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Abstract: A robust obstacle avoidance control program was developed for a mobile robot in the context of tight, dynamic 

indoor environments. Deep Learning was applied in order to produce a refined classifier for decision making. 

The network was trained on low quality raw RGB images. A fine-tuning approach was taken in order to 

leverage pre-learned parameters from another network and to speed up learning time. The robot successfully 

learned to avoid obstacles as it drove autonomously in a tight classroom/laboratory setting.  

1 INTRODUCTION 

The field of Deep Learning consists of algorithms that 

learn using massive artificial neural network 

architectures. Most Deep Learning models are built 

with the intent of processing images. Some of these 

architectures are capable of outperforming humans in 

tasks like classifying objects, which simply means 

differentiating one object from other objects (dog vs. 

wolf, e.g.). In this paper, we present an application of 

Deep Learning to the concept of autonomous driving 

for a TurtleBot type robot within a tight 

classroom/laboratory setting based strictly on images. 

The robot was able to successfully and autonomously 

drive without hitting obstacles within the 

environment. 

Krizhevsky, Sutskever, and Hinton (2012) put 

forth a foundational paper in regards to Deep 

Learning. They developed a neural network with 60 

million parameters and 650,000 neurons. This 

network had 5 convolutional layers along with a few 

pooling layers and 3 fully connected layers including 

a final output layer of 1000 outputs. At the time, they 

achieved a top-5 classification (of the 1000 classes) 

error rate of only 15.3% compared to a much higher 

second-place error rate of 26.2%. This paper 

contributed to the discussion of the importance of 

depth in neural networks by noting that removal of a 

single hidden layer dropped the top-1 classification 

error rate by 2%.  

                                                                                              

* http://cs.conncoll.edu/parker 

Szegedy et al. (2014) entered the ILSVRC 

challenge with a 22 layer deep network nicknamed 

GoogLeNet – in part because most of the engineers 

and research scientists on the team worked for Google 

at the time. The team won the competition with 12 

times fewer parameters than Krizhevsky’s deep 

network and obtained an impressive 6.66% error rate 

for top-5 classification. Following the pattern of 

improvements, He, Zhang, Ren, and Sun (2015) of 

Microsoft Research used a 19 layer deep neural 

network for the task and obtained an accuracy of 

4.94% for top-5 classification. This was a landmark 

accomplishment as it is purported to be the first to 

beat human level performance (5.1%) for the 

ImageNet dataset.  

The most relevant dataset to our research is that of 

CIFAR10 from the Canadian Institute for Advanced 

Research (Krizhevsky, 2009b). Alex Krizhevsky 

outlined the use of this dataset when he developed it 

in 2009 for his Master’s Thesis during his time at the 

University of Toronto (2009a). Prior to this, tiny 

images on the scale of 32 x 32 were not easily labeled 

for classification tasks in regards to algorithms like 

Deep Learning. The CIFAR10 dataset includes 10 

different classes: airplane, automobile, bird, cat, deer, 

dog, frog, horse, ship, and truck. The classes are set 

up in a way to be mutually exclusive. For example, 

automobile and truck are completely different 

categories. Krizhevsky developed different deep 

neural network models in 2010 to run training with 

the dataset. At the time he obtained the highest 
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accuracy using this dataset as his best model 

classified objects correctly with a success rate of 

78.9% (Krizhevsky, 2010). Since then, Mishkin and 

Matas (2016) have obtained 94.16% accuracy on the 

CIFAR10 dataset. Whereas, Springenberg et al. 

(2015) have obtained 95.59% accuracy and the 

current best performance is by Graham (2014) with 

an accuracy of 96.53% using max pooling.  

There has been strong interest in using the 

TurtleBot platform for obstacle detection and 

avoidance. Boucher (2012) used the Point Cloud 

Library and depth information along with plane 

detection algorithms to build methods of obstacle 

avoidance. High curvature edge detection was used to 

locate boundaries between the ground and objects that 

rest on the ground. Other researchers have considered 

the use of Deep Learning for the purpose of obstacle 

avoidance using the TurtleBot platform.  

Tai, Li, and Liu (2016) used depth images as the 

only input into the deep network for training 

purposes. They discretized control commands with 

outputs such as: “go-straightforward”, “turning-half-

right”, “turning-full-right”, etc. The depth image was 

from a Kinect camera with dimensions of 640 x 480. 

This image was downsampled to 160 x 120. Three 

stages of processing were done where the layering 

was ordered as such: convolution, activation, pooling. 

The first convolution layer used 32 convolution 

kernels, each of size 5 x 5. The final layer included a 

fully-connected layer with outputs for each 

discretized movement decision. In all trials, the robot 

never collided with obstacles, and the accuracy 

obtained after training in relation to the testing set was 

80.2%. Their network was trained only on 1104 depth 

images. The environment used in this dataset seems 

fairly straightforward – meaning that the only 

“obstacles” seems to be walls or pillars. The 

environment was not dynamic. Tai and Liu (2016) 

produced another paper related to the previous paper. 

Instead of a real-world environment, this was tested 

in a simulated environment provided by the TurtleBot 

platform, called Gazebo. Different types of corridor 

environments were tested and learned. A 

reinforcement learning technique called Q-learning 

was paired with the power of Deep Learning. The 

robot, once again, used depth images and the training 

was done using Caffe. Other deep reinforcement 

learning research included real-world evaluation on a 

TurtleBot (Tai et al., 2017), using dueling deep 

double Q networks trained to learn obstacle 

avoidance (Xie et al., 2017), and using a fully 

connected NN to map to Q-values for obstacle 

avoidance (Wu et al., 2019). 

Tai, Li, and Liu (2017) applied Deep Learning 

using several convolutional neural network layers to 

process depth images in order to learn obstacle 

avoidance for a TurtleBot in the real world. This is 

very similar to our work, except they used depth 

images, the obstacles were just a corridor, and they 

train from scratch instead of using transfer learning as 

we did. 

Our research provides a distinctive approach in 

comparison to these works. Research like Boucher’s 

does not consider higher level learning, but instead 

builds upon advanced expert systems, which can 

detect differentials in the ground plane. By focusing 

on Deep Learning, our research allows a pattern based 

learning approach that is more general and one which 

does not need to be explicitly programmed. While Tai 

et al. used Deep Learning, their dataset was limited 

with just over 1100 images. We built our own dataset 

to have over 30,000 images, increasing the size of the 

effective dataset by about 28 times. The environment 

for our research is more complex than just the flat 

surfaces of walls and columns. As in Xie’s work, in 

our research the learning was done on a dataset that 

was based on raw monocular RGB images. This 

opens the door to further research with cameras that 

do not have depth. Moreover, the sizes of the images 

used in our research were dramatically smaller, which 

also opens up the door for faster training and a speed 

up in forward propagation. Lastly, similar to a few of 

these works, the results of our work were tested in the 

real world as opposed to a simulated environment. 

2 DEEP LEARNING 

Consider a standard feed-forward artificial neural 

network that is fully connected between each layer 

being used to process a 100 x 100 pixel image. With 

3 color channels, we would have 100 x 100 x 3 or 

30,000 inputs to our neural network. This is a large 

number of inputs for a standard neural network to 

process. Deep Learning directly addresses this 

limitation.  

The convolution layer passes convolution 

windows over the image to produce new images that 

are smaller. The number of images produced can be 

specified by the programmer. Each new image will be 

accompanied by a convolution kernel signifying the 

weights. Instead of sending all input values from layer 

to layer, deep networks are designed to take regions 

or subsamples of inputs. For images this means that 

instead of sending all pixels in the entire image as 

inputs, different neurons will only take regions of the 

image as inputs – full connectivity is reduced to local 
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connectivity. We take an image and extract local 

regions of depth 3 for the color channels along with 

their respective pixel values and input them into a 

neuron. Supposing that our local receptive fields are 

of size 5 x 5, this neuron takes in an input of 

dimensions 5 x 5 x 3 for that particular portion of the 

3 color channel image. The local receptive fields can 

be seen as small windows that slide over our image, 

where the number of panes on the window is 

predefined. These panes help determine what features 

under the window we want to extract, and over time 

these features are better refined. The weighted 

windows are commonly called kernels. Depending on 

the type of kernel, different features of the image may 

be highlighted, such as blurring and sharpening. In 

this way, networks can develop identification of 

complex patterns in datasets just by applying kernel 

filters. Deep networks develop these kernels through 

training without being explicitly programmed to do 

so. The only supervision is from a loss function in the 

output layer denoting how close the network’s 

prediction was to the actual value of the image. 

Through training, these kernels become more fine-

grained to reduce the loss function’s output.  

Pooling is applied to each one of the convolution 

images. Deep networks are stacked in such a way as 

to include many different types of layers. A general 

strategy is to follow a convolution layer with a type 

of layer called a pooling layer. The convolution layer 

is responsible for learning the lower level features of 

an image, such as edges. The pooling layer seeks to 

detect a higher level understanding of the lower level 

features from the convolution layers. Pooling is also 

good for building invariance to local translations. 

This means that even if the input region is slightly 

translated, most of the pooled output values will not 

change. By employing max pooling (defined below), 

dominant features, or regions with the largest values, 

can be extracted and fed into later layers of the 

network. Along with this benefit, the image is also 

reduced dramatically because it is downsampled in 

one of three ways:  

1) Max pooling – The maximum pixel value is 

chosen out of a rectangular region of pixels. 

2) Min pooling – The minimum pixel value is chosen 

out of a rectangular region of pixels. 

3) Average pooling – The average pixel value is 

chosen out of a rectangular region of pixels. 

Reducing the size of the image dramatically cuts 

down on the amount of processing needed to train the 

higher level features of the network. In terms of 

processing, the idea is similar to convolution as we 

still pass a window over our image.  

Convolution and pooling dominate the discussion 

about types of network layers. However, there are a 

few other types of layers that were used in this 

research.  

The Rectified Linear Unit (RLU) layer 

(Krizhevsky et al., 2012) has recently grown in 

popularity. Many researchers consider this over using 

the sigmoid activation function. In fact, they were 

able to accelerate convergence in their training by a 

factor of 6 times in relation to the sigmoid activation 

function using this function. This is a fairly 

straightforward operation: the function takes a 

numerical input X and returns it if it is positive, 

otherwise it returns -1 * X. This effectively eliminates 

negative inputs and boosts computation time since 

complex computations such as exponentiation are not 

needed.  

The Local Response Normalization layer 

(Krizhevsky et al., 2012) imitates biological lateral 

inhibition – excited neurons have the capability of 

subduing neighbor neurons. A neural “message” is 

amplified and focused by this differential in neuron 

excitement. These layers allow neuron’s with large 

activation values to be much more influential than 

other neurons. Following the pattern of feature 

recognition in every layer, these layers allow 

significant features to “survive” deeper into the 

network.  

The fully connected layer, which is like any 

regular multi-layered perceptron, is generally the 

final layer if it’s used in a network. The outputs of the 

neurons in this layer are the actual outputs of the 

network. Connected to this layer is the loss layer 

where the network compares desired outputs to actual 

outputs, and the learning is initiated here in terms of 

gradient descent updates.  

3 THE ROBOT 

The robot used for this research (Figure 1) was the 

“Deep Learning Robot” from Autonomous. Its basic 

functionality is essentially equivalent to that of the 

TurtleBot platform. The robot includes an Asus Xtion 

Pro 3D Depth Camera, a microphone embedded in the 

camera, and a speaker. A Kobuki mobile base allows 

it to rotate and move in any direction on the ground 

plane. Most importantly, it is equipped with an Nvidia 

Tegra TK1, which allows us to carry out Deep 

Learning computations on a GPU instead of having to 

resort to extremely long wait times for training with a 

CPU. This is its main difference from a regular 

TurtleBot. While the Tegra TK1 is a powerful mobile 

processor, it only has 2GB of memory. This is 
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problematic for training very deep networks because 

holding too many parameters in memory causes the 

robot to crash. While training, the robot is unstable 

because of this limited memory so running multiple 

programs at the same time is to be avoided.  

The robot comes equipped with the Deep 

Learning frameworks of Google TensorFlow, Torch, 

Theano, and Caffe (we used Caffe), and CUDA and 

cuDNN are provided for implementing Deep 

Learning on GPUs and for speeding up that 

computation. This robot is virtually a computer in 

itself, and it allows us to treat it as such as it is very 

compatible with Ubuntu 14.04. The TurtleBot 

framework works hand in hand with the Robot 

Operating System (ROS), which is used to control the 

robot and to have access to all information coming 

from any of the robot’s sensors. ROS is an “open-

source, meta-operating system” which allows 

hardware abstraction, low-level control and message 

passing between different modules/processes. 

 

Figure 1: Photograph of the Deep Learning Robot. 

4 OBSTACLE AVOIDANCE 

The problem scenario is that of training a deep neural 

network to learn autonomous driving of a vehicle in a 

tight, chaotic room/office environment. To test the 

functionality and success of the program, the 

performance of the robot was compared to the end 

goals. The end goals are primarily that the TurtleBot 

should autonomously follow an approximately 

rectangular path in a tight environment without 

colliding into obstacles. A description of this 

environment is provided below. 

4.1 Environment 

The Robotics Lab with obstacles in the room provides 

a reasonably complex environment for our tests. 

Figure 2 demonstrates this approximate environment 

set up. The approximate rectangular path that was 

configured was the perimeter of a long lab table. This 

table only has 3 planes of support on the underside; 

otherwise there are gaps underneath the table. White 

rectangles with dark borders are lab tables. The north 

and south sides of the tables are solid (2 of the planes 

of support), whereas the east and west sides have 

gaps. The gap size is large enough for the robot to be 

able to drive through, but chairs (white circles with 

dark borders) were placed in those locations. The total 

radii of the chairs are larger than the circles shown 

because the feet of the chairs extend out further. 

There is no gap for the robot to move in between 

neighbouring chairs (in most cases). The dark brown 

rectangle (southwest corner of the lab) is a colony 

space – boxed off area of the lab that may be used for 

other experiments, but there are borders (one foot 

high solid walls) that the robot would need to avoid 

hitting. The golden rectangles (north and south walls 

of the lab) denote cabinets which the robot must also 

avoid. The red rectangle in the middle of the figure 

shows the path around the center table that the robot 

must follow or the general path it needs to go in on its 

way as it avoids chairs, tables, boxes, etc. In separate 

runs this path must be completed in both clockwise 

and counter clockwise directions.  

 

Figure 2: A visual of the environment with lab tables, 

chairs, and cabinets. Images are provided below to help 

understand this environment even more. The top of the 

drawing is approximately north.  

One can see from Figure 3 that the gaps were 

closed with moveable round chairs. Each chair has 5 

rounded legs and a circular stump. The chair heights 

can be adjusted and the orientation can change 360 

degrees for both the base and the actual seating. 

Sample images are provided in the Figures 1, 3, and 
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4 to visualize different possible orientations for the 

chairs. These were chosen as the main objects of 

interest because they are not solid – there is clearly a 

good amount of gap area in between the legs. This 

allows for complexity in defining what an obstacle is 

and what and obstacle is not. The robot must not 

simply learn to follow the color of the carpet because 

even the gaps reveal the carpet.  

 

Figure 3: Photograph showing chairs and spacing. 

The camera for the robot faces down at about 40 

degrees from the vertical position, so it is important 

to design an environment that is complex enough, in 

terms of objects close to the ground, to be a problem 

of interest. To highlight the point of this experiment, 

if the environment was built only using cardboard or 

other flat material as the main obstacle in the 

environment, then there would be a fairly 

straightforward solution. There would not be much 

variety, apart from lighting conditions, as to what 

material needed to be avoided. By using the chairs, 

the environment was more natural and complex. Not 

only were the chairs not solid surfaces, they were 

typically moved by students overnight. While they 

might be in the same relative location, the orientations 

were completely different each time. This adds 

complexity to the problem because it is not easy for a 

pattern to be developed since the orientation keeps 

changing. This means that for obstacle avoidance to 

be successful the deep neural network necessarily 

needs to develop an “understanding” that chairs are to 

be avoided. With enough gaps in between chairs and 

the legs of the chairs having significant gaps, the 

robot will still see the carpeted area. Thus, it cannot 

just develop a control program to follow a carpeted 

area, but instead needs a more complex pattern to be 

recognized from the dataset. 

 

  
 

  

Figure 4: The images above demonstrate various obstacle 

avoidance scenarios. 

It is important to establish guidelines as far as 

environmental set up because there may be scenarios 

that are impossible for the robot to solve. In our 

research, we dealt with two. In the first, if there is 

enough of a gap between two chairs the robot may 

make the decision to go straight instead of turning 

away from the chairs. In the second, if the robot is 

facing a cabinet directly head on. Even for a human 

with limited peripheral vision, it would be impossible 

to know which direction to turn. There is no way to 

have metaknowledge about which direction contains 

an obstacle and which does not. This is not a fair 

scenario to include in the dataset. To solve the former 

of the two issues, the environment included chairs 

that were placed close enough to have a small enough 

gap that the robot would not be able to fit through. To 

solve the latter of the two scenarios, cabineted areas 

included an open cabinet that swivelled to a direction 

the robot was supposed to avoid. Not only does this 
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add more chaos to the environment (there are various 

different items in the cabinets which adds to the 

complexity of developing a pattern), but it also 

establishes rough guidelines as to the correct path. 

Chairs, cabinets, and tables were not the only 

obstacles to avoid. A few images in the dataset 

included small cardboard boxes. A good amount of 

the dataset included the borders of a colony space 

environment. It was important to include obstacles 

like this in order to confirm that the concept of 

obstacle avoidance was being abstracted instead of 

the robot only avoiding black colored objects (the 

black chairs). It is also significant to note that students 

used the lab throughout the day and night, so 

conditions of the carpet changed while the dataset 

was being developed. For example, coins were found 

laid out on the ground near a turn in the path on one 

day. On another day, shreds of paper were at different 

locations on the path. We decided not to remove some 

of these items while building the dataset because it 

only adds to the diversity in what we might consider 

edge cases. 

4.2 Dataset Collection 

During data collection the robot was controlled 

remotely by a user on a keyboard (connected through 

a computer on Bluetooth) as it was driven around the 

lab following the path in both directions. The robot 

maintained continuous forward movement as the 

operator designated left, right, or straight. To increase 

the diversity of the dataset, different starting points 

were chosen and hard scenarios such as being close 

to walls were considered. Overall, 30,754 images 

were collected and labelled.  

The script processed about 10 images per second, 

but not every image was saved. While no time record 

was kept, an estimated 1.5 – 2 hours were spent on 

trial runs and collections. In the initial testing 

conditions, we found that there were edge cases that 

were missing, so more data was added over time. By 

default, the images from the Asus Xtion Pro are of 

dimension 640 x 480. While this would provide a 

great amount of detail to train on, it would take an 

incredible amount of processing power and time to 

train to a significant accuracy. For our deep network 

we downsample this image to 64 x 64 (Figure 5). 

5 DEVELOPMENT OF DEEP 

NEURAL NET ARCHITECTURE 

We initially started by using an imitation of Alex 

Krizhevsky’s deep network architecture to solve the 

CIFAR10 dataset. The plan was to augment this 

network with our own dataset. We obtained about 

74% accuracy for that dataset. We took the weights 

of the network from it having learned the CIFAR10 

data, and then fine-tuned it for our own purpose – 

obstacle avoidance while driving autonomously. 

The thought for fine-tuning was inspired from the 

notion that the lower level features detected by the 

network are general enough to be applied to the 

problem of obstacle detection. Intuitively, there is a 

large difference between detecting an airplane and 

detecting a dog or a cat. However, Krizhevsky’s 

network is capable of differentiating between the two 

based on the same kernel weights. That seems to be a 

large area of coverage for the type of data provided. 

The other thought here was that Krizhevsky’s 

network was trained on 32 x 32 dimension images. 

Since our images will be 64 x 64 pixels, we may 

expect that there will be a boost in accuracy. 

The complete network used for this research is 

shown in Figure 6. It is split into three lines to  

ease the visualization. We can see that there are 3  

 

Figure 5: Reducing the image resolution from 640 x 480 to 64 x 64. 
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Figure 6: The final architecture for the deep network. This is inspired by the architecture for solving the CIFAR10 dataset. 

The rectangles represent layers. The octagons represent data. 

iterations of the layer combinations of convolution, 

pooling, and normalization. Note that the fine-tuning 

of the network is evident from the visual. The layer 

“ip1Tweak” is labeled as such because the final layer 

of Krizhevsky’s network was removed and replaced 

with an inner product (“ip”), or also considered fully 

connected, layer that only had 3 outputs. This is 

signified by the value 3 above the ip1Tweak layer in 

the visual. The 3 outputs correspond to the decision 

making of the TurtleBot in terms of autonomous 

driving directions. The original network included 32 

convolution kernels for the first convolution, 32 

convolution kernels for the second convolution, and 

64 convolution kernels for the last one. We can also 

see how each convolution layer is immediately 

followed by a pooling layer. Every convolution layer 

also includes a rectified linear unit attached to it. 

Local Response Normalization also appears to be an 

effective addition to this network, as it augments the 

outputs of 2 of the 3 pooling layers. The dataset was 

split as such for the final network: 23,065 images for 

training and 7,689 images for testing – a 75% training 

split of the entire dataset.  

The hyperparameters were:  

• testing iterations: 100; basically how many 

forward passes the test will carry out. 

• batch size: 77; this is for batch gradient descent 

– notice that batch size * testing iterations will 

cover the entire testing dataset.  

• base learning rate: 0.001  

• momentum: 0.9 

• weight decay: 0.004 

• learning rate policy: fixed 

• maximum training iterations: 15,000 

• testing interval: 150; testing will be carried out 

every 150 training iterations. 

These hyperparameters were determined through 

several experiments in order to find the desired level 

of accuracy and performance. Some of these 

parameters are surely subjective. For example, we 

considered testing interval to be much less than it 

usually is for large networks (on the order of 1000). 

The reason for making this a small value is so that we 

can analyze shifts in learning in a decent amount of 

time instead of having to wait for over half an hour. 

The number of maximum iterations was chosen as an 

estimation of the number of epochs the network may 

have needed to stabilize. The batch size of the training 

data is 77 images, thus we would need about 300 

iterations to cover the whole training dataset. Hence, 

the number for maximum iterations was established 

as 15,000 in order for the network to go through about 

50 epochs. 
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6 RESULTS FOR AUTONOMOUS 

DRIVING  

Starting with a Krizhevsky network trained on the 

CIFAR10 dataset and replacing the final layer with a 

tweaked fully connected layer, we ran the Deep 

Learning neural network on 30,000 images generated 

for the obstacle avoidance problem. The network was 

able to obtain an accuracy of about 92% after 15,000 

iterations (Figure 7). It took the network about 200 

iterations to get to the 84% accuracy mark and around 

2000 iterations to achieve an accuracy of 90%. Ten 

different test runs in the actual environment were 

completed where the robot was reversed after a 

completion of a lap in order to complete the lap in the 

both directions. The robot did, although rarely, 

slightly graze against the leg of a chair or a cardboard 

box. However, this did not change the trajectory of 

the robot and it was still able to complete its course. 

For this reason, these rare occurrences were not 

considered as major events for hitting an obstacle.  

One could argue that the turning angle for the 

robot is the only issue here since this is such a tight 

environment. Though the network made the right 

decision, the movement of the physical robot may 

have been slightly too much. This can be corrected 

with very small tweaks in the values of turning radii 

for the different decisions, however this does not 

reflect on or add to the discussion about the 

performance of the deep network in itself. 

 

Figure 7: The performance of the network in relation to 

iterations for the fine-tuned Krizhevsky network trained 

with over 30,000 images. The first 15,000 iterations are 

shown. It took about 200 iterations to get to the 84% mark 

and by 15,000 it was at 92% accuracy. 

 

6.1 Visual Analysis of Results 

While observing the robot during particular situations 

of interest we noted that it routinely performed the 

correct action. The scenario of the open cabinet was 

not a challenge for the robot (Figure 1 and Figure 4 

top left). As previously mentioned, this helped 

augment the robots path learning. We observed that 

the robot was successfully able to navigate the tight 

corridor and move away from chair obstacles (Figure 

4 top images) and the border of the colony space, 

which showed that the robot learned to avoid more 

than just the chairs (Figure 4 right images). Although, 

the cardboard box was seldom included in the original 

training dataset, the robot clearly had pattern 

recognition broad enough to be able to avoid it 

(Figure 4 bottom left). Figure 8 shows three examples 

of the output of the neural network. 

 
left 0, straight 0, right 1 

 

 
left 0.73, straight 0.27, right 0 

 

 
left 0.02, straight 0.96, right 0.02 

Figure 8: A sampling of scenarios where the neural network 

made live decisions and the outputs of the NN are shown 

for each (they will total 1.0). The NN will have the robot 

turn right in the top scenario, left in the middle, and straight 

in the bottom.  
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7 CONCLUSIONS 

The approach of fine-tuning Krizhevsky’s network 

that solved the CIFAR10 dataset was highly 

successful. The robot effectively avoided obstacles in 

the original room where the dataset was collected. 

The robot also avoided colliding into other obstacles 

that were not part of the dataset – the deep network 

did not solely focus on chairs and cabinets as the only 

obstacles to avoid. In regard to accuracy, this 

approach seems more successful than the previous 

approaches that utilized depth. In the future, different 

dimensions (other than 64x64) may be considered. It 

would be valuable to potentially find a definable 

relationship between the image dimension and 

network accuracy. 
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