
Evaluating the RESTfulness of “APIs from the Rough”

Arne Koschel1, Irina Astrova2, Maximilian Blankschyn1, Dominik Schöner1 and Kevin Schulze1
1Faculty IV, Department of Computer Science, Hannover University of Applied Sciences and Arts,

Ricklinger Stadtweg 120, 30459 Hannover, Germany
2Department of Software Science, School of IT, Tallinn University of Technology, Akadeemia tee 21, 12618 Tallinn, Estonia

Keywords: REST (Representational State Transfer), RESTful, API (Application Programming Interface), Richardson

Maturity Model.

Abstract: Nowadays, REST is the most dominant architectural style of choice at least for newly created web services.

So called RESTfulness is thus really a catchword for web application, which aim to expose parts of their

functionality as RESTful web services. But are those web services RESTful indeed? This paper examines

the RESTfulness of ten popular RESTful APIs (including Twitter and PayPal). For this examination, the

paper defines REST, its characteristics as well as its pros and cons. Furthermore, Richardson's Maturity

Model is shown and utilized to analyse those selected APIs regarding their RESTfulness. As an example, a

simple, RESTful web service is provided as well.

1 INTRODUCTION

Following Roy T. Fielding, the father of the REST

architectural style, at least back in 2008, an

apparently frustrating number of APIs calling

themselves RESTful were not. Leonard Richardson

therefore introduced a maturity heuristic for REST

referred to as Richardson Maturity Model that

allows web service APIs to be grouped into different

levels of maturity.

This paper defines REST and its characteristics.

Furthermore, Richardson Maturity Model with its

four different levels is explained. This paper is an

extension of our previous work (Koschel, 2019),

where the maturity levels of ten freely accessible

RESTful APIs have been evaluated. This evaluation

is extended here by an in-depth analysis of one API,

which reaches all the levels of Richardson Maturity

Model, and another API, which does not. In

addition, the advantages, disadvantages and

challenges of creating a truly RESTful API are

explained. Subsequently, an exemplary REST

implementation based on Java Spring HATEOAS is

presented. Finally, an overall conclusion is drawn as

well as some outlook to future work.

2 RESTful API

A RESTful API is an API that uses HTTP requests

to GET, PUT, POST and DELETE data. A RESTful

API – also referred to as a RESTful web service – is

based on the REST technology, an architectural style

and approach to communications often used in web

services development.

This section discusses the characteristics of

RESTful APIs as defined by Roy T. Fielding in

2000: client-server model, stateless operations,

caching, uniform interface, layered system and code

on demand (Fielding, 2000). He formulated these

characteristics as constraints that describe what

REST is at different maturity levels.

2.1 Client-server Model

The first constraint concerns the introduction of the

client-server model. Since it is the basis for almost

all network applications, this constraint can be

considered implicit. It states that a distinction is

made between a client and a server, whereby the

client makes requests to the server; the server in its

turn offers a certain service, receives the request

from the client and responds to the request. It

follows from this model that the client and the server

are largely independent and can therefore be

developed independently of each other.

Koschel, A., Astrova, I., Blankschyn, M., Schöner, D. and Schulze, K.
Evaluating the RESTfulness of “APIs from the Rough”.
DOI: 10.5220/0008166802810288
In Proceedings of the 15th International Conference on Web Information Systems and Technologies (WEBIST 2019), pages 281-288
ISBN: 978-989-758-386-5
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

281

2.2 Stateless Operations

This means that all communications must be

stateless, or the state must only be kept on the client

side and the server has no knowledge of it. Each

request must contain all information so that it can be

understood and processed by the server. It is

possible for each server to process each request. This

restriction increases scalability. It does not matter

which server answers which request.

A disadvantage of statelessness is that the

requests are larger due to the increased information

content compared to the state liability. This causes

more network traffic.

2.3 Caching

The disadvantage of more network traffic, which is

discussed in the case of statelessness, can be

counteracted by the use of cache. Roy T. Fielding

defines this as a further constraint to use the network

more efficiently. Each response to a request must

indicate whether the delivered content is cache

enabled or not. This reduces the number of requests.

A cached response can be answered locally from the

cache and does not have to be sent to the server.

Caching also improves performance from the

user’s point of view, since cached responses are

available immediately. Here it must be ensured that

the cached responses are not obsolete, which

otherwise impairs the reliability.

2.4 Uniform Interface

This constraint is a central point at REST. It

indicates that the implementation of the interface is

disconnected from the service provided. This allows

both to develop independently of each other. This is

an advantage over classic web services that work

with WDSL and SOAP because the interface

(defined in WDSL) has to be recreated when the

service changes.

However, to achieve this, there are further

constraints. All resources of the service are

identified by URI (Uniform Resource Identifier). A

resource can be anything: a customer, a shopping

cart, a PDF document, a collection of other

resources, etc. A change of a resource is done by

representing the resource. This can lead to more

persistent entities than in a non-REST design

(Tilkov, 2015).

The representation of the resource can be in

different formats – often XML, JSON or HTML is

used. Depending on which client requests the

resource, it can also be present in several

representations and sent in a certain format

depending on the application.

The uniform interface also includes the

HATEOAS principle (see Section 4).

2.5 Layered System

The constraint of the layered system means that

resources can run in different layers and therefore on

different servers. For example, a RESTful API is on

Server A, an authentication service is on Server B

and the data is on Server C.

A use of layers also increases scalability. They

are independent of each other and can be added to

other servers in a layer depending on the load.

A potentially disadvantage is that this results in

overhead of higher latencies. However, there is the

option to use shared caching, as mentioned above.

2.6 Code on Demand

Most of the time a server will send back static

representations of resources in the form of XML or

JSON. However, when necessary, servers can send

executable code to the client.

3 RICHARDSON MATURITY

MODEL

This is a model used to determine the maturity of a

web service in terms of its “REST” characteristics,

described above. Richardson’s Maturity Model

(Fowler, 2010), (Richardson, 2009), (Betten, 2011)

has four maturity levels – from Level 0 to Level 3 –

to represent the degree of the use of HTTP (see

Figure 1).

Figure 1: Richardson Maturity Model (Fowler, 2010).

Richardson Maturity Model starts at Level 0 and

adds architectural conditions at each next level. In

WEBIST 2019 - 15th International Conference on Web Information Systems and Technologies

282

principle, it depends on how much of the

possibilities of HTTP are used. It should be

mentioned that a web service that does not fully

meet the requirements of one level can no longer

reach the next level.

3.1 Level 0

Typical representatives at this level are SOAP and

XML-RPC. Level 0 is often called Swamp of POX

(Plain Old XML). Services at Level 0 only use

HTTP as a transport protocol for RPC calls. A

service is viewed as a black box with unaddressed

resources. Example: http://example.com.

3.2 Level 1

Resources are the central concept of a REST
architecture. At this level, each resource is given its
own URI. As a result, communication does not take
place via URIs as it was done by services at Level 0.
Rather, resources are addressed by using URIs.
Example: http://example.com/user/1234

3.3 Level 2

At this level, most (if not all) HTTP methods also

known as HTTP verbs are used correctly on

resources and according to their specification. These

methods are:

 GET – It is used for the retrieval of information
identified by a URI in the form of a
representation.

 POST – It is used for the creation of a new
resource and for all purposes in which none of
the other methods fit.

 PUT / PATCH – It is used for updating an
existing resource.

 HEAD – It is used for querying metadata (e.g., to
check resource status).

 DELETE – It is used for the deletion of an
existing resource.

 OPTIONS – It is used for querying resource
metadata (e.g., to find out which methods a
resource supports).

In addition, the HTTP status codes are used

correctly to inform the client about the resource

status. For example, a response error message should

not return status code 2xx, but 4xx (Fowler, 2010).

3.4 Level 3

Hypermedia turns a web service into REST. The

idea is to link all content (resources or their

representations) in one website. The client does not

need to type in a URI itself and can easily follow

links. There are two types of links: links that lead

directly to other resources and links that change the

status of a resource, e.g., using the HTTP methods

such as PUT or DELETE.

4 HATEOAS

A RESTful API can implement the HATEOAS

(Hypermedia as the Engine of Application State)

principle, which states that a resource responds to a

request with all possible state transitions in addition

to answering it. A special characteristic of REST is

that all state transitions of the application are

performed by methods of hypermedia (i.e., URIs on

resources). Thus, from the current state, a RESTful

API must output all possible state transitions and the

method of transition. This results in a self-describing

RESTful API that theoretically no longer requires

external documentation.

The navigation between the resources is

implemented by relations, so that the resource can

change, but the relation remains the same. The

completed server domain leads to a high degree of

independence between a client and a server and they

can be developed independently of each other.

The resources offered by RESTful API are

dynamic, depending on the state of the application.

For example, an administrator can be shown a more

extensive context menu than an ordinary user. It is

typical for HATEOAS to provide not only the

possible state transitions but also the corresponding

method and further information if needed. When

HTTP is used, a strict distinction is made between

verbs (GET, POST, DELETE, PUT) and idempotent

and changing methods (Tilkov, 2015). That is, “the

point of hypermedia controls is that they tell us what

we can do next, and the URI of the resource we need

to manipulate to do it” (Inden, 2016).

5 ADVANTAGES,

DISADVANTAGES AND

CHALLENGES OF RESTFUL

APIS

These are the advantages of using a REST

architecture (Stringfellow, 2017):

 Separation between Client and Server: The

independence a client from a server enables

Evaluating the RESTfulness of “APIs from the Rough”

283

developments in different areas of a project

independently of each other.

 Language Independence: RESTful APIs can

use PHP, Java, Python or Node.js servers. It is

just important that responses to requests are

always in the language used for information

exchange, usually XML or JSON.

 Scalability: The separation between a client and

a server allows a product to be easily scaled by a

development team.

 Flexibility and Portability: Migration from one

server to another is possible at any time.

 Simplicity: REST is based on HTTP, so the

concept is easy to learn.

Disadvantages and challenges of using a REST

architecture (Kumari, 2015), (Little, 2013) are:

 Complexity: HATEOAS is complex to

implement, dependencies and processes must be

clear.

 Higher Payload: Mobile devices with poor

Internet connection have to deal with higher

payload

 Limited Usage: REST is not suitable for large

amounts of data. Moreover, when RESTful APIs

are used in social media, WEB chat and mobile

services, downward compatibility must be

ensured, since the client side can be unknown.

6 ANALYSIS OF PUBLICLY

AVAILABLE RESTFUL APIS

AND THEIR MATURITY

LEVELS

In the following, we examine ten RESTful APIs that

have an Alexa Traffic Rank <= 1000 in Germany.

As described in Section 3, RESTful APIs can be

divided into different maturity levels: from 0 to 3.

This paper focuses on RESTful APIs that have been

publicly available and professionally developed.

Richardson’s hypothesis that many RESTful APIs

are not REST compliant or not RESTful - and thus

are not RESTful APIs in the true sense of the word -

is to be proved on the basis of the selected RESTful

APIs.

6.1 Procedure

The interaction with the RESTful APIs was used to

find out the maturity levels. It was checked if the

RESTful APIs meet the criteria of Richardson

Maturity Model from Level 0 to Level 3. It should

be mentioned that an API that does not fully meet

one level can no longer reach the next level.

Next Twitter RESTful API and PayPal RESTful

API are examined on the degree of maturity after

Richardson. It is shown exemplarily how such

examination was done. The achievement of each

maturity level was documented with extracts of the

responses and thereby, the procedure was presented.

6.2 Analysis of Twitter RESTful API

Twitter RESTful API is used to create, retrieve and
delete tweets. Figure 2 shows the existing functions
of Twitter RESTful API. As can be seen, only POST
and GET methods are used. The POST method is
also used as the “destroy” function. According to
Richardson Maturity Model, this is a violation of the
criteria at Level 2 – a proper verb for the destroy
function might be DELETE.

Figure 2: Functions of Twitter RESTful API.

Figure 3 shows a response of the GET method.

As can be seen, HTTP was used as the transport

protocol. Thus, Level 0 is reached.

<- "GET

/1.1/statuses/show.json?id=10826535751662100

49 HTTP/1.1 Accept-Encoding:

gzip;q=1.0,deflate;q=0.6,identity;q=0.3

Accept: */* User-Agent: OAuth gem v0.5.4

Content-Type: application/x-www-form-

urlencoded

Authorization:

OAuth

oauth_consumer_key=\"***\",

oauth_nonce=\"***\",

oauth_signature=\"***\",

oauth_signature_method=\"HMAC-SHA1\",

oauth_timestamp=\"1546960223\",

oauth_token=\"*****\",

oauth_version=\"1.0\"

Connection: close Host: api.twitter.com

Content-Length: 0"

<- ""

-> "HTTP/1.1 200 OK"

Figure 3: GET Response – Header Detail 1.

Furthermore, it was also deduced from the

request of the GET on a certain tweet that resources

WEBIST 2019 - 15th International Conference on Web Information Systems and Technologies

284

are used. This is a criterion for Level 1. That is, the

tweet is a resource of its own, whose representation

can be requested using the GET method. The

returned result in JSON format is shown in Figure 4.

-> "content-disposition: attachment;

filename=json.json"

-> "content-encoding: gzip"

-> "content-length: 780"

-> "content-type:

application/json;charset=utf-8"

Figure 4: GET Response – Header detail 2.

Figure 4 is an excerpt from the response header.

In addition to the output format JSON, the character

set used (UTF-8) is also included in the response.

This ensures that the client can decode the response

correctly. The representation of the resource in

JSON format is shown in Figure 5.

Figure 5 illustrates that although resources are

used, the URI is not returned as such. So the request

to the GET method must be compiled from the

“id_str”. As a result, a criterion of self-describing

messages required at Level 3 is not fulfilled.

Moreover, HATEOAS is not used. Therefore, we

came to the conclusion that Twitter RESTful API

does not reach Level 3 yet and Level 2 is not

complete because not all HTTP verbs are used.

GET

/1.1/statuses/show.json?id=108265357516621

008

{

 "created_at": "Tue Jan 08 15:01:41

+0000 2019",

 "id": 1082653575166210000,

 "id_str": "1082653575166210049",

 "text": "Test Tweet using the

Twitter RESTful API and twurl",

 "truncated": false,

 "entities": {

 "hashtags": [],

 "symbols": [],

 "user_mentions": [],

 "urls": []

 }

Figure 5: GET Response – JSON detail.

Figure 5 illustrates that although resources are

used, the URI is not returned as such. So the request

to the GET method must be compiled from the

“id_str”. As a result, a criterion of self-describing

messages required at Level 3 is not fulfilled.

Moreover, HATEOAS is not used. Therefore, we

came to the conclusion that Twitter RESTful API

does not reach Level 3 yet and Level 2 is not

complete because not all HTTP verbs are used.

6.3 Analysis of PayPal RESTful API

As described in Section 3, the only criterion for
reaching Level 1 is that HTTP is used as a transport
protocol. This is given by PayPal RESTful API, as
can be seen from an HTTP response header of
PayPal RESTful API in Figure 6. Thus, the
requirements for Level 0 are fulfilled; however, it is
not yet possible to speak of a RESTful API - as
mentioned above, classic RPCs also use HTTP as a
transfer protocol with SOAP.

* TLSv1.2 (IN), TLS handshake,

Finished (20):

* SSL connection using TLSv1.2 / AES256-

SHA256

* ALPN, server did not agree to a protocol

* Server certificate:

* subject: C=US; ST=California; L=San

Jose; O=PayPal, Inc.; OU=PayPal

Production;

CN=api.sandbox.paypal.com

* start date: Aug 21 00:00:00 2018 GMT

* expire date: Aug 20 12:00:00 2020 GMT

* subjectAltName: host

"api.sandbox.paypal.com" matched cert's

"api.sandbox.paypal.com"

* issuer: C=US; O=DigiCert Inc;

CN=DigiCert Global CA G2

* SSL certificate verify ok.

> GET

/v1/invoicing/invoices?<param> HTTP/1.1

Figure 6: HTTP Response Header.

Since Level 0 is reached, a next maturity level

can be examined now. According to Richardson,

Level 1 states that each resource is assigned a URI.

As shown in Figure 6, the GET method request is

made for a specific resource (here Invoice

list). To make it clear that resources and URIs are

available, a reference is also made to the fact that

each transaction is mapped as a separate resource

and therefore, the criteria of Level 1 are fully met.

An example URI of a PayPal transaction is shown in

Figure 7.
As shown in Figure 7, the forward slash is used

to map the hierarchical relationship between
resources (Massé, 2012). From the response of this
resource to the GET method request Level 2 and
Level 3 can be justified.

Figure 8 shows how the requested transaction

(with the self-representation per rel. “self”) can be

Evaluating the RESTfulness of “APIs from the Rough”

285

Figure 7: Representation of URI.

objected to or how a refund can be applied for (rel.

“refund”). Here not only the representation

requested by the GET method is returned, but also

further hypermedia links. This follows the basic

principle of HATEOAS. It should be noted that the

RESTful API implementation of PayPal meets the

high demands of Richardson Maturity Model; this is

not self-evident in the APIs examined. Also in the

PayPal documentation, it was mentioned that

HATEOAS was considered.

{

 "links": [{

 "href":

"https://api.paypal.com/v1/payments/sale/3

6C38912

MN9658832",

 "rel": "self",

 "method": "GET"

 }, {

 "href":

"https://api.paypal.com/v1/payments/sale

/36C38912MN9658832/refund",

 "rel": "refund",

 "method": "POST"

 }, {

 "href":

"https://api.paypal.com/v1/payments/

payment/PAY-5YK922393D847794YKER7MUI",

 "rel": "parent_payment",

 "method": "GET"

 }]

Figure 8: HATEOAS in PayPal’s RESTful API.

6.4 Summary

We analysed the ten RESTful APIs: Twitter, PayPal,

Google Maps, Spotify, Youtube, Instagram, Github,

Wunderlist, LinkedIn and OneDrive. Table 1

summarizes the results of our analysis.

Our analysis showed that the majority of the

RESTful APIs (viz., 6 out of 10) did not reach Level

3 yet. This is probably due to a significant increase

in the development efforts compared to Level 1 or

Level 2. HATEOAS further increases the

development efforts, but the fact that there are no

established standards for this is aggravating the

situation. On the other hand, our hypothesis that

REST would be fully implemented in the rarest

cases was not confirmed. For example, 4 of 10

RESTful APIs implemented HATEOAS and in

addition, provided a very detailed documentation on

their APIs. Almost all the examined RESTful APIs

(viz., 9 of 10) reached Level 2. This could indicate

that REST and its characteristics were given special

consideration during the development. However, it

has to be considered that an API on Level 2 is not

worse than an API on Level 3 – this only describes

the level of maturity according to Richardson.

Table 1: Summary of analysis results (Koschel, 2019).

7 EXAMPLE OF

IMPLEMENTATION OF

RESTFUL API – LEVEL 3

In this section, we present an example of a simple

web service, which can be considered as a RESTful

WEBIST 2019 - 15th International Conference on Web Information Systems and Technologies

286

API at Level 3. This service allows to access, list,

create and modify a resource. It is based on Java

Spring Boot and uses Spring HATEOAS, which

already provides some APIs to ease creating REST

representations that follow the HATEOAS principle.
First of all, this example models a simple

Employee service that manages employees of a

company. In Figure 9 the domain model is shown.

class Employee implements

Identifiable<Long> {

 @Id @GeneratedValue

 private Long id;

 private String firstName;

 private String lastName;

 private String role;

}

Figure 9: Employee domain model.

To reach Level 1, each identifiable resource

must have its own URI. This can be achieved with

the function shown in Figure 10. In a class

EmployeeController, each employee has their

own endpoint with an ID, which can be reached by

using the following curl command:

$ curl -v localhost:8080/employees/1

@GetMapping("/employees/{id}")

Resource<Employee> one(@PathVariable Long

id) {

 Employee employee =
repository.findById(id)

 .orElseThrow(() ->

 new EmployeeNotFoundException(id));

 return new

Resource<>(employee,linkTo(methodOn(Employ

eeController.class).one(id)).withSelfRel()

,linkTo(methodOn(EmployeeController.class)

.all()).withRel("employees"));

}

Figure 10: EmployeeController Class (1).

To create a RESTful API at Level 2, the HTTP

verbs must be used correctly. With Spring

HATEOAS, this can be easily implemented using

Mapping Annotations, as shown in Figure 10. When

looking at these figures, it becomes clear that the

functions are mapped to the respective request

(GET, POST and PUT) by their annotations. Thus,

the verbs can be used in their intended way.

For a RESTful API at Level 3, resources and

representations must be linked by hyperlinks

(HATEAOS). As can be seen in Figure 11, this

example provides extra information in addition to

the resources’ representation. A link to the employee

overview is added, thereby enabling exploration

from this resource to the next one within the answer.

{

 "id": 1,

 "name": "Bilbo Baggins",

 "role": "burglar",

 "_links": {

 "self": {

 "href":

"http://localhost:8080/employees/1"

 },

 "employees": {

 "href":

"http://localhost:8080/employees"

 }

 }

}

Figure 11: Employee HATEOAS response.

Our example showed the simple web service that

meets the basic requirements of RESTful API at

Level 3. Using Spring HATEOAS, the core problem

of link creation and the representation assembly can

be simplified.

8 CONCLUSION

In this paper, it was shown what REST is and its

characteristics were described. Then Richardson

Maturity Model was presented and its four levels

were described. In addition, the advantages and

disadvantages of RESTful APIs were highlighted

and the field of application of REST was

demonstrated. Finally, the ten freely available

RESTful APIs were evaluated

During this evaluation, it was shown which of

the maturity levels the APIs reach. The evaluation

ultimately showed that 4 of 10 APIs meet the criteria

for Level 3. An implementation with Java Spring

Boot and Spring HATEOAS was shown as an

example.

It should be mentioned that the classification of

RESTful APIs according to Richardson Maturity

Model does not provide any information about the

quality of the API. Rather, it only shows that REST

as an architectural style is widespread and used

worldwide, but the glory of RESTfulness is not

necessarily achieved. There is a need to consider

whether HATEOAS should be introduced, which

may be easier with new developments than with

already existing APIs. HATEOAS can bring added

value and simplify machine communication.

Evaluating the RESTfulness of “APIs from the Rough”

287

ACKNOWLEDGEMENTS

Irina Astrova’s work was supported by the Estonian

Ministry of Education and Research institutional

research grant IUT33-13.

REFERENCES

Betten, S., 2011. Richardson Maturity Model,

http://www.se.uni-hannover.de/pub/File/kurz-und-

gut/ws2011-labor-restlab/RESTLab-Richardson-

Maturity-Model-Sascha-Betten-kurz-und-gut.pdf

Fielding, R., 2000. Architectural Styles and the Design of

Network-based Software Architectures,

https://www.ics.uci.edu/~fielding/pubs/dissertation/top

.htm

Fowler, M., 2010. Richardson Maturity Model,

https://martinfowler.com/articles/richardsonMaturityM

odel.html

Inden, M., 2016. Der Java-Profi: Persistenzlösungen und

REST-Services, dpunkt.verlag.

Koschel, A., Blankschyn, M., Schulze, K., Schöner, D.,

Astrova, I., Astrov, I., 2019. RESTfulness of APIs in

the Wild, In IEEE World Congress on SERVICES –

Concise Papers, 2 pages, to appear in IEEE.

Kumari, V., 2015. Web Services Protocol: SOAP vs

REST, In International Journal of Advanced Research

in Computer Engineering & Technology (IJARCET),

Volume 4 Issue 5. http://ijarcet.org/wp-

content/uploads/IJARCET-VOL-4-ISSUE-5-2467-

2469.pdf

Little, M., 2013. What Are The Drawbacks Of REST?,

https://www.infoq.com/news/2013/05/rest-drawbacks

Massé, M., 2012. REST API Design Rulebook, O’Reilly.

Richardson, L., 2009. Act Three: The Maturity Heuristic,

https://www.crummy.com/writing/speaking/2008-

QCon/act3.html

Stringfellow, A., 2017. SOAP vs. REST: Differences in

Performance, APIs, and More,

https://dzone.com/articles/differences-in-performance-

apis-amp-more

Tilkov, E., Schreier, W., 2015. REST und HTTP,

dpunkt.verlag. Trans. Roy. Soc. London, vol. A247.

WEBIST 2019 - 15th International Conference on Web Information Systems and Technologies

288

