the structure of the RDF dataset, and a form-based
query construction tool, supporting keyword search
and neighbourhood exploration. Our experiments
showed the relevance and the complementarity of the
two tasks.

We project the extension of work into three axes:
implementation environment, usability and schema
design. Although EXPLO-RDF can be used to build
queries, the user has to install GraphViz and some
Java libraries for the SPARQL engine. It would be
more convenient if EXPLO-RDF could be used as a
web application. Currently, EXPLO-RDF support
only RDF dumps, an extension to support SPARQL
endpoints will make other RDF data sources easily
usable.

On the usability axis, feedback from users is
needed in order to improve EXPLO-RDF GUI and its
features to meet their expectations. For example, it
would be possible to rank keyword search completion
list according to retrieval information metrics such as
TF-IDF.

EXPLO-RDF builds a schema for the RDF
dataset under query. Such schema is constructed for
the purpose of querying only and it is a useful
summary of the RDF dataset. Reengineering the RDF
dataset in order to create real RDF schema can start
from EXPLO-RDF schema. The question would be:
how to break down an untyped resource group to
obtain real world classes?

REFERENCES

Ambrus, O., Möller, K., & Handschuh, S. (2010). Konduit
VQB: A visual query builder for SPARQL on the social
semantic desktop. Proceedings of the Workshop on
Visual Interfaces to the Social and Semantic
Web(VISSW 2010), (pp. 1-5).

Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak,
R., & Zachary, I. (2007). DBpedia: A Nucleus for a
Web of Open Data. ISCW, pp. 722–735.

Beek, W., & Folmer, E. (2017). An Integrated Approach for
Linked Data Browsing. International Society for
Photogrammetry and Remote sensing, pp. 35-38.

Benedetti, F., Bergamaschi, S., & Po, L. (2014). A Visual
Summary for Linked Open Data sources. In
Proceedings of the ISWC 2014 Posters &
Demonstrations, 15(24), pp. 173-176.

Dudáš, M., Svátek, V., & Mynarz, J. (2015, 5 9). Dataset
Summary Visualization with LODSight. The Semantic
Web: ESWC 2015 Satellite Events, 15(20), pp. 36-40.

Groppe, J., Groppe, S., & Schleifer, A. (2011). Visual
Query System for Analyzing Social Semantic Web.
International World Wide Web Conference Committee,
pp. 217-222.

Hitzler, P., Krotzsch, M., & Rudolph, S. (2011).
Foundations of semantic web technologies. Chapman
and Hall/CRC.

Hogenboom, F., Milea, V., Frasincar, F., & Uzay, K.
(2010). RDF-GL: A SPARQL-based graphical.
Emergent Web Intelligence: Advanced Information
Retrieval, pp. 87–116.

Assisted Composition of Linked Data Queries

193

Jethro, B. (2006). Graphical query composition and natural
language processing in an RDF visualization. Erasmus
University Rotterdam.

Jin-Sung, K., & Mi-Kyung, L. (2005). Object Modeling of
RDF Schema for Converting UML Class Diagram. In
Proceedings of the International Conference on
Computational Science and Its Applications, pp. 31-41.

Li, H., & Zhang, X. (2013, Mai 2). Visualizing RDF Data
Profile with UML Diagram. Semantic Web and Web
Science, pp. 273-285.

Raimond, Y. (2016, July 30). DBTune.org Jamendo RDF
Server. Retrieved from Datahub: https://old.datahub.io/
dataset/jamendo-dbtune

Smart, P., Russell, A., & Braines, D. (2008). A Visual
Approach to Semantic Query Design Using a Web-
Based Graphical Query Designer. EKAW 2008, pp. 275
– 291.

Tim Berners-Lee, Y. C., & Sheets, D. (2016). Tabulator:
Exploring and Analyzing linked data on the Semantic
Web. In 3rd Int. Semantic Web User.

Weise, M., Lohmann, S., & Haag, F. (2016). LD-VOWL:
Extracting and Visualizing Schema Information for
Linked Data. International Conference on Knowledge
Engineering and Knowledge Management, pp. 120-
127.

KEOD 2019 - 11th International Conference on Knowledge Engineering and Ontology Development

194

