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Abstract: Localisation algorithms based on the estimation of the time-of-arrival of the received signal are particularly
interesting when ultra-wide band (UWB) signaling is adopted for high-definition location aware applications.
In this context non-line-of-sight (NLOS) propagation condition may drastically degrade the localisation accu-
racy if not properly recognised. We propose a new NLOS identification technique based on the analysis of
UWB signals through supervised and unsupervised machine learning algorithms, which are typically adopted
to extract knowledge from data according to the data mining approach. Thanks to these algorithms we can
automatically generate a very reliable model that recognises if an UWB received signal has crossed obstacles
(NLOS situation). The main advantage of this solution is that it extracts the model for NLOS identification
directly from example waveforms gathered in the environment and does not rely on empirical tuning of param-
eters as required by other NLOS identification algorithms. Moreover experiments show that accurate NLOS
classifiers can be extracted from measured signals either pre-classified or unclassified and even from samples
algorithmically-generated from statistical models, allowing the application of the method in real scenarios
without training it on real data.

1 INTRODUCTION

Location awareness in wireless networks is becom-
ing essential for commercial and military applica-
tions, especially in data-centric and Internet of every-
thing (IoE) sensor networks (Moro and Monti, 2012),
where can be used to seamlessly query and collect
spatially-located big data, or in real-time locating sys-
tems (Tseng et al., 2001; Cheng et al., 2012). One
of the most important approaches to estimate location
of wireless systems is based on time-of-arrival (TOA)
estimation of received radio signals (Li and Pahla-
van, 2004; Alsindi et al., 2004; Dardari et al., 2015).
When adopted in association with the ultra-wide band
(UWB) technology, a high accuracy in ranging can be
potentially retrieved (Lagunas et al., 2010).

However, in harsh environments, such as indoor,
the presence of obstacles usually degrades signifi-
cantly the ranging performance, as the direct path
might be blocked or delayed and ranging information
is derived from reflected paths. This leads to over-
estimation of distances and subsequently to a faulty

localisation (Denis et al., 2003; Dardari et al., 2009).
A common approach to deal with this problem

is to identify non-line-of-sight (NLOS) situations
among received waveforms and apply some sort of
correction, such as reducing or removing their influ-
ence in determining receiver position. Many concrete
solutions have been proposed in literature, which are
generally based on recognising NLOS situations from
known peculiarities of the measured waveforms, as
will be detailed in Sec. 2.2.

These methods and their accuracy depend gener-
ally from a time-consuming tuning phase of param-
eters, which are set empirically according to the en-
vironment. Moreover, methods are usually tuned and
tested on specific environments, leading them to be
optimised only for those particular scenarios. For
these reasons, the application of these solutions to dif-
ferent environments require each time costly human
interventions.

An approach to overcome these limits is to iden-
tify NLOS signals using a knowledge model which
should be directly extracted from the application en-
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vironment through an automated process.
Data mining process involves the extraction of

non-trivial information from large volumes of data
(Fayyad et al., 1996; Han et al., 2006; Hastie et al.,
2005; Domeniconi et al., 2015b; Domeniconi et al.,
2014a; di Lena et al., 2015). Summarily, this process
involves the transformation of “raw” available data
into a specific structured form, which is given in in-
put to machine learning algorithms to obtain general
knowledge models describing the data. For our pur-
poses, after observing the propagation of some con-
trolled signals in the target environment, we can em-
ploy an automated procedure using these techniques
to generalise these observations into a model, allow-
ing to make assumptions on subsequently observed
signals; more specifically, to identify them as either
line-of-sight (LOS) or NLOS.

This approach has been applied for example in
(Marano et al., 2010), where least-squares support
vector machines (Suykens et al., 2002; Nguyen et al.,
2015) are employed to distinguish between LOS and
NLOS situations and also to mitigate the positive bi-
ases present in NLOS range estimates. This is an ex-
ample of supervised learning, such as in (Choi et al.,
2018) that is based on novel deep learning approaches
but using WLAN signals that achieve a lower accu-
racy than UWB channels.

These supervised methods require a set of wave-
form examples which must be a-priori manually la-
belled as LOS or NLOS: the learning algorithm ex-
tracts non-trivial distinctive patterns of these two
classes into a model, used to classify subsequent sig-
nals as either LOS or NLOS. An important limit of
supervised learning is the need for labelled examples:
a notable amount of human work is generally required
to collect and classify a number of waveforms suffi-
cient to obtain an accurate model.

In this work we investigate further data mining-
based solutions for the identification of NLOS wave-
forms. Notably, other than supervised learning, we
also test the use of unsupervised learning (Cerroni
et al., 2015), where knowledge is extracted from un-
labelled example waveforms, that is without requiring
their costly pre-classification by human experts. Un-
supervised algorithms discover heterogeneous groups
made up of homogeneous data, whose distinctive
traits can be easily connected to either LOS or NLOS
situation. As the example waveforms do not need to
be pre-classified by experts, i.e. labelled, the con-
struction of an usable training dataset is straightfor-
ward and inexpensive.

We evaluate different supervised and unsuper-
vised learning algorithms, known to yield fairly accu-
rate models in many practical situations, despite hav-

ing relatively trivial implementations and fast execu-
tion times. This makes them good candidates for be-
ing deployed and run directly on radio equipment or
other resource-limited embedded devices. By testing
the proposed methods on benchmark data constituted
of both measured and simulated signals, we demon-
strate that the proposed approaches are fairly good
in distinguishing LOS waveforms from NLOS ones.
This potentially guarantees accurate localisation by
applying algorithms like that proposed in (Marano
et al., 2010) on multiple waveforms. Models tested
on real measured waveforms prove to be reliable even
when built from unlabelled signals or from wave-
forms generated by statistical models, thus making
the training process in real use cases more straight-
forward.

In Section 2, we first introduce the application
context, in order to motivate the need for NLOS iden-
tification; methods proposed in literature are revised
thereafter. Then, in Section 3 we present our solution,
indicating the high-level procedure, how feature vec-
tors are obtained from signals and which algorithms
we adopted for their analysis. Finally, in Sections 4
and 5 we report the evaluation of the proposed solu-
tion, describing the data used as benchmark and re-
porting and discussing the accuracy measured from
the tested methods. Section 6 sums up the work and
suggests future directions.

2 NLOS IDENTIFICATION FOR
LOCALISATION

2.1 Localisation using Ranging
Measurements

Here we summarise the process of localisation
through UWB signals, in order to motivate the impor-
tance of distinguishing NLOS situations when max-
imising the localisation accuracy.

We picture a typical reference scenario with a
moving agent with an unknown position p and a set of
anchors with known fixed positions p1, . . . ,pn. Using
a ranging protocol, the agent can obtain an estimation
d̂i of the effective distance di = ‖p− pi‖ from each
station, characterised by a ranging error εi = d̂i− di.
Information about position and distance of at least
three stations can be used to compute an estimation
p̂ of the agent position in 2D, for example by means
of the least squares criterion

p̂ = argminp

n

∑
i=1

(
d̂i−‖p−pi‖

)2
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A complete discussion of ranging protocols is
given in (Sahinoglu et al., 2011), while a recent sur-
vey on further approaches can be found in (Dardari
et al., 2015). In order to obtain an accurate local-
isation, ranging errors must be as small as possible
and eventually unbiased. Effects like thermal noise
and multipath propagation influence on the distance
estimation accuracy. If the direct path between the
two points is obstructed by a wall or other obstacles,
we have so-called NLOS propagation: the distance
will be overestimated due to either reduced propaga-
tion speed through material or measurement of a re-
flected path in case of complete obstruction. This phe-
nomenon has far more impact than other effects cited
above and can lead to important errors in the final po-
sition estimation (Dardari et al., 2009).

However, if we are able to identify which signals
correspond to NLOS situations among those used to
estimate position, we can apply some form of cor-
rection to the estimation procedure in order to im-
prove its accuracy. For example, when using the least
squares criterion, NLOS signals could be weighted
with a lower value in the cost function to be min-
imised.

In the following, we specifically focus on the
problem of analysing single waveforms in order to
distinguish NLOS situations. The proposed solutions
can be plugged in a localisation algorithm as proposed
in (Marano et al., 2010) or in any other suitable con-
text.

2.2 Related Work on NLOS Detection

Different approaches have been proposed to recognise
NLOS propagation in UWB signals.

In (Wylie and Holtzman, 1996) the measurement
noise variance is assumed to be known and the stan-
dard deviation of ranging measurements is compared
with an empirical threshold to identify LOS/NLOS
situations. In (Borras et al., 1998) it is presented a
statistical approach based on the availability of a pri-
ori information about the environment, such as the
probability density function (PDF) of the TOA mea-
surements: all five proposed methods are based on
the fact that measurements variation in NLOS situa-
tions is much higher than in LOS ones; the thresh-
old, however, strongly depends on the particular sta-
tistical model adopted. An approach where a suitable
distance metric is used between the known measure-
ment error distribution and the non-parametrically es-
timated distance measurement distribution in order to
classify a measurement as in LOS or NLOS condi-
tion is discussed in (Gezici et al., 2003). Interesting
results have been also obtained by Guvenc et al. in

(Guvenc et al., 2007) where they propose four differ-
ent solutions for the classification problem of signals
generated by standard models (Molisch et al., 2006),
everyone based on a ratio between various PDF al-
ways compared with a fixed threshold.

Given the variety of measurement conditions and
the recurring need to tune parameters, more recent
methods propose to exploit known waveforms to learn
optimal parameters. In (Decarli et al., 2010) is pro-
posed to use a set of waveforms to estimate param-
eters for likelihood estimation of LOS and NLOS
situations based on some key features. In (Marano
et al., 2010) the authors developed techniques to dis-
tinguish between LOS and NLOS situations, and to
mitigate the positive biases present in NLOS range
estimates. Their techniques are non-parametric and
are based on least-squares support vector machines
(LS-SVM) (Suykens et al., 2002), a supervised clas-
sification technique. In (Müller et al., 2014) Gaussian
mixture filters are used for classification.

Recent approaches also exist which perform lo-
calisation by exploiting multipath propagation rather
than filtering it out: they are not as accurate as classic
trilocation-based methods, but are suitable to situa-
tions where a single fixed station is available (Kuang
et al., 2013; Zhu et al., 2015).

3 NLOS IDENTIFICATION
THROUGH DATA MINING

Data Mining (DM), also known as Knowledge Dis-
covery on Databases (KDD), is defined as the process
of discovering non-trivial patterns in data (Witten and
Frank, 2005). These discovery processes must be au-
tomatic or, at least, semiautomatic, when a human in-
teraction is needed, especially in the first steps of the
process. Data are almost always in an electronic form
stored in one or many databases.

Before applying algorithms to discover patterns,
the target dataset must be large enough to contain
these patterns while remaining concise enough to
be mined in an acceptable timeframe. In the pre-
processing phase, the target dataset is created – if nec-
essary – and reduced into feature vectors, one vector
per observation. A feature vector, often called in-
stance, is a summarised version of the raw data ob-
servation, composed of its most significant features.

A set of such vectors can be fed into input to a
learning algorithm, which treats them as examples to
extract underlying patterns within them and encap-
sulate them in a representative data model. Many
learning algorithms exist, based on different theoret-
ical bases and yielding models of different formats.
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We consider here two different major approaches to
learning, differing in the nature of input data.

Supervised learning algorithms. They take as in-
put labelled instances, i.e. each instance must be la-
belled with one of two or more possible classes, in-
dicating the characteristic of the instance we are in-
terested in. The resulting model describes the typical
patterns of each distinct class and can be used to in-
fer the most likely class of any other instance. In our
case, waveform instances are labelled as either LOS
or NLOS, such that the final model is able to classify
subsequent pre-processed waveforms in one of these
two cases.

Unsupervised learning. On the other side these
algorithms take unlabelled instances as input, with
no additional information. These algorithms parti-
tion given instances into clusters, i.e. heterogeneous
groups of homogeneous instances. The goal of these
algorithms is both to maximise the similarity between
instances of a same cluster and to minimise instead
that between instances of different clusters. As a re-
sult, each cluster will contain instances with specific
prominent characteristics, which can be easily linked
to high-level phenomenons we are trying to observe.
In our case, we can provide a huge quantity of unla-
belled waveforms to a clustering algorithm in order
to obtain a small number of clusters, which can be
labelled as either LOS or NLOS with minimal effort.

The advantage of the supervised learning ap-
proach is that it is specifically fitted for the classi-
fication problem and usually yields a more accurate
model of the aspect we are interested in, in this case
being the NLOS propagation. On the other side, the
unsupervised approach yields a more generic model
which subdivides instances in groups with no prede-
fined meaning, but these groups can potentially be
easily mapped to either LOS or NLOS situations and
the accuracy is in some cases nearly as good as that
obtained by supervised learning.

In the following, we first describe how we pre-
process each waveform to extract a set of predictive
features, then we discuss the specific supervised and
unsupervised learning methods taken into considera-
tion for knowledge extraction.

3.1 Feature Selection from Raw Data

The first step is to get the relevant attributes from the
waveforms we expect to be affected by the NLOS
condition, in order to have records with significative
features.

After reducing each waveform to its single sam-
ples, we initially chose to directly use the values of
such samples as attributes. This choice leads in gen-

eral to a very large number of attributes, which is not
a favourable situation for DM algorithms. To avoid
this situation, some form of data aggregation is rec-
ommended: its former advantage is the reduction of
the attributes number, but this elaboration is useful
also to extract new possible significant data from the
raw signal.

The N samples of each waveform are divided into
windows, composed of W points each. Then for each
window we choose M derived attributes. In this way
we obtain F attributes:

F =
M ·N

W

Each window is in practice a sequence of values
x = (x1, . . . ,xn), with n = N

W being the resulting num-
ber of points per window. In Table 1 we present the
statistics that we used as attributes for each window.

In particular, skewness is a measure of the lack of
symmetry in a data set. A data set, or distribution,
is symmetric if it looks the same to the left and right
of the center point. Kurtosis instead is a measure of
whether the data are peaked or flat relative to a normal
distribution. That is, data sets with high kurtosis tend
to have a distinct peak near the mean, decline rather
rapidly, and have heavy tails. Data sets with low kur-
tosis tend to have a flat top near the mean rather than
a sharp peak.

The formulas for skewness b1 and kurtosis g2 are:

b1 =
∑

n
i=1(xi− x̄)3

(n−1)s3

g2 =
∑

n
i=1(xi− x̄)4

(n−1)s4

where x̄ is the mean, s is the standard deviation,
and n is the number of data points.

The energy of the signals is calculated on fixed
size disjointed windows; for each window, the value
is:

E =
n

∑
i=1

x2
i

It is possible, depending of the situation, to use
other many different attributes focusing in particular
on aggregated attributes, derived from the combina-
tion of other ones.

During the training phase in supervised algo-
rithms, the correct class – LOS or NLOS – is associ-
ated to each waveform. Whereas the first step do not
depend on which kind of data mining algorithms we
are going to use, this labelling step is not necessary if
we are going to use clustering algorithms. Clusterers
are unsupervised so do not need classified instances to

LOS/NLOS Wireless Channel Identification based on Data Mining of UWB Signals

419



Table 1: Attributes calculated from waveform signal points for each window.

Max maximum value xMax
min minimum value xmin
Absolute Max maximum absolute value |x|Max
Absolute min minimum absolute value |x|min
Mean mean value for the window x̄
Std. deviation distribution’s standard deviation s
Skewness distribution’s skewness b1
Kurtosis distribution’s kurtosis g2
Energy signal’s part energy E
Max / min ratio between Max and min values xMax/xmin
Max - min difference between Max and min values xMax− xmin
SD / mean ratio between std. deviation and mean s/x̄
Max - min sqrd. squared difference between Max and min (xMax− xmin)

2

generate the model, they divide data into groups with-
out knowing the correct class. However, to evaluate
the performance of these algorithms, we need to com-
pared the produced clusters with the instances’ class
value.

3.2 Bayesian Network

The probabilistic approach to automated classifica-
tion entails to estimate from the training set the con-
ditional probabilities of each possible class according
to the values of predictive features, hence referred to
as variables. A trivial application of this principle
is the Naı̈ve Bayes classifier, which assumes mutual
conditional independence between all variables: con-
sidering the Bayes’ theorem, the posterior probability
P(c|x) of an instance x to represent a class c can be
computed as a product of conditional probabilities for
each variable x1,x2, . . . (Lewis, 1998).

P(c|x) ∝ P(c) ·P(x|c)∼= P(c) ·P(x1|c) ·P(x2|c) · . . .

In order to account for existing conditional de-
pendencies between variables, we employ Bayesian
networks as classification models. Such a network is
defined by a directed acyclic graph on variables, indi-
cating their conditional dependencies; to each node of
the graph is associated a conditional probability table
on possible values of the corresponding variable, con-
ditioned by values of parent variables (Pearl, 2014).
Once the network structure is defined, probability ta-
bles for each node can be trivially estimated from the
training data. Moreover, various methods exist to au-
tomatically learn even the graph itself from data, e.g.
by means of local search algorithms. Use of such ta-
bles requires to work with discrete variables: contin-
uous ones need to be converted e.g. by binning.

While the construction of an optimal dependency
graph can be cumbersome, depending on the specific
method used, the calculation of probability tables and
their subsequent use for classification are straightfor-
ward.

3.3 C4.5 Decision Trees

A decision tree-based classification model is consti-
tuted by a rooted tree where each intermediate node
corresponds to a feature and its outgoing edges corre-
spond to its possible values. To classify an instance,
starting from the root node, one must recursively fol-
low the edge labelled with the value of the current fea-
ture, until a leaf node indicating the most likely class
is reached.

C4.5 (Quinlan, 1993) is one of the most known
algorithms to learn a decision tree by examples. The
training set is split into groups according to the fea-
ture which better discriminates instances of different
classes and a tree node labelled with the same fea-
ture is created. This process is repeated recursively
on each split to generate the subtrees, stopping when
limit cases are met, such as when all instances of the
split are labelled with the same class. Discriminative
power of features is determined by means of informa-
tion entropy or related measures.

This is one of the most straightforward algorithms
for decision tree learning, yet it is able to yield fairly
accurate classifiers in many circumstances.

3.4 K-means

For the unsupervised learning approach, we con-
sider the well-known k-means algorithm (Hartigan
and Wong, 1979), which takes as parameter the num-
ber k of clusters to be generated. Each cluster is char-
acterised by a prototype vector, each instance is as-
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Figure 1: Map of the WiLAB showing the displacement of beacons (with “tx” labels) and targets across different rooms.

signed to the cluster having the closest prototype ac-
cording to the euclidean distance. After picking ran-
dom starting prototypes, the algorithm iteratively as-
sign each instance to the closest prototype and then
recalculates prototypes as the centroids (i.e. mean
points) of respective assigned instances, until all of
them converge to fixed points. The goal of k-means is
to minimise the sum of squared distances between in-
stances of a same cluster, but the algorithm only guar-
antees convergence to a local optimum and can be
heavily influenced from the starting prototypes con-
figuration.

4 EXPERIMENTAL SETUP

In order to assess the proposed data mining-based ap-
proach to distinguish LOS and NLOS propagation
cases, we set up an experimental evaluation process
aimed to estimate the accuracy of classifiers obtained
by using different combinations of selected features
and learning algorithms.

As a first step for the validation of a mining model,
a consistent set of labelled instances accurately repre-
senting the target context must be collected. We used
two different datasets to this extent, which will be de-

scribed shortly.
Given a labelled dataset, the most straightforward

way to evaluate the process would be to train a clas-
sification model on the whole dataset and to check
whether for each instance it returns its correct class;
the accuracy would be given by the ratio of correctly
classified instances. However, evaluating a model us-
ing the same instances it was trained on is discour-
aged, as the capacity of the model to discover general
patterns and recognise them in previously unseen data
could not be properly assessed.

Instead, a common validation procedure is the k-
fold cross validation, where the dataset is split into k
complementary folds of equal size: instances of each
of them are used to evaluate a model trained on the re-
maining k−1 folds, the accuracy is then computed as
above and averaged across all folds. This guarantees
to test the approach on the whole dataset, yet avoiding
to test models on instances used for training.

The cross-validation is used to validate supervised
learning approaches. Instead, for unsupervised algo-
rithms, we compare the cluster assignment with the
real signal class. If the classes are not known a priori,
a valid measure of clustering performance is the sum
of squared errors within cluster: less is better.

For all the learning algorithms used, we relied
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Table 2: Best accuracy of classification and clustering for different sets of features.

Classification Clustering
Attributes accuracy accuracy W
Each point (a) 86,72 % (Bayes) 75,52 % -
4 Attributes (b) 90,26 % (C4.5) 88,67 % 16
Energy 89,62 % (C4.5) 89,14 % 20
4 Attributes + Energy 90,26 % (C4.5) 88,66 % 16
Skewness + Kurtosis 87,19 % (Bayes) 70,08 % 16
Aggregated values (c) 88,79 % (C4.5) 12
4 Attributes + Aggr. Values 90,00 % (C4.5) 12
(a) Each point value used as attribute
(b) maximum, minimum, mean and standard deviation
(c) Max / min, Max - min, SD / mean and squared Max - min

upon their implementations available in WEKA, a
data mining framework written in Java (Hall et al.,
2009). Specifically, we used the BayesNet, J48 and
SimpleKMeans implementations provided with the
framework. In the case of k-means, we set the num-
ber of clusters k = 2, as the number of classes to be
recognised; for the rest, we used default values for all
parameters of each algorithm.

4.1 Datasets

For the evaluation process described above, we con-
sidered two different datasets of waveforms labelled
as either LOS or NLOS.

A first dataset is composed of real waveforms ob-
tained from a measurement campaign whose full de-
tails are reported in (Dardari et al., 2008), conducted
at the WiLAB in University of Bologna (Italy), in a
typical office indoor environment represented in Fig-
ure 1. Throughout the area, 5 UWB beacons were
deployed and 20 target positions were set. A com-
mercial UWB radio operating in the 3.2-7.4 GHz 10
dB RF bandwidth and arranged to perform ranging
by TOA estimation was placed at each target posi-
tion. 1,500 range measurements were taken for each
beacon-target couple and also for each pair of targets.
The chosen locations for beacons and targets are dis-
tributed across an hallway and rooms adjacent to it:
this gave a wide variety of both LOS and NLOS prop-
agation situations, with different effective distances
and obstacles inbetween. Obstacles are constituted
by concrete walls with thickness of either 15 cm or
30 cm and by typical office furniture. Example of a
measured LOS signal is ploted in Figure 2.

A second dataset is instead composed of wave-
form signals generated algorithmically, according to
IEEE 802.15.4a (Molisch et al., 2006) statistical mod-
els for UWB channel, in particular from CM1 and
CM2 model for residential environments. Figure 3
shows an example of a LOS waveform, generated

Figure 2: Example of LOS signal from measured data (Dar-
dari et al., 2008).

Figure 3: Example of LOS signal using CM1 model.

through the CM1 model.
In the evaluation, by default we perform intra-

dataset experiments where the training and the test
set are extracted from the same dataset: this allows to
verify that classifiers are effectively able to correctly
handle instances extracted under the same conditions
of the training ones. In addition, we will also per-
form cross-dataset tests, where a model is trained on
a dataset and tested against instances of the other: in
this way, we verify whether the knowledge extracted
from one kind of waveforms can be applied seam-
lessly to the other one.

5 NUMERICAL RESULTS

As a first step, we performed a large number of tests
in order to find the best combination of settings re-
garding the extraction of vectors from the signals.
For this phase, we performed cross-validation on the
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Table 3: Model accuracy comparison intra-dataset (cross fold validation).

Training set Test set BayesNet C4.5 Cluster
Measured Measured 86,13% 88,45% 88,45%
Model (CM1, CM2) Model (CM1, CM2) 98,00% 95,50% 87,00%

Table 4: Results of the different methods presented in (Guvenc et al., 2007) for LOS and NLOS identification.

Channel Model Kurtosis MED RMS-DS Joint
CM1 (Office environment LOS) 78,6% 74,3% 61,7% 81,8%
CM2 (Office environment NLOS) 83,2% 77,9% 76,1% 84,3%
Mean 80,9% 76,1% 68,9% 83,1%

Table 5: Model accuracy comparison inter-dataset

Training set Test set BayesNet C4.5 Cluster
Measured Model (CM1, CM2) 83,00% 72,5% 88,10%
Model (CM1, CM2) Measured 87,76% 85,69% 91,00%

measured signals dataset. Specifically, we considered
multiple subsets of features among those described
in Section 3.1, for each of them we then tested the
three discussed learning approaches by varying the
windows size W between 2 and 20.

Table 2 reports, for each subset of parameters, the
best accuracy results obtained for classification and
clustering, along with the value of W that brought to
them.

By comparing the results for the different sets of
features, we notice that the most important ones for
prediction seem to be the four basic statistics maxi-
mum, minimum, mean and standard deviation, along
with the energy measure. On the contrary, using raw
sample values or more complex statistics by them-
selves we obtain a 2-3% lower accuracy in classifi-
cation and a more remarkable gap in clustering. Re-
garding the learning algorithm to be used for classi-
fication, C4.5 turns out to usually be a better choice
than Bayesian networks.

As the four basic statistics, other than being com-
putable straightforwardly, seem to grant good accu-
racy levels, we will use them in the subsequent tests,
along with a window size W = 20. We report in Ta-
ble 3 the results obtained with these settings for each
learning algorithm applied to each of the two dataset,
with a suitable training-test set split.

Supervised classification tests on the model-based
dataset brought substantially higher accuracy esti-
mates with respect to measured waveforms, while ac-
curacy levels for clustering are much closer. Results
on the model-based dataset can be compared with
those obtained by (Guvenc et al., 2007), reported in
Table 4.

Results in Table 3 lead to questioning whether the
higher accuracy on model-generated signals depends
from the test signals being more trivial to classify

or the model generated from the training signals be-
ing more accurate. More generally, we would like to
discover whether the model generated from one type
of signals – either measured or model-generated – is
general enough to be able to effectively classify sig-
nals of the other type. At this extent, further tests have
been run where a model is trained on one of the two
datasets and tested on the other one: results are re-
ported in Table 5.

While models trained on measured signals are not
as effective as in the previous cases in classifying
auto-generated signals, using the latter ones for train-
ing we achieved to build accurate classifiers for the
real signals. Supposedly, the use of regular model-
generated signals for training helps to build the classi-
fier on the most informative signal features and avoids
to consider noise. Interestingly, this result suggests
that it is possible to accurately classify signals mea-
sured in a real, physical environment using a model
built on data which can be automatically generated
and labelled. In a real use case, the collection of
example waveforms to build the training set could
then be unnecessary: provided that suitable statistical
models for the considered environment exist, training
waveforms with similar features but noise-free can be
algorithmically generated.

6 CONCLUSIONS AND FUTURE
WORKS

In this paper, we presented a data mining-based ap-
proach to the recognition of NLOS propagation in
UWB signals, usable in localisation systems. Once
a set of example waveforms is collected, a knowledge
model can be extracted to classify further waveforms
in the same environment as either LOS or NLOS. We
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employed a couple of supervised learning techniques
and also an unsupervised one, which does not require
training data to be labelled.

Taking a small indoor environment as reference,
experimental evaluation of the classification accuracy
has been performed using datasets with both mea-
sured and simulated waveforms. Using waveforms
of the same type for training and test, the classifica-
tion system achieves to outperform similar works in
literature, even in the unsupervised setting. More-
over, we obtained comparable or superior accuracy
levels when testing on real measured signals models
trained on simulated ones; this is a form of trans-
fer learning across different kinds of data which is
successfully adopted also in other data mining appli-
cation domains (Domeniconi et al., 2014b; Domeni-
coni et al., 2015a). On a general basis this can lead
to software/hardware applications able to achieve re-
liable classification models trained on suitably sim-
ulated waveforms rather than from signal measured
each time from new target environments.

Future work may be aimed to further improve the
accuracy of the classification models: many different
adjustments might be tested, including the use of new
features, for instance extracted from the frequency-
domain, or by weighting them according to their rele-
vance with approaches from other fields (Domeniconi
et al., 2016) or of different learning methods. Fur-
thermore, using the same features, regression algo-
rithms may be tested as done in (Marano et al., 2010)
to obtain effective weights of waveforms to use in lo-
calisation methods, rather than a binary LOS/NLOS
classification. Concerning the scalability to a large
number of UWB emitters and receivers, this solution
can also be parallelized with peer-to-peer networks
of classifiers according to general purpose methods
like in (Cerroni et al., 2013) experimented in other
domains.
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