Mind the Gap: Finding What Updates Have (Really) Changed in
Android Applications

Johannes Feichtner!?, Lukas Neugebauer' and Dominik Ziegler?
Unstitute of Applied Information Processing and Communications (IAIK), Graz University of Technology, Austria

2Secure Information Technology Center - Austria (A-SIT), Austria
3 Know-Center GmbH, Austria

Keywords:

Abstract:

Android, Code Comparison, Application Security, Static Analysis, Obfuscation, Smali.

Android apps often receive updates that introduce new functionality or tackle problems, ranging from critical

security issues to usability-related bugs. Although developers tend to briefly denote changes when releasing new
versions, it remains unclear what has actually been modified in the program code. Verifying even subtle changes
between two Android apps is challenging due to the widespread use of code transformations and obfuscation
techniques. In this paper, we present a new framework to precisely pinpoint differences between Android apps.
By pursuing a multi-level comparison strategy that targets resources and obfuscation-invariant code elements,
we succeed in highlighting similarities and changes among apps. In case studies, we demonstrate the need and
practical benefits of our solution and show how well it is suited to verify changelogs.

1 INTRODUCTION

Developers of Android applications regularly dis-
tribute and update their apps via Google Play or
third-party distribution channels. Featured by descrip-
tions, screenshots, and further promotional informa-
tion, users can pick from a large pool of often similar
applications. Many vendors reuse their own code and
offer multiple revisions of the same app for different
devices or with adaptations, e.g., for learning vari-
ous languages, local weather, and city travel guides.
While these apps are usually clearly distinguishable by
their visual appearance, the opposite is the case when
third-party developers distribute repackaged versions
of existing apps with barely noticeable modifications.
Often, these changes introduce malware or code to
hijack revenues for advertisements.

Upon the release of new app versions, developers
can provide a changelog that typically includes a list
of modifications, fixed issues, and new functionality.
In practice, however, release notes are not necessarily
accurate. For instance, if an author states that a known
security-critical problem has been fixed, users have to
put their trust into that statement. Besides not being
able to check whether indicated changes have indeed
and thoroughly been implemented, additional code
modifications that are not exposed in the changelog
are impossible to reproduce.

306

Feichtner, J., Neugebauer, L. and Ziegler, D.
Mind the Gap: Finding What Updates Have (Really) Changed in Android Applications.
DOI: 10.5220/0008119303060313

Whenever updates are published for Android apps,
or applications appear to be repackaged versions or
clones, it is crucial to see what has actually changed in
the program code. From a research perspective, there
is a strong need for a solution that can reliably high-
light differences among various app versions while
being able to distinguish between functional changes
by developers and structural adaptations by compilers.
Especially, regarding the rising complexity and size of
today’s apps, a comprehensive comparison could help
to lower the costs and efforts needed for app analysis
and would allow for easier verification of bugfixes.

Manually finding similarities and differences be-
tween two implementations is challenging due to the
widespread use of code transformation techniques that
are applied not only to optimize code but also to harden
against reverse engineering and tampering.

Automated solutions, on the other side, are usually
targeted to return a verdict (yes/no) on whether an app
appears to be a cloned or repackaged version of another
one (Chen et al., 2015; Wang et al., 2015). In a triv-
ial case, this decision can be made by checking if the
majority of files of one app sample are also contained
in the comparison object. However, if code transfor-
mation techniques are used, a content or hash-based
comparison would lead to spurious results. Likewise,
the verdict will be tainted if obfuscation and related
techniques are not taken into account.

In Proceedings of the 16th International Joint Conference on e-Business and Telecommunications (ICETE 2019), pages 306-313

ISBN: 978-989-758-378-0

Copyright (© 2019 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

Mind the Gap: Finding What Updates Have (Really) Changed in Android Applications

Problem. When comparing Android apps with each
other, we aim to disclose changes in the implemented
program behavior, rather than finding stylistic or other
non-functional changes without influence on execution
or visual appearance. However, precisely uncovering
only real differences between apps is challenging due
to code transformations at compile time and a vari-
ety of ways, how developers can express semantically
similar program statements. Also, if obfuscation tech-
niques are used, the identifiers of classes, methods, and
variables are replaced by meaningless placeholders.

Existing state-of-the-art efforts focus on detecting
repackaged or cloned apps based on heuristics but are
unable to highlight individual code parts that are simi-
lar or different between two Android apps. Mostly op-
erating on the Dalvik bytecode of apps, these work de-
rive a verdict based on a custom similarity metric that
yields accurate but often irreproducible results (Zhan
et al., 2019; Guan et al., 2016). Other approaches for
similarity analysis, as implemented by the tools Andro-
guard Iand FSquaDRA (Zhauniarovich et al., 2014),
deliver a deterministic score but give no explanation
on how and where code relates to each other.

The ability to highlight concrete similarities and
differences among apps is essential since it is crucial to
understand what has really been changed by updates
and in repackaged versions of apps. In addition, a
reliable comparison can provide valuable insight for
analysts and curious users into how developers have
addressed critical bugs by updates.

Approach. To detect and visualize similarities and
differences between two Android applications, we pro-
pose a multi-level comparison strategy:

1. We model the hierarchy of packages with code and
resources in Merkle trees and prune parts that are
equal between the two versions. For resources, we
end after this step and can already tell what files
are equal, deleted, or have changed among apps.

2. From the remaining code, we extract and process
all classes, methods, and basic blocks. While pre-
serving the original code semantics and data flow,
we perform multiple rounds of comparison that
accurately identify newly added, changed, moved,
and deleted code elements.

3. We tackle common code transformation techniques
by comparing only features that are invariant to
obfuscation and arbitrary compiler modifications.

4. The comparison results can be inspected in a web-
based view that visualizes differences similar to
tools found in source code version-control systems,
such as Git and Subversion.

Thttps://github.com/androguard/androguard

Results. We implemented an analysis framework
that can be used for various purposes involving the
direct comparison of two Android applications. In a
case study, we show the practical benefits of our so-
lution by verifying the developer-provided changelog
of real-world applications. Moreover, we demonstrate
that our tool cannot only help to identify repackaged
apps but also to precisely isolate code that might have
been added or modified by malware authors.

Contribution. Our contributions are as follows:

1. We design a framework that enables a pairwise
comparison of the code and resources contained in
two given Android apps. We implement similarity
checks at file, class, method, and basic block level
and present code differences in a format that is
well-known from source code versioning systems.

2. We propose a multi-round comparison approach
for code that takes compiler peculiarities and code
transformation techniques, such as identifier ob-
fuscation into account. We modify the baksmali®
reverse-engineering tool to extract different repre-
sentations of basic blocks from Dalvik bytecode.
To counter code obfuscation, we derive segments
where registers, labels, and re-arrangements cannot
influence similarity matching.

3. Finally, we perform case studies on real-world
applications to demonstrate how our framework
can be used to explain differences and similari-
ties among apps. We exemplify the verification of
changelogs presented by popular apps and show
how to identify functional changes in code.

Outline. In Section 2, we discuss related work. In
Section 3, we define the requirements for our frame-
work and summarizes the comparison workflow for
code and resources. Section 4 elaborates our approach
for code matching at class, method, and basic block
level in more detail. Applied on real-world Android
apps, in Section 5, we demonstrate the usage scenario
of changelog verification by identifing similarities and
differences in app code. Section 6 concludes our work.

2 RELATED WORK

Comparing the code of Android apps typically in-
volves finding a metric that assigns scores to imple-
mentation differences. Using a static or dynamic anal-
ysis approach, most existing work extract features
from meta-data (e.g., app permissions), code (e.g., call
graphs or instruction subsets), or obtain them during
runtime (e.g., execution traces).

Zhttps://github.com/JesusFreke/smali

307

SECRYPT 2019 - 16th International Conference on Security and Cryptography

The reverse-engineering framework AndroGuard
first included an algorithm for pairwise comparison us-
ing Normalized Compression Distance (Desnos, 2012).
By comparing hashing-based fingerprints of methods,
a value between 0 and 1 was derived to indicate the
similarity between them. Variants of this approach
focused on dependency graphs (Crussell et al., 2012),
layout information (Sun et al., 2015), or combined
different features (Shao et al., 2014).

To improve the scalability of pairwise compari-
son, other solutions summarize extracted features in
vector representations. Instead of operating on code,
PiggyApp (Zhou et al., 2013) fills vectors with se-
mantic information and uses them to compute the dis-
tance between apps. For faster comparisons, other
approaches abstract code parts into graph-like repre-
sentations (Chen et al., 2014; Deshotels et al., 2014).

Newer approaches are directed towards measuring
similarity using machine learning-based techniques.
Supervised (Tian et al., 2016) and unsupervised (Shao
et al., 2014) learning approaches have been proposed
to tackle the recognition of malware in repackaged
Android applications.

All related work presented implement a pairwise
comparison and differ mostly in the algorithm used as
a distance metric, as well as in the features that are
used to derive fingerprints from. Although the prob-
lem domain is strongly related to our research, related
work does not yet (/) tackle the problem of uncov-
ering individual code differences instead of deriving
a summarizing similarity score and (2) cannot distin-
guish between functional changes by developers and
structural adaptations by compilers.

3 SYSTEM DESIGN

We design a framework to list differences and similari-
ties between two given Android application archives.
The primary workflow can be split into two phases:

1. In the resource comparison phase, our solution
extracts and compares static content and all non-
code files that are referenced in code, such as
bitmaps, layout definitions, and user interface
strings. We then organize these files in Merkle
trees and leverage the resulting set of hashes to
efficiently determine newly added, changed, and
deleted resource files or folders. As resources are
never affected by obfuscation or related techniques,
the comparison already ends after a single step.
Two applications with identical resources can in-
dicate that applications are repackaged or cloned
versions (Sun et al., 2015; Shao et al., 2014).

308

2. Inthe subsequent code comparison phase, we first
convert the Dalvik bytecode of both comparison
objects into Smali code and, similar to resources,
organize the resulting hierarchy of files and directo-
ries as Merkle trees. Considering the large amount
of classes in today’s applications, we leverage this
data structure to quickly filter classes and packages
that are equal among both apps. For the remain-
ing code, we continue with a more fine-grained
comparison at class, method, and basic block level.
In multiple rounds, we rewrite Dalvik bytecode
and derive different code representations where
possible compiler modifications or effects of trans-
formation techniques, such as code obfuscation,
are mitigated. Due to the wide range of possibil-
ities how code can be transformed, we elaborate
multiple semantically equivalent code representa-
tions tackling different obfuscation aspects and
apply them for comparison. Overall, this approach
ensures that only code parts are matched that are
indeed related with each other.

After analyzing two apps, our tool collects all found
differences and similarities in separate files for later
interpretation in a web-based comparison view. Based
on HTML and JavaScript, differences between apps
are visualized in a representation that is well-known
from established management systems for source code,
such as Git and Subversion. Deleted basic blocks are
marked in red color, whereas newly added or changed
code fragments are highlighted in green. Existing or
unchanged parts are not underlined.

We replicate the visual representation of code
changes, as displayed by our framework, in a case
study of real-world applications (see Section 5).

4 CODE SIMILARITY IN
ANDROID APPS

To answer the question of how much code is shared
between two applications, we apply several generic
options for both comparison on class level as well as
comparison on method level. Our concept is based on
comparing .smali code to detect code similarities and
differences. The idea is to iteratively split parts that do
not match between apps into smaller chunks. In each
step, we gradually reduce the number of identifiers
and substitute them with placeholders. However, this
approach alone does not account for modifications or
peculiarities of used compilers that would influence
the hash value of a file or block. In the following we
explain the operations we apply to the original Dalvik
bytecode before comparing applications.

Mind the Gap: Finding What Updates Have (Really) Changed in Android Applications

¢ Removing Debug Information: Debug informa-
tion typically has no impact on code execution.
Still, it might differ for two exact versions of a file,
depending on the used compiler. In a first step, we,
thus, strip debug information, such as line num-
bers and parameter names from the .smali code
generated by our modified version of baksmali.

Implicit Method and Field References: We rely
on implicit method and field references for ele-
ments of a current class, when generating .smali
code. Notably, we do not use the current class
name as a prefix for method and field names. For
instance, La/b;->a:Ljava/lang/Object; will
be rewritten as a:Ljava/lang/Object;. By rely-
ing on this reduced variant, we can identify identi-
cal code snippets across different classes.

Sequential Numbering of Labels: Instead of us-
ing the address information contained in the orig-
inal bytecode, we apply a sequential numbering
scheme for labels (for instance targets of jump in-
structions). This enables a semantic comparison
of classes and basic blocks despite obfuscation.

Sorting Fields and Methods: Another important
task when performing hash-based comparison of
classes is sorting field and methods consistently.
We achieve this by linking name invariant values
with each field and method in a class. Therefore,
we derive a unique deterministic value, depending
on the access flag, number of parameters and return
type for methods, and access flag and type of field
for fields. To determine the order of elements, we
also leverage the method and field index stored
in Dalvik bytecode. The resulting name-invariant
value is finally used to sort methods and fields.

Although the applied operations already ascertain
consistent comparison results, additional measures
are necessary to tackle dynamic decisions during
compilation. The following four operations are
designed to address these differences among apps:

Deterministic Register Labels: Our customized
version of baksmali enforces the assignment of
registers in a deterministic way instead of using
variable, compiler-chosen registers. For this pur-
pose, we sequentially assign registers depending
on their first occurrence. This operation enables us
to detect two semantically identical blocks where
only the register names were assigned differently
during compilation. However, without additional
checks, a sequential labeling could lead to false
results. For instance, if a simple instruction is in-
serted in between two app versions, all registers
might be shifted and consequently, all remaining
basic blocks cannot be identified as matching.

o Static Register Labels: Instead of replacing reg-
ister names with deterministic assignments, our
solution also supports static register placeholders.
As a result, hashes of blocks are independent of
used registers. However, this measure can influ-
ence accuracy. For instance, if a method changes
the return value by referencing another register,
this change would be unnoticed by this approach.
We, thus, apply this step in conjunction with others
to prevent possible mismatches.

e Resolve Resource Identifiers: The third impor-
tant measure to facilitate the analysis due to com-
piler decisions is replacing resolved resource iden-
tifiers with the original type and content defined
in /res/default.xml. For example, the value
const v0, 0x123cafel could be replaced by
const v0, **APKCOMPARE.<some_value>**,
Due to arbitrary assignments of resource identi-
fiers during compilation, these replacements are
inevitable for a distinctive comparison of code
with references to application resources.

e Excluding: Our solution supports the exclusion
of classes in the android package from analysis.
As these classes are typically unmodified included
from the Android runtime, they do not contribute
to showing functional differences between apps.

4.1 Matching Classes

Matching classes is based on the idea of gradually
trimming classes. For each app under comparison, we
build a Merkle trees that holds all packages, classes,
and methods. As depicted in Figure 1, the analysis
process consists of six rounds. In each iteration step
already matched classes are excluded from the next:

1. Unmodified Files: In the first step, we compare
the hash value of unmodified .smali files. Unmodi-
fied in this step means that no additional measures,
besides those necessary for coherent generation
of classes, have been applied. Subsequently, we
compare the generated Merkle trees. All identi-
cal classes found in both apps are determined and
removed from the tree before the next step.

2. Files with Replaced Super Class Names: In the
second step, we aim at detecting classes which
differ only in the names of the used superclasses.
Hence, we generate .smali files, where occurrences
of superclasses have been substituted with place-
holders. Again, we store all matching classes and
remove them from our analysis set at this point.

3. Files with Replaced Class Names: After compar-
ing all classes with changed super class names, we

309

SECRYPT 2019 - 16th International Conference on Security and Cryptography

now substitute only the class name with a place-
holder. This approach gives us the ability to detect
renamed classes. After this step, our analysis set
only contains classes which either implement a
different interface or differ in their class signature.

4. Files with Replaced Interfaces Names: In the
fourth step, we try to detect classes with changed
interface names. Hence, we introduce a place-
holder for all used interfaces in our class files. Like
in the previous steps, we reduce our analysis set
by all classes matching in both apps.

5. Files with Replaced Class Signatures: For all
classes for which no corresponding match was
found, we repeat the search with a combination
of all previous variants, in this step. In detail, we
introduce placeholders for class and super class
names as well as implemented interfaces. We refer
to this step as replacement of class signatures.

As can be seen in Figure 1, steps 1-5 can be repeated
multiple times. Between each iteration, we rewrite
the Dalvik bytecode of both apps and apply additional
operations, e.g., replacing register names with place-
holders, to increase the detection rate. These steps can
be repeated as long as new matches are found.
However, classes where fields or methods have
been renamed, are not covered by the first five steps.
Additionally, code obfuscation tools like ProGuard
have been found to be resistant against these first
five steps. Consequently, we introduce one final step,
where we replace all identifiers with placeholders:

6. Files with All Identifiers Replaced: In the last
step, we remove all identifiers and names and sub-
stitute them with placeholders. An example of this
approach is depicted in Figure 2. In this step, we
replace method, field, class and type names with
placeholders. However, we leave method names
like <init>, certain package names like android/
or basic data types unchanged, as they cannot be
renamed by code obfuscation tools.

4.2 Matching Methods and Basic Blocks

The pairwise comparison of classes does not lead to
positive matches if methods were added, removed, or
changed. For all code classes that did not match in the
previous step, we propose a fine-grained inspection
that focuses on individual methods and basic blocks.
In a first step, we leverage our customized version
of baksmali to extract all methods from remaining
classes that could not be matched in the previous step.
For each method, we retrieve two representations: first
the original code with all identifiers and in addition, to
overcome code transformations, we rewrite the Dalvik

310

— - Unmodified .smali files % % —‘
L —— smali files with replaced super class names |-%— % —‘
g L —%—> m%] .smali files with replaced class names RN %
Z |8 B el]
z = —
x = %
g L - .smali files with replaced interface names |-%— &‘;% _‘
L —%—> @ .smali files with replaced class signatures |-x— :%
B |B =]
e
L —%— .smali files with all identifiers replaced Y %

* Generation of Merkle Trees

* Rewriting of .dex files

Figure 1: Multi-round code comparison at class level.

bytecode to generate a semantically equivalent version
where identifiers are replaced with placeholders.

For all methods that exceed the lower bound of
code lines needed for matching, we derive a hash value
of the method signature and the body with all basic
blocks. This implies that the order to basic blocks
is also considered and re-arranged, moved, added, or
deleted basic blocks will thwart a successful match. As
aremedy, in cases where methods cannot be matched,
we propose to extend the matching process to the level
of basic blocks for a more in-depth comparison.

Overall, the analysis procedure of methods and
basic blocks can be split into four steps:

1. Methods with Identifiers: After extracting all
methods of unmatched classes from Dalvik byte-
code in their original format (with potentially ob-
fuscated identifiers), their hash representation is
stored in a sorted list. Methods that fall below the
configured minimum threshold for needed code
lines are winnowed and not considered. Then, for
all generated hash values of one Android app a
match is looked up in the set of methods in the
second app provided for comparison.

In this step, we determine all methods that have
not been changed but were moved to another class.

2. Methods without Identifiers: For all methods for
which no corresponding match was found in the
first step, the search is repeated with the seman-
tically equivalent but obfuscation-invariant repre-
sentation of the method body.

This step finds all methods that exhibit the same
control and data flow with differently named iden-
tifiers. In practice, this is the case, if one version
of an Android app is obfuscated and the compari-
son object is not. Likewise, this comparison step

Mind the Gap: Finding What Updates Have (Really) Changed in Android Applications

.method public final run()V
.registers 3

iget-object v0, p0, b:Lb/f;

iget-object v0, , Lb/f;->a:Lb/e;

iget-object vl, p0, a:L
renamed/by/apkcompare/number124;

invoke-static {v0, vl}, Lb/e;->a
(Lb/e;Lrenamed/by/apkcompare/numberl24;)V

return-void

.end method

.method public final _METHOD_NAME_ ()V
.registers 3

iget-object v0, p0, _FIELD_NAME_:_TYPE_;

iget-object v0, v0, _CLASS_->_FIELD_NAME_:_TYPE_;

iget-object vl, p0, _FIELD_NAME_:
Lrenamed/by/apkcompare/numberl24;

invoke-static {v0, vl}, _CLASS_->_METHOD_NAME_
(_TYPE_;Lrenamed/by/apkcompare/numberl24;)V

return-void

.end method

Figure 2: Comparison of Smali code at class level without (left) and with (right) replaced identifier names.

matches method bodies that were applied differ-
ent code transformation techniques and were e.g.,
compiled using different obfuscation settings.

3. Basic Blocks with Identifiers: If the method
body has changed, a more fine-grained matching
using the contained basic blocks is inevitable. Sim-
ilar to the first step, we derive the hash value of all
basic blocks in so far unmatched methods, collect
them in a sorted list, and compare them with the
hash values of basic blocks of a comparison ob-
ject. If basic blocks are found in multiple methods,
the resulting candidates are sorted by the over-
all amount of matching basic blocks in the same
method. This decision logic resembles the match-
ing behavior of the Git source code versioning
system.

This step discloses basic blocks that were moved
to other methods without changing any identifiers.

4. Basic Blocks without Identifiers: Finally, the
hash values of obfuscation-invariant basic blocks
are compared with hash values of basic block rep-
resentations where identifiers have been replaced
by placeholders.

In this step, we find deleted and newly added basic
blocks. Due to the lookup without identifiers, we
also discover basic blocks that have been moved
to other methods but where identifiers have been
renamed, e.g., due to different obfuscation settings
or membership in a different code package. This
step also covers typical obfuscation settings, such
as code merging and inlining. Conscious about pre-
serving control flow integrity, code transformations
are usually applied on entire basic blocks, rather
than single code lines. By comparing representa-
tions without identifiers, our approach enables to
effectively keep track of affected basic blocks.

The described comparison strategy evolves from entire
methods to a fine-grained matching on basic block
level. Considering that today’s Android apps often
include tens of thousands of methods, our approach
reasonably reduces the set of objects to compare in
each step. Evidently, newly added or deleted basic

blocks always come at full analysis cost as they are
compared with the hash values of all other blocks, until
we can conclude that they exist in only one of the two
given Android applications.

S CASE STUDY

We evaluate our framework by comparing subsequent
versions of Android apps and validate whether pro-
vided release notes are accurate. For demonstration
purposes, we select two popular apps with a large
amount of code: the messenger app Skype® and the
password manager /Password*.

For both apps, the source code is non-public, which
means that only changelog information and the results
of our tool can be used for analysis. We could find
security-relevant release notes for both apps and will
use our tool to verify if the changes that have been
made correspond to the statements in the changelogs.

5.1 1Password

1Password is a password manager app for Android
with more than 1.000.000 installations, according to
Google Play. Besides the brief changelog denoted in
the official distribution platform, full release notes are
presented at the developer website’. In version 6.4.1,
the authors addressed several security-relevant vulner-
abilities that were present in previous versions. In the
following, we apply our tool to compare the versions
6.4 (build 58) and 6.4.1 (build 59) of /Password and
validate how the security issues were handled in code.
According to the developer-provided changelog, the
app update involved functional code changes:

e Improved Domain Matching.

3https://play.google.com/store/apps/details 2id=
com.skype.raider

“https://play.google.com/store/apps/details?id=
com.agilebits.onepassword

Shttps://app-updates.agilebits.com/product_history/OPA4

311

SECRYPT 2019 - 16th International Conference on Security and Cryptography

In versions 6.4 and older, the /Password app did
not consider subdomains when parsing URLs due
to a mismatching regular expression. The update to
version 6.4.1 replaced the check with a call to the
newly added method getLoginsForUrl, which
our tool successfully located in the class Utils
(Listing 1). An inspection of the new code be-
havior reveals that the changes indeed fixed the
domain matching problem.

e New Default Scheme: HTTPS instead of

HTTP.

In prior app versions, the internal browser of the
app used HTTP as the default scheme, if no full
URL was provided by the user. As also shown in
lower part of Listing 1, code has been added to
prepend URLs with the https:// prefix.

e Prevent Access to Non-web URLs.
In older versions, users could read private data
from the app folder by using URLs with the file:///
scheme in the built-in web browser. As shown in
Listing 2, the update introduced a limitation to web
URLSs and printed an error with all other URLSs.

¢ Informative Dialogs in the Case of TLS Errors.
According to the changelog, the update also im-
proved messages that are shown when SSL/TLS
errors occur. Inspecting the newly added class
CommonWebViewClient, we can verify how the
improvements have been realized.

Summarizing, the verification of changes between two
versions of the /Password app shows that all indicated
security-relevant modifications have indeed been car-
ried out as described and that the developer-provided
release notes covered all changes.

5.2 Skype

In 2011, the developers of the Skype messenger app
distributed an update via Google Play that raised the
version from 1.0.0.831 to 1.0.0.983. The provided
changelog reported the fix of a recent security issue®.
As also reported by related work (Desnos, 2012), in the
vulnerable version of the messenger, sensitive profile
data, such as the account balance, date of birth, email
address, etc. were stored unencrypted on the device. In
addition, wrong access permissions have been chosen
for files, allowing other apps to read and write them.

By applying our tool on both versions, we find that
security-relevant changes have been made in the class
com/skype/ipc/SkypeKitRunner. The most signif-
icant modifications with relevance to fixed security
issue have been compiled in Listing 3.

Shttp://www.helloandroid.com/content/skype-security-
vulnerability-fixed

312

Listing 1: /Password: Added method getLoginsForUrl.

@@ diff: com/agilebits/onepassword/support/Utils. java
<>
ee com/agilebits/onepassword/support/Utils. java

+ public static List<GenericItemBase>
getLoginsForUrl (
+ List<GenericItemBase> paramlList, String
paramString)
+ |
+ paramString = PublicSuffix.
registrableDomainForUrl (paramString);
+ ArraylList localArraylList = new ArraylList();
if ((paramList != null) && (!TextUtils.isEmpty (
paramString)))
{
paramList = paramList.iterator();
while (paramList.hasNext ())
{
GenericItemBase localGenericItemBase = (
GenericItemBase)paramList.next ();
if ((!TextUtils.isEmpty (mLocation)) &&
(paramString.equals (PublicSuffix.
registrableDomainForUrl (mLocation)))) {
localArrayList.add(localGenericItemBase);
}
}
}
return localArraylist;

}

+ + + + + + + +

+ o+ + + o+ o+

+ public static URI parseURIFromUrl (String
paramString)
+

+ return createURIFromUrlStr ("https://" +
paramString);
+

Listing 2: 1Password: Changed URL input check.

@@ diff: com/agilebits/onepassword/activity/
AutologinActivity. java <->

ee com/agilebits/onepassword/activity/
AutologinActivity. java

public void loadUrl (String paramString)
{

= paramString Utils.uriFromUrl (paramString);

+ paramString Utils.parseURIFromUrl (paramString)
i
if (paramString != null) {
= mWebView.loadUrl (paramString.toString());
+ mWebView.loadUrl (paramString.toASCIIString())
+ return;
}
+ ActivityHelper.getAlertDialog (this, 2131231548,

2131231547) .show () ;
}

As shown in the upper part of the listing, two
new methods have been introduced by the up-
date. The methods fixPermissions (File[]) and
chmod (File, String) are used to change access per-
missions for files that were created with previous ver-
sions of the Skype app. In the second half of the listing,
we see that a string value used to define the Unix access
permissions for files was reset from 777 (rwxrwxrwx)
to the value 750 (rwxr-x—), followed by an invocation
of the newly added method fixPermissions.

Overall, the comparison study of Skype underlined
that our tool can reproduce the fix of security issues in
accordance with the findings reported by related work.

Mind the Gap: Finding What Updates Have (Really) Changed in Android Applications

Listing 3: Skype: Update with security-related changes.

@@ diff: com/skype/ipc/SkypeKitRunner.smali <->
com/skype/ipc/SkypeKitRunner.smali

.end method

.method private fixPermissions ([Ljava/io/File;)V
.registers 7

array-length v0, pl

.end method

R e

.method private chmod(Ljava/io/File;L
java/lang/String;)2
+ .registers 7

const-string vé6, "csf"
= const/4 v7, 0x3
+ const/4 v7, 0x0

invoke-virtual {v4, vé6, v7}, L
android/content/Context;->
openFileOutput (Ljava/lang/String;I)L
java/io/FileOutputStream;

invoke-direct {v2}, Ljava/lang/StringBuilder;-><
init>()Vv
= const-string v4, "chmod 777 "
s const-string v4, "chmod 750 "

move-result-object vl

+ move-object/fromlé6 v3, p0

+

+ iget-object v3, v3, mContext:L
android/content/Context;

+ move-object v2, v3

+ invoke-virtual {v2}, Landroid/content/Context;->
getFilesDir ()Ljava/io/File;
+ move-result-object v2

+ +

invoke-virtual {v2}, Ljava/io/File;->listFiles () [
Ljava/io/File;
move-result-object v2

move-object/fromlé v3, p0
move-object v18, wv2

+ o+ o+ o+

invoke-direct {v3, v18}, fixPermissions ([L
java/io/File;)V

invoke-static {}, Ljava/lang/Runtime;->getRuntime
()Ljava/lang/Runtime;

6 CONCLUSION

Android apps often receive updates that provide new
functionality and bugfixes. Verifying what has really
been changed in the code is challenging due to com-
piler peculiarities and code transformations.

In this paper, we presented a solution to accurately
detect similarities and differences in the code and re-
sources of two given Android apps. With a focus on
features that are invariant to code obfuscation, we pro-
posed a multi-round comparison approach that excels
in finding matching pairs of code fragments. In a case
study, we exemplified the practical use of our frame-
work by verifying how updates have been deployed to
fix security-critical issues in real-world apps.

REFERENCES

Chen, J., Alalfi, M. H., Dean, T. R., and Zou, Y. (2015).
Detecting Android Malware Using Clone Detection. J.
Comput. Sci. Technol., 30:942-956.

Chen, K., Liu, P, and Zhang, Y. (2014). Achieving accuracy
and scalability simultaneously in detecting application
clones on Android markets. In International Confer-
ence on Software Engineering — ICSE 2014, pages
175-186. ACM.

Crussell, J., Gibler, C., and Chen, H. (2012). Attack of
the Clones: Detecting Cloned Applications on An-
droid Markets. In European Symposium on Research
in Computer Security — ESORICS 2012, volume 7459
of LNCS, pages 37-54. Springer.

Deshotels, L., Notani, V., and Lakhotia, A. (2014). DroidLe-
gacy: Automated Familial Classification of Android
Malware. In Program Protection and Reverse Engi-
neering Workshop — PPREW, pages 3:1-3:12. ACM.

Desnos, A. (2012). Android: Static Analysis Using Simi-
larity Distance. In Conference on Systems Science —
HICSS 2012, pages 5394-5403. IEEE Computer Soci-
ety.

Guan, Q., Huang, H., Luo, W., and Zhu, S. (2016).
Semantics-Based Repackaging Detection for Mobile
Apps. In Engineering Secure Software and Systems
— ESSoS 2016, volume 9639 of LNCS, pages §9-105.
Springer.

Shao, Y., Luo, X., Qian, C., Zhu, P., and Zhang, L. (2014).
Towards a scalable resource-driven approach for de-
tecting repackaged Android applications. In Annual
Computer Security Applications Conference — ACSAC
2014, pages 56-65. ACM.

Sun, M., Li, M., and Lui, J. C. S. (2015). DroidEagle:
seamless detection of visually similar Android apps. In
Security and Privacy in Wireless and Mobile Networks
— WISEC 2015, pages 9:1-9:12. ACM.

Tian, K., Yao, D., Ryder, B. G., and Tan, G. (2016). Analysis
of Code Heterogeneity for High-Precision Classifica-
tion of Repackaged Malware. In IEEE Security and
Privacy Workshops — SPW 2016, pages 262-271. IEEE
Computer Society.

Wang, H., Guo, Y., Ma, Z., and Chen, X. (2015). WuKong:
a scalable and accurate two-phase approach to Android
app clone detection. In Symposium on Software Testing
and Analysis — ISSTA 2015, pages 71-82. ACM.

Zhan, X., Zhang, T., and Tang, Y. (2019). A Comparative
Study of Android Repackaged Apps Detection Tech-
niques. In Software Analysis, Evolution, and Reengi-
neering — SANER 2019, pages 321-331. IEEE.

Zhauniarovich, Y., Gadyatskaya, O., Crispo, B., Spina, F. L.,
and Moser, E. (2014). FSquaDRA: Fast Detection of
Repackaged Applications. In Data and Applications
Security and Privacy — DBSec 2014, volume 8566 of
LNCS, pages 130-145. Springer.

Zhou, W., Zhou, Y., Grace, M. C., Jiang, X., and Zou, S.
(2013). Fast, scalable detection of "Piggybacked” mo-
bile applications. In Conference on Data and Appli-
cation Security and Privacy — CODASPY 2013, pages
185-196. ACM.

313

