
Semantic-based Obligation for Context-Based Access Control

Mouiad AL-Wahah, Ahmed Saaudi and Csilla Farkas
College of Engineering and Computing, University of South Carolina, 301 Main St, Columbia, SC, U.S.A.

Keywords: Description Logic, Access Control, OWL, Authorization, Obligation, Policy Rules.

Abstract: In this paper, we present a dynamic and extensible semantic-based obligation framework. Our framework is
meant to be used in conjunction with context-based authorization. Our approach is suitable to incorporate dy-
namically changing obligation requirements. We express obligation requirements and contextual information
as ontologies. We employ Description logic and Logic Programming technologies for modeling contexts, priv-
ileges and obligations. We show how semantic-based techniques can be used to support adaptive and dynamic
obligation for Context-Based Access Control (CBAC) policies. We also show that our framework is expressive
enough to incorporate obligation’s needs in dynamic environments. Furthermore, we have developed a proof
of concept implementation to demonstrate our work.

1 INTRODUCTION

Context-Based Access Control (CBAC) is suitable
for dynamic environments (AL-Wahah and Farkas,
2018b). In such environments, the authorization
policy should adapt to its ever-changing environ-
ment.Integrating obligations into CBAC control pol-
icy allows a system to react quickly to new circum-
stances and change obligation requirements easily
when needed (Elrakaiby et al., 2012). However, only
a few of the current authorization models (Fornara,
2011; Pérez et al., 2009; Robinson and Purao, 2009;
Rubab et al., 2014) provide an obligation for context-
based access control policies. Moreover, they provide
only limited support for the following requirements:

• Adaptability: Context-Based Access Control
(CBAC) should be adaptable to the ever-changing
conditions of dynamic environments.

• Extensibility: Executing obligations by users or
systems highly depends on application and policy
requirements. The design must be extensible to
support new types of obligations.

• Modularity: Obligation framework shows support
flexible activation and deactivation of obligations.

Our framework provides a dynamic and adaptive
semantic-based obligation support for CBAC policies.
Dynamic adaptability is provided through policy ad-
justment operations that keep the policy rules updated
with the latest context changes. Obligation are mod-
ified: 1) When the context of the requester, resource,

or environment changes in a way, that change should
be reflected in the access control policy; 2) When an
obligation evolves over time. Our approach can be
adopted by existing CBAC systems to provide obli-
gation services. Our semantic-based obligation sup-
ports capabilities such as checking the access control
and obligation policies for conflict and consistency,
explaining inferences and helping to instantiate and
validate the variables in dynamic environments.

The rest of this paper is organized as follows: In
section 2, we present the context-based access control
system modeling. Section 3 presents our semantic-
based context obligation. Section 4 shows how to
check obligation states, and Section 5 contains our
implementation results. Related works are surveyed
in Section 6, and we conclude with suggestions for
future work in Section 7.

2 CBAC SYSTEM MODELING

“Context” has been defined by Dey et al. (Dey et al.,
2001) as “any information that is useful for character-
izing the state or the activity of an entity or the world
in which this entity operates.” In CBAC, the system
administrator (or resource owner) specifies a set of
contexts and defines for each context a set of appli-
cable permissions. When an entity (a user) operates
under a certain context, (s)he acquires the set of per-
missions (if any) that are associated with the active
context. When the active context changes, the previ-

Al-Wahah, M., Saaudi, A. and Farkas, C.
Semantic-based Obligation for Context-Based Access Control.
DOI: 10.5220/0008120105350540
In Proceedings of the 16th International Joint Conference on e-Business and Telecommunications (ICETE 2019), pages 535-540
ISBN: 978-989-758-378-0
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

535



ous permissions are revoked, and new permissions are
assigned (Corradi et al., 2004). Hence, context plays
the role of a bridge between the requester and access
permissions.

We present a motivating scenario that will be used
as a running example throughout the rest of this paper.

Motivating Example “University Travel Autho-
rization (TA) forms are used to specify permitted
travel expenses. Upon approval of a TA form, the
traveler and the travel office must oblige to some re-
quirements. For example, a traveler must be on cam-
pus when applying for TA, and the traveler is obli-
gated to turn in itemized receipts within fifteen days
of the conference. When a traveler submits itemized
receipts, the system is obliged to reimburse the trav-
eler.”

We develop a framework to support context-based
obligation, see Figure 1.

Figure 1: Architectural view of the obligation framework.

In this figure, the CBAC engine is used to en-
force the context-based authorization and the obliga-
tion policies. CBAC engine supports two modules:
obligation enforcer and obligation monitor. Obliga-
tion monitor continuously monitors the system state
over time. Obligation enforcer is used to create, ac-
tivate, enforce, and deactivate obligations. The con-
text manager receives requests from the policy en-
gine, asking for a specific context. In its response
to these requests, the context manager gathers, anno-
tates, processes, and reasons over the gathered data to
produce the context. Then it sends the resulted con-
text to the CBAC policy engine. System ontologies
are used for semantic-based system description. This
enables the representation of both fine-grained and
coarse-grained obligation requirements. The require-
ments are used to derive dynamic obligation policies,
which are used later to enforce and dispense the priv-
ileges and commitments of the obligation.

The obligation ontology, OBL, is shown in Fig-

ure 2. Once an Obligation is created, it can be in one
of two temporal states: Persistent or Transient. In
case of persistent obligation, all the data associated
with the obligation should be saved by the system.
For transient obligation, the data associated with the
obligation is only available temporarily. The created
obligation also can be in one of the following opera-
tional states, Ful f illed, Pending, Violated (these are
specified by CBAC ontology as we will see later).

Obligation can also be a system obligation or a
user obligation. The data property isUserObl allows
to represent this property. Value of True means it
is a user obligation, while False value is for system
obligation. An obligation is imposed on a Sub ject
(a system or a user) to oblige her/him/it to per-
form some Action before getting further access to a
Resource (data or services). Deadlines of the obliga-
tions are specified using hasT Frame object property,
which in turn uses two properties hasStartTime and
hasEndTime.

Figure 2: Obligation ontology.

2.1 Context-Based Access Control
Model

In this section, we present a brief overview of
a CBAC approach suggested by (AL-Wahah and
Farkas, 2018a) in which we define Context-Based Ac-
cess Control model. In this model, access requests are
evaluated based on the contexts associated with the
subject and the requested resources. Each request is
matched with context’s metadata that specifies and ac-
tivates the policy rule to be enforced. The authors use
rule-based Logic Programming (LP) to encode con-
text and policy rules.

Definition 1. (Access Control Policy (ACP)
Rules). An access control policy rule is a 6-tuple
〈s,sc,rs,rc, p,ac〉, where s ∈ Sub ject, rs ∈ Resource,
sc, rc ∈ Context, where sc is the subject’s con-
text and rc is the resource context (optional),
p ∈ Permission={“Deny”,“Permit”}, and ac ∈
Action={read, write, delegate, revoke}.

SECRYPT 2019 - 16th International Conference on Security and Cryptography

536



Table 1: Access Authorization rules example.

No. Rule

Rule: A student who is with context
AtCampusStudent can access on-
line TA application.

Each rule is instantiated when an access request is
received.

Definition 2. (Access Request (AR)). An Access re-
quest is given as a triple 〈s,rs,ac〉, where s∈ Sub ject,
rs ∈ Resource, ac ∈ Action.

When an access request is received, the policy en-
gine requests the contexts of the subject s and the re-
source rs. Assume the context of s is sc. If using the
context sc, the policy engine can derive a permission,
i.e., p is “Permit”, and there is no conflict, CBAC
grants the access permission for the request. Other-
wise, the request is denied.

We represent our model using the OWL-DL on-
tologies (Hitzler et al., 2010). The context model
is built around the concept of contextual attribute.
Contextual attributes model the physical/logical en-
vironment such as location and temperature. Specific
context subclasses can be represented under Generic
Concept Context. Each subcontext class consists of
attribute values and constants.

The active context holds the current context of
an entity at a specific instant of time. Active con-
text reflects a snapshot of an entity’s context. We
should note that the context ontology can be extended
or shrunk by adding or removing subcontexts or by
adding or removing contextual attributes to the sub-
contexts. From our running example, we build the
access control authorization rule as shown in Table 1.

This rule states that if a subject requests an access
of the type TAaccess, and the subject s has a context
AtCampusStudent then the request is permitted.

3 SEMANTIC-BASED
OBLIGATION FOR CBAC

In traditional CBAC authorization, the context plays
the role of a bridge between a subject requesting an
access and the requested resource. If a subject has
the context, then (s)he can access the resource. In
obligation-supported CBAC authorization, the bridge
is represented by a context plus the required obliga-
tion. We differentiate between two types of the con-
text: reference context and obligation context.
(Reference Context c). A context that is not associ-
ated with an obligation and is instantiated by context

manager.
(Obligation Context oc). A context that is dynam-
ically generated by CBAC engine and is associated
with an obligation.

By creating a new context of obligation, we avoid
modification of the authorization framework and the
CBAC policy. Obligation context oc, is generated
based on reference context. That obligation is always
related to a specific action (or a set of actions). Also,
the obligation must be fulfilled for its obligation con-
text to be satisfied. An obligation context is dynam-
ically generated by CBAC engine, while a reference
context c is instantiated by context manager. Creation
of specific obligation is achieved in conjunction with
an authorization decision enforcement. After its cre-
ation, an obligation must be activated. Activation of
an obligation is triggered by certain events (such as
time elapsing and action applied on a resource).

4 CHECKING OBLIGATION
STATES

One of the crucial tasks in managing obligations is
how to define and track its states. We propose three
major operational states. These are as follows:
• Fulfilled: An obligation is Fulfilled when its con-

ditions are satisfied by the subject.
• Pending: Obligation can be in Pending state in

two situations: 1) The action requested by a sub-
ject is issued before the start time of the obliga-
tion. 2) The action requested by a subject may not
relate to the obligation, but the due date/time of
the obligation is still valid (does not elapse yet).

• Violated: The action requested by a subject is re-
lated to the obligation, but the due date/time of the
obligation is invalid (already elapsed)
The CBAC ontology uses three properties to con-

trol the obligation process. These properties are
committedTo, hasObligation and oblig ID. The
property committedTo is used by CBAC engine
to check if there is an obligation associated with
the current decision. If there is one, it calls the
oblig en f orcer module to enforce it via executing
obligation policy specified for that matter. Property
hasObligation is used to create an obligation and
link it to the current decision so that the subject will
further be granted more privileges if (s)he/it satis-
fies it. Each obligation has a unique identifier called
oblig ID. To monitor obligations, the CBAC engine
checks the operational states of the obligation. The
values of these states are modified by obligation en-
forcer and being monitored by obligation monitor.

Semantic-based Obligation for Context-Based Access Control

537



The obligations are specified using DL axioms.
For example, the obligation that requires a subject to
finalize TA itemized receipts is represented using the
DL axiom shown in Figure 3.

Figure 3: Generic obligation axiom.

Using this generic obligation, we will specify an-
other obligation to represent a reference obligation.
For example the reference obligation for our example
above is given by the DL axiom shown in Figure 4.

Figure 4: Reference DL obligation axiom.

Assume we have the following obligation business
rule:

Table 2: Obligation rule for the running example.

No. Rule

Rule: A student who is with context
FinalizingTAStudent can finalize
the on-line TA application.

We should note that the authorization decision in
presence of obligation may be different than the au-
thorization decision alone. We represent obligation
policies in a predicate form as follows:
is obliged(CBAC, p): To check if the decision is as-
sociated with an obligation to be enforced. The
first parameter is CBAC ontology and the second
parameter is the decision previously returned by
evaluate(s,sc,r,CBAC,RS) function. This function is
called after Permit decision is made.
is committed(CBAC, p): This predicate, if returns
True, means that the request is associated with an
obligation and that obligation must be enforced be-
fore granting access. Same as is obliged(CBAC, p)
function, except that this function is called before the
Permit decision is made.
deactivate(OBL,CBAC,oblig ID): Deactivate the
obligation by deallocating its instances from OBL and
CBAC ontologies.

oblig ID← get oblig ID(s,CBAC): Gets the obliga-
tion identifier.
en f orce oblig(oblig ID,CBAC,OBL,s,sc,ac,r,OblP):
Enforces the obligation for the request in hand. This
predicate reads as follows: subject s working under
context sc should take the action ac on the resource
r only when (s)he fulfills the obligation which is
recognized by an identifier oblig ID and parameters
OblP.

Algorithm 1: Obligation-Supported Access Authorization.
Input: CBAC, CBAC ontology, OBL is a obligation
ontology, RQ is an Access Request, RS is access con-
trol rule-set.
Output: Access decision, either “Deny” or “Permit”.

1: RT←parse(RQ) . RT = 〈s,r,ac〉
2: if RT = access then
3: sc←getContext(s);
4: p←evaluate(s,sc,r,CBAC,RS);
5: if p = “Permit” AND

noCon f lict(p,s,sc,r,CBAC,RS) then
6: if is obliged(CBAC, p) = True then
7: oblig ID← get oblig ID(s,CBAC)
8: en f ocre oblig(oblig ID, OBL,

Oblig(s, sc, ac, rs, [ts, te], ps, tss))
9: Permit Access;

10: exit();
11: end if
12: else
13: Deny Access;
14: exit();
15: end if
16: else
17: return(“Not access request”);
18: end if

The function evaluate(s,sc,rs,CBAC,RS), takes
the access control ontology CBAC as input and
achieves the DL-based reasoning to get the inferred
model in f model. The access control policy rules, rep-
resented as Jena forward inference rules, will be ap-
plied on in f model to derive an access decision. The
function getrulesnumber(RS) returns the number of
rules in the access control policy rule-set RS. The
Boolean function noCon f lict(p,s,sc,rs,CBAC,RS),
works just like evaluate(s,sc,rs,CBAC,RS) function
but it returns a Boolean value if two conflicting rules
(“Permit” and “Deny”) are fired at the same time.

5 IMPLEMENTATION

Our obligation implementation is carried out on Win-
dows 8.1 machine with 1.9 GHz CPU, 4 GB RAM

SECRYPT 2019 - 16th International Conference on Security and Cryptography

538



and 500 GB HDD. We used the on-line Freedatagen-
erator to generate unduplicated data instances in the
form of excel sheets. Then we use Cellfie plug-in for
Protègè to assert these instances to the model ontolo-
gies. The rules used for this purpose are based on Java
Script Object Notation (JSON) (Friesen, 2019). We
use SWRL (Semantic Web Rule Language) to specify
and trigger operational state transitions. For situations
that need to delete an instance from the knowledge
base, we use Java-based API.

The obligation’s state checking and transition are
implemented using SWRL rules. When executed,
these rules transit the obligation operational status
from state to state if the conditions of the transition
are met. Because obligation express future conditions
that may not exist in the present time (the time of a
request), we randomly generate events (actions-based
or temporal) that trigger obligation policies. These
events are generated using our Java application and
fed into the model ontologies. After DL-reasoning
is complete, the execution of SWRL rules follows.
These two steps derive all the deductions needed to
make the authorization decision. Figure 5 shows the
results of our obligation approach simulation. It dis-
plays the time needed for different number of obli-
gations’ enforcement. In Figure 6, we display the
number of DL axioms required to encode the different
number of obligations.

Figure 5: Obligation Enforcement Time for Different Obli-
gation Numbers.

Figure 6: Number of Obligations versus Number of Axioms
Processing Time.

6 RELATED WORK

Obligation in access control has been extensively
studied by researchers. For example, Hilty et al.
(Hilty et al., 2005) propose a formal framework
for enforcing obligation policies through using Dis-
tributed Temporal Logic (DTL) to classify data pro-
tection requirements. Bettini et al. (Bettini et al.,
2002) propose an approach for specifying and eval-
uating provisions and obligations in Access Control
(AC). Their method is based on the expression of Dat-
alog Rules and reasoning for evaluating authorization
and obligation decisions. They use the term “provi-
sion” to refer to the conditions that must be met before
data is released after a request is received. We should
note that provisions are encoded within our semantic-
based authorization model. Authors in (Şensoy et al.,
2010) provide Polar, a framework for the semantic
definition and enforcement of permission, prohibi-
tion and obligation statements. Their definition of
an obligation involves activation conditions and con-
tents. Polar uses SPARQL-DL (Pérez et al., 2009)
queries for checking the fulfillment of consumer obli-
gations using reasoning, where activation conditions
are translated into standard SPARQL queries (Marfia
et al., 2015). Chen et al. (Chen et al., 2012) define
a model that engages obligations in the environment
of risk-aware access control. Ardagna et al. (Ardagna
et al., 2010) present an identity management system,
called PRIME. PRIME supports autonomous creden-
tials and policy languages that support anonymous
credentials. While the policy language supports obli-
gations, it is limited regarding the dynamic instan-
tiation of these obligations. Pontual et al. (Pontual
et al., 2011) present an approach to support user obli-
gation enforcement. The authors propose the property
of accountability to model unfulfilled obligations. A
novel aspect of their work is to consider authoriza-
tion needs for fulfilling obligations as well as the de-
pendency among multiple obligations. However, it is
unclear how the proposed approach accommodate dy-
namically changing environments.

7 CONCLUSIONS AND FUTURE
WORKS

We present a semantic-based formal specification for
obligation policies and show how to use obligation
policies in conjunction with authorization decision
making. A novelty of our work is that we support
dynamically generated obligation. This is a crucial
requirement in an environment where the context of
access requests changes over time.

Semantic-based Obligation for Context-Based Access Control

539



Obligation is regarded as one of the requirements
associated with a specific action. If subjects can del-
egate their privileges and there is an obligation com-
bined with these privileges, then we need to investi-
gate delegation of obligation as well. Another direc-
tion for future work is to engage trust management
with authorization and obligation.

REFERENCES

AL-Wahah, M. and Farkas, C. (2018a). Context-aware iot
authorization: A dynamic and adaptive approach. In
13th International Conference for Internet Technology
and Secured Transactions. (ICITST-2018), pages 64–
72. Infonomics Society.

AL-Wahah, M. and Farkas, C. (2018b). Context delegation
for context-based access control. In 2nd International
Workshop on A.I. in Security, pages 70–79. ECML.

Ardagna, C. A., Camenisch, J., Kohlweiss, M., Leenes, R.,
Neven, G., Priem, B., Samarati, P., Sommer, D., and
Verdicchio, M. (2010). Exploiting cryptography for
privacy-enhanced access control: A result of the prime
project. Journal of Computer Security, 18(1):123–
160.

Bettini, C., Jajodia, S., Wang, X., and Wijesekera, D.
(2002). Provisions and obligations in policy man-
agement and security applications. In Proceedings of
the 28th international conference on Very Large Data
Bases, pages 502–513. VLDB Endowment.

Chen, L., Crampton, J., Kollingbaum, M., and Norman, T.
(2012). Obligations in risk-aware access control. In
Privacy, Security and Trust (PST), 2012 Tenth Annual
International Conference on, pages 145–152. IEEE.

Corradi, A., Montanari, R., and Tibaldi, D. (2004). Context-
based access control management in ubiquitous envi-
ronments. In Proceedings of the 3rd IEEE Interna-
tional Symposium on Network Computing and Appli-
cations, pages 253–260. IEEE.

Dey, A., Abowd, D., and Salber, D. (2001). A concep-
tual framework and a toolkit for supporting the rapid
prototyping of context-aware applications. Hum.-
Comput. Interact., 16(2):97–166.

Elrakaiby, Y., Cuppens, F., and Cuppens-Boulahia, N.
(2012). Formal enforcement and management of obli-
gation policies. Data & Knowledge Engineering,
71(1):127–147.

Fornara, N. (2011). Specifying and monitoring obliga-
tions in open multiagent systems using semantic web
technology. In Semantic agent systems, pages 25–45.
Springer.

Friesen, J. (2019). Java XML and JSON, Document Pro-
cessing for Java SE. APress.

Hilty, M., Basin, D., and Pretschner, A. (2005). On obliga-
tions. In European Symposium on Research in Com-
puter Security, pages 98–117. Springer.

Hitzler, P., Krötzsch, M., and Rudolph, S. (2010). Foun-
dations of Semantic Web Technologies. Chapman and
Hall/CRC Press.

Marfia, F., Fornara, N., and Nguyen, T. (2015). Modeling
and enforcing semantic obligations for access control.
In Multi-Agent Systems and Agreement Technologies,
pages 303–317. Springer.

Pérez, J., Arenas, M., and Gutierrez, C. (2009). Seman-
tics and complexity of sparql. ACM Transactions on
Database Systems (TODS), 34(3):1–16.

Pontual, M., Chowdhury, O., Winsborough, W. H., Yu, T.,
and Irwin, K. (2011). On the management of user
obligations. In Proceedings of the 16th ACM sym-
posium on Access control models and technologies,
pages 175–184. ACM.

Robinson, W. and Purao, S. (2009). Specifying and moni-
toring interactions and commitments in open business
processes. IEEE software, 26(2):72–79.

Rubab, I., Ali, S., Briand, L., and Traon, Y. L. (2014).
Model-based testing of obligations. In 2014 14th In-
ternational Conference on Quality Software, pages 1–
10. IEEE.

Şensoy, M., Norman, T., Vasconcelos, W., and Sycara, K.
(2010). Owl-polar: Semantic policies for agent rea-
soning. In International Semantic Web Conference,
pages 679–695. Springer.

SECRYPT 2019 - 16th International Conference on Security and Cryptography

540


