Dynamic Taint-tracking: Directions for Future Research

Fabian Berner and Johannes Sametinger

Dept. of Business Informatics, LIT Secure and Correct Systems Lab,
Johannes Kepler University Linz, Austria

Keywords:

Abstract:

Android, Information Disclosure, Taint-analysis, Taint-tracking.

Detection of unauthorized disclosure of sensitive data is a dynamic research field. We can protect sensitive data

on mobile devices through various commercial, open source and academic approaches. Taint-tracking systems
represent one of the approaches to detect information disclosure attacks. In this paper, we give an overview
of taint-tracking systems for Android. We discuss the systems and their shortcomings. The contribution of
this paper is to provide an overview of Android taint-tracking systems, and to reveal directions for future
research.The overview can serve as a basis for the selection of a taint-tracking system in specific situations.

1 INTRODUCTION

Mobile devices like smartphones, tablets and smart-
watches have become ubiquitous in recent years.
They have advantages and disadvantages. On the one
hand, mobile Internet access allows to look up infor-
mation, to check emails, to schedule meetings and ap-
pointments, or to navigate. Mobile devices also in-
clude cameras that allow us to take pictures at any
time, and are used for many other purposes. On the
other hand, due to the permanent connection to the
Internet, we’re available 24/7. Since the amount of
sensitive data stored on mobile devices has increased,
they have become worthwhile targets for attackers.
Attacks can pursue a direct purpose like espionage,
spamming, or provide targeted advertising. Stolen
information can also be used by cybercriminals for
other attacks like social engineering, spoofing, phish-
ing or other frauds. In particular, the danger of frauds
has increased recently because of commercial and
payment services are now being also available on our
mobile devices. Examples are e-commercial services
like Amazon or EBay and financial services like Pay-
Pal or Google Pay.

A broad overview of Android security systems can
be found for example in (Sufatrio et al., 2015; Xu
et al., 2016; Tam et al., 2017). These ones as well
as other similar studies do not focus on dynamic taint
analysis but rather discuss various security system ap-
proaches for Android. Most papers dealing with novel
taint-tracking systems also provide comparisons to
distinguish their specific system from other ones, e.g.,

294

Berner, F. and Sametinger, J.
Dynamic Taint-tracking: Directions for Future Research.
DOI: 10.5220/0008118502940305

(Sun et al., 2016; You et al., 2017). This article is fo-
cused on taint-tracking systems for Android that can
be used to detect app-based information disclosure at-
tacks by monitoring information flows between a data
source and data sink. The first part of this paper gives
an overview of existing systems. This overview can
serve as a basis for system selection. In the second
part, we will evaluate taint-tracking systems, identify
their shortcomings, and reveal possible future work.

2 DETECTION OF
INFORMATION DISCLOSURE
ATTACKS

Information disclosure means “unauthorized disclo-
sure” of “sensitive data” (Shirey, 2007). To detect
information disclosure attacks, we focus on dynamic
taint-tracking techniques (or taint-analysis). In dy-
namic analysis systems, the object of investigation
is executed and monitored, whereas a static analysis
system analyzes the source code without execution.
In general, both techniques are appropriate to detect
information disclosure attacks. The main advantage
of dynamic analysis is that apps can be tested in the
same system, configuration and the same libraries as
on the target system. Therefore, it is possible to de-
tect attacks that need certain prerequisites. A collud-
ing apps attack for example can only start its mali-
cious function if all colluding apps are installed. In
(Zheng et al., 2014), Zheng et al. discuss the prob-

In Proceedings of the 16th International Joint Conference on e-Business and Telecommunications (ICETE 2019), pages 294-305

ISBN: 978-989-758-378-0

Copyright (© 2019 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

lems of static analysis in the context of apps written
in Java. In particular, they see the missing ability to
analyze dynamically bound code (e.g., with reflection
or generics) as a major problem of static analysis ap-
proaches. Wei et al. argue in (Wei et al., 2014) that
static analysis of Android apps is particularly chal-
lenging because the control flow of Android apps is
event-based and therefore unpredictable. Xia et al.
add that some of the code paths identified in static
analysis “could never happen in real execution” (Xia
et al., 2015). Other big challenges are code obfus-
cation and code encryption. Encrypted or obfuscated
code cannot be analyzed by a static analysis system.
For attackers, these are easy ways to hide a malicious
code. Compared to static analysis, dynamic analysis
appears to be more promising to detect information
disclosure attacks so far. The main disadvantage of
dynamic analysis is that only the executed program
paths are analyzed. This leads to problems especially
in short analysis processes with low path coverage.
Nevertheless, it has to be mentioned that hybrid anal-
ysis, i.e., a combination of static and dynamic analy-
sis, can boost the quality of security analysis, e.g., see
(Graa et al., 2015; Rasthofer et al., 2016). Typically,
static analysis is performed as an upstream analysis
and the results are used as input for dynamic analysis.
On the basis of this upstream analysis, the dynamic
analysis can be used to run through specific execution
paths of the program in a more targeted manner and
thus potentially find more security gaps.

3 TAINT-TRACKING

Taint-tracking is a data flow analysis technique by
marking specific data with a taint tag or taint for
short. The taint itself is transparent for programs that
use this data. Therefore, it can be imagined as a wa-
termark. Tainted data originates from a taint source
and leaves the system in a faint sink. Typically, taint
source and the taint sink are system library meth-
ods. Taint-tracking means monitoring the data flow
between taint source and taint sink. To evaluate the
usage of the tainted data, the taint propagation logic
monitors the program flow and detects whether the
tainted data is processed or copied. If tainted data is
copied, the copy is also marked with the same taint as
the original data. Taint tags are stored in a taint tag
storage. Overtainting describes the case when insen-
sitive data is tainted and monitored. Overtainted data
flowing to a taint sink leads to false positives. Under-
tainting describes the opposite, when sensitive data is
not marked by the taint-tracking. Undertainting can
lead to false negatives.

Dynamic Taint-tracking: Directions for Future Research

Different dynamic taint-tracking systems exist for
Android. Most of them are based on Taintdroid, while
some are based on Minemu, TaintART or TaintMan.
Taintdroid is used to date by default as a standard for
taint-tracking in Android, and it has been extended
by other academic security systems. Taintdroid was
implemented for the Dalvik Virtual Machine (VM)
but has not been ported to the newer Android Run-
time (ART). TaintART (Sun et al., 2016) is an unoffi-
cial successor of Taintdroid and is based on Android’s
ART. The authors of TaintART are planning to re-
lease an implementation as an open source. Minemu
is a taint-tracking system integrated in an emulator
(Bosman et al., 2011). Its latest version was pub-
lished in 2011 and is therefore outdated. TaintMan
(You et al., 2017) is also an unofficial successor of
Taintdroid. It can be executed on the Dalvik VM as
well as in ART. Subsequently, we will focus on Taint-
droid, TaintART and TaintMan only.

3.1 Taintdroid

Taintdroid is the best known taint-tracking system for
Android. It was published in 2010 by William Enck
et al., (Enck et al., 2010) who developed it within the
scope of his PhD thesis under the title Analysis Tech-
niques for Mobile Operating System Security (Enck,
2011). An enhancement to the Taintdroid concept was
published in 2014 (Enck et al., 2014).

Taintdroid has been used by many security sys-
tems for Android, mostly in academia because of its
advanced development and its availability as open
source. In the design of any dynamic security analy-
sis system, developers have to decide between perfor-
mance and storage requirements. Generally speaking,
it is possible to reduce the performance overhead of a
security analysis system by using more storage capac-
ity and vice versa. Taintdroid’s tracking approach is
optimized to minimize performance and storage over-
head by limiting the amount of different kinds of data
sources. The majority of taint-tracking systems uses
a shadow memory or taint map. These are both being
specific data structures that contain taint information
(Enck, 2011, p. 58).

Taint Tag Storage. In Taintdroid, the taint tag stor-
age is called virtual taint map. To store taints in the
virtual taint map, Taintdroid uses a 32-bit vector for
each data type provided by Dalvik (method local vari-
able, method arguments, class static fields, class in-
stance fields and arrays (Enck, 2011)). Each of the
32 bits stands for a specific taint tag type and thereby
for a defined set of sensitive data. Taintdroid is there-
fore limited to 32 types of trackable data.

295

SECRYPT 2019 - 16th International Conference on Security and Cryptography

Taint Propagation Logic. Taintdroid uses four
tracking techniques to monitor flows of (1) variables,
(2) method parameters, (3) files and (4) Inter Process
Communication (IPC) messages that contain sensitive
data.

Discussion. Taintdroid is often cited in the context
of taint-tracking and some of its limitations are dis-
cussed in different publications. The following pro-
vides a comprehensive collection of Taintdroid’s lim-
itations, indicating the need for further research:

e 32-bit vector: Taintdroid is limited to 32 different
kinds of trackable data (Enck et al., 2010).

e Native code: A recurring problem is the analysis
of native code. Like most of the presented sys-
tems, Taintdroid is only able to analyze bytecode
(Enck et al., 2010).

e Covert channels: Taintdroid is only able to track
data over overt channels, e.g., IPC and Inter Com-
ponent Communication (ICC)). (Sarwar et al.,
2013).

o [mplicit data flows: Implicit data flows, e.g.,
based on comparison, in which tainted data is only
read but not (directly) copied, cannot be detected
(Sarwar et al., 2013).

e Overtainting: The purpose of device identifiers
(IMSI, MCC, MNC, MSIN) is to provide a unique
reference number, which can be used to identify a
specific device. Taintdroid is unable to distinguish
between a mere identification and an information
disclosure attack.

e Late reporting: Taintdroid reports to the user im-
mediately after the tainted information has been
sent to a taint sink. That means that the data has
left the mobile device before the user has had any
chance to react.

e Version: Taintdroid is based on an obsolete An-
droid version.

The detection of malicious code can be pre-
vented while Taintdroid’s security analysis is running,
i.e., by sandbox-detection and by evasion techniques.
Sandbox-detection includes several techniques to de-
tect whether execution is monitored by a security
analysis system. Evasion techniques prevent detec-
tion, for example, by awaiting the end of security
analysis. Attacks can also use weaknesses of Taint-
droid’s taint propagation mechanism. Such attacks
are discussed by Sarwar et al. in (Sarwar et al., 2013).
Finally, covert channels can bypass the official IPC
mechanisms and therefore cannot be tracked by Taint-
droid.

296

Security Systems based on Taintdroid. A variety
of security systems is based on Taintdroid. The sys-
tems we focus on and present in this section, detect
information disclosure attacks and help to protect sen-
sitive data on Android devices. However, Taintdroid
has also been used as basis for different security sys-
tems. For example, AppFence by Hornyack et al.
helps to diminish the harm of app-based information
disclosure attacks by using fake rather than real sen-
sitive data.

MOSES, short for MOde-of-uses SEparation in
Smartphones, presented by Russello et al, (Russello
et al., 2012; Zhauniarovich et al., 2014) provides
app isolation (soft virtualization) by policies that can
be modified at runtime. MOSES is a program that
places apps and the respective sensitive data in iso-
lated profiles, e.g., work, private and default (Horny-
ack et al., 2011). MOSES uses Taintdroid taint prop-
agation mechanism to monitor information flows be-
tween different profiles.

TreeDroid by Dam et al. is another policy-based
security system that uses Taintdroid’s data flow track-
ing technique (Dam et al., 2012). TreeDroid gener-
ates tree automata for a given app and provides fine-
grained policy enforcement at runtime.

VetDroid by Zhang et al. analyzes app behavior
based on a permission usage analysis (Zhang et al.,
2013). After granting permissions in Android, it is
transparent to the user how permissions are used by
the app. VetDroid is able to “reconstruct permission
use behavior” (Zhang et al., 2013) of a given app.

YAASE, short for Yet Another Android Security Ex-
tension, by Russello et al. focuses on information dis-
closure via network and colluding applications (Rus-
sello et al., 2011). YAASE labels and tracks app-to-
app communication as well as app-to-internet com-
munication. This labeling (taint) mechanism is based
on a modified Taintdroid where the user can deter-
mine the data that should be examined and how it
should be labeled.

AppsPlayground developed by Rastogi, Chen and
Enck (Rastogi et al., 2013) is a modular and scalable
dynamic analysis framework for testing Android ap-
plications. It is based on Taintdroid and additional dy-
namic detection techniques like system call monitor-
ing. AppsPlayground automatically evaluates a given
app by triggering several kinds of system events based
on redundancy avoiding, a heuristic-based execution
technique.

Only little information is available on the
emulator-based security system DroidBox by Lantz
and Delosieres (cf. (Lantz and Delosieres, 2015)).
The open source system is available for Taintdroid
4.1.1, using the machine emulator Quick Emulator

(QEMU) (QEMU Project, 2017). At the beginning, a
QEMU instance is started with a Taintdroid Android
Virtual Device (AVD). Security analysis is done by
the droidbox.py script, which collects data from dif-
ferent sources, e.g., network data and API file opera-
tions.

Graa et al. propose a hybrid security analysis ap-
proach based on Taintdroid (Graa et al., 2015). Us-
ing an upstream static analysis placed in the Dalvik
VM Verifier, it allows to inspect the control flow of
an app. The results of the static analysis are used as
initial parameters for the dynamic analysis based on
Taintdroid.

Andrubis is based on Anubis, a dynamic malware
analysis sandbox for Windows applications (Weich-
selbaum et al., 2014; Lindorfer et al., 2014). An-
drubis follows a hybrid analysis approach with an up-
stream static analysis for feature extraction, e.g., An-
droidManifest.xml) and a dynamic behavior analysis
at runtime. The dynamic analysis part is based on
Taintdroid, method tracing and a modified Dalvik VM
as a system analysis component. The analysis run is
fully automated, for example with Monkey as user in-
put generator.

Mobile-Sandbox provides a website, which apps
can be uploaded to for a hybrid analysis (Spreitzen-
barth et al., 2013; Spreitzenbarth et al., 2015) . For
the security analysis, different existing security sys-
tems are integrated. Static analysis is, for example,
done by tools like Droidlyzer and the Static Android
Analysis Framework (SAAF). The results are used as
input for the dynamic analysis tools like Taintdroid
and DroidBox.

QuantDroid is an extension for Taintdroid by
Markmann, Mollus and Westhoff (Mollus et al.,
2014). QuantDroid is a dynamic information flow
analysis that generates flow-graphs to quantify infor-
mation flows between Android processes. The idea is
to define thresholds for communication between spe-
cific processes. For example, no data exchange or
only a specific amount of data is allowed over a spe-
cific communication channel.

Qian et al. suggest a system called NDroid,
which extends Taintdroid to track information flows
through Java Native Interface (JNI) based on a modi-
fied QEMU VM (Qian et al., 2014).

3.2 TaintART

TaintART by Sun, Wei and Lui was published in late
2016 (Sun et al., 2016). Since the Dalvik VM, which
Taintdroid is based on, was replaced by ART in An-
droid 5.0 (released in November 2014), Taintdroid has
become outdated. The public release of TaintART’s

Dynamic Taint-tracking: Directions for Future Research

source code has been announced but is not available
so far. The prototypical implementation was done for
Android 6.0 (Sun et al., 2016), which uses ART as
runtime environment for apps. The TaintART com-
piler integrates the taint logic into the compiled ap-
plication. At runtime, TaintART runtime executes
the compiled native code and tracks tainted data.
TaintART distinguishes between four levels of infor-
mation disclosure, from low to high security needs
(Sun et al., 2016).

Taint Tag Storage. To speed up taint-tracking,
TaintART uses a CPU register as the fastest storage
on a computer for taint tag storage. The prototypical
implementation is built on a 32-bit ARM processor
as target architecture and can therefore save 32 taint
tags. To avoid the limitation of registers, TaintART is
also able to temporarily store additional taint tags in
the device’s memory.

Taint Propagation Logic. TaintART provides three
taint propagation logic methods: (1) basic taint prop-
agation, (2) taint propagation via methods calls, and
(3) propagation between apps through Binder IPC.
For the basic taint propagation, the ART compiler
generates a Control Flow Graph (CFG), which is
used by the TaintART compiler to instrument the
source code for variable-level taint-tracking. In case
a method is called, TaintART uses an invocation taint
propagation to track tainted data in method parame-
ters. The third part is a message-level propagation for
Android’s Binder IPC.

Discussion. Compared with Taintdroid, the advan-
tage of TaintART is its compatibility with ART which
is the new runtime environment in Android. There-
fore, TaintART is an interesting alternative to Taint-
droid: on the one hand, it is partly similar to Taint-
droid and, on the other hand, it improves the concept
of taint-tracking. Compared to Taintdroid, one of the
improvements is the possible integration of NDroid
for analyzing native code.

Attacks against TaintART. To the best of the au-
thors’ knowledge, there is no specific attack vector
published yet that targets TaintART. Similar to Taint-
droid, TaintART’s analysis can also be circumvented
by collaborating applications that use covert channels
to bypass TaintART’s analysis mechanism.

Since TaintART’s source code has not been re-
leased yet as of this writing, extensions or systems
based on TaintART have not been published yet.

297

SECRYPT 2019 - 16th International Conference on Security and Cryptography

3.3 TaintMan

Another unofficial successor of Taintdroid is Taint-
Man by You et al., which integrates the taint-
propagation logic in the apps and libraries to ana-
lyze (You et al., 2017). Therefore, TaintMan uses a
desktop computer program to statically instrument the
bytecode. First, the app to be analyzed is unpacked,
then the bytecode is instrumentated, the app’s entry
point is changed. Finally, the app is repacked. In
Android, apps can check their own integrity based on
digital signatures. In (You et al., 2017), the authors
discuss the possibility to bypass Androids system li-
brary. The tool is also able to download libraries from
an Android device, instrument them and upload the li-
braries back to the device. Once uploaded and instru-
mented, the system libraries do not replace the origi-
nal ones and are stored in a separate directory.

The release of TaintMan has not been announced,
and the program has not been available yet as of this
writing. The prototypical implementation seems to be
developed for Android 4.0 (which uses Dalvik VM)
and 5.0 (which uses ART) (You et al., 2017).

Taint Tag Storage. Similarly to Taintdroid, Taint-
Man uses a 32-bit vector for each variable to encode
the taint tag. For this reason, the amount of different
taint sources is also limited to 32. Instead of using
a taint map for storing the taint tags, like in Taint-
droid, TaintMan stores all taint tags for local vari-
ables, parameters, return values and exceptions on an
internal stack. Taint tags for class variables are stored
in shadow fields in the corresponding classes. As in
Taintdroid, only one taint tag per array is used to min-
imize the storage needs of TaintMan.

Taint Propagation Logic. TaintMan imbeds its
taint-tracking commands in the apps or libraries byte-
code. Therefore, its analysis capabilities are limited to
instrumented apps and libraries. This is a main differ-
ence in comparison to other Dynamic Taint Analysis
(DTA) systems discussed, which integrate the taint-
tracking logic in the mobile Operating System (OS).
To save resources, TaintMan tries to instrument as
few taint-tracking instructions in the app’s bytecode
as possible. A detailed overview of TaintMan’s taint
propagation logic commands, which can be instru-
mented in apps and libraries, can be found in (You
et al., 2017).

Discussion. TaintMan can execute taint-analysis on
non-rooted Android devices, which is a huge advan-
tage for its usability as well as for the quality of the
analysis. The quality of analysis has been improved

298

as the execution on a real device is more lifelike and
much harder to detect for an attacker.

Since TaintMan has not been released yet as of
this writing, no independent evaluations of TaintMan
are available. In (You et al., 2017) the authors at-
test TaintMan high effectiveness regarding detection
of information disclosure attacks with “acceptable”
(You et al., 2017) performance (42,3 % without and
28,9 % overhead with code optimizations (You et al.,
2017)) and storage overheads (instrumented code is
about 23 % larger (You et al., 2017)). Such overheads
are acceptable in case of software tests, but they are
not suitable for everyday use. Increased performance
overhead leads to decreased battery lifetime.

A comparison of TaintMan with Taintdroid or
TaintArt is difficult:

e TaintMan uses the newer ART runtime envi-
ronment, whereas Taintdroid uses the outdated
Dalvik VM. In most cases, execution of apps is
much faster in ART than in Dalvik VM.

e Both Taintdroid and TaintArt are not publicly
available and, therefore, cannot be tested or eval-
uated.

Attacks against TaintMan. Specific attack vectors
that target TaintMan have not been reported so far.
Similarly to Taintdroid and TaintART, TaintMan anal-
ysis can also be circumvented by collaborating appli-
cations that use covert channels to bypass TaintMan’s
analysis mechanism.

Without the availability of the source code, only
theoretical concepts can be built. Extensions or sys-
tems based on TaintMan have not been published yet.

4 COMPARISON

Without the source code of TaintART and TaintMan,
our knowledge about both systems is based on the in-
formation given in (Sun et al., 2016) and (You et al.,
2017). Taintdroid, TaintART and TaintMan must be
compared with caution. Taintdroid is well known and
has been described earlier. Its functions and limita-
tions have been discussed in many papers. In contrast,
both TaintART and TaintMan have not received that
much attention yet. We expect TaintART and Taint-
Man to display similar limitations. It remains to be
seen whether TaintART or TaintMan can close the gap
left by Taintdroid.

The subsequent system comparison shows the dif-
ferences among these systems and can serve as a basis
for system selection in a specific scenario. In the ta-
bles below a check mark (v') shows that a property

is fulfilled and a dash (-) shows that it is not fulfilled
by the respective system. If the analysis technology
cannot be clearly classified by the given scheme, the
analysis techniques are marked with a question mark
(7). Tendencies are marked with a check mark or dash
in front of the question mark. Tendencies occur when
a property is incompletely (v'(?)) or even rudimentary
fulfilled (- (7)) by the system. In case the property is
not applicable, the abbreviation n/a is used.

All information and system characteristics are
taken from the papers cited above. Most systems
are not publicly available and thus can not be inves-
tigated any further. Another limitation is the classifi-
cation scheme: Some systems have the characteristics
of more than one classification class. In these cases,
the system is attributed to the closest class.

4.1 General Information

We can roughly distinguish among the following three
types of users:

o Average User. User without any special knowl-
edge of computer security.

o Administrator or Pen Tester. User with special
knowledge in computer security who has to test
the security of an app or has to adjust the config-
uration of an OS or app for security reasons.

e App Developer. User who wants to validate and
test an app.

Most systems do not specify their target group. In
this case, we determine it as normal users for every
live analysis system in which the user has to decide
on the security relevant issues. All systems that run
ahead of the app usage can also be used by adminis-
trators or pen testers. This also applies to systems that
are configured once and run without user interaction.

Table 1 provides basic information about the sys-
tems: the OS and its version (or version range), the
existing security software the system is based on as
well as the probable target group. We have marked
the version with n/a when we were not able to find
any information about it.

4.2 Analysis

All systems use a dynamic analysis approach, which
is enhanced by a few systems to a hybrid analysis.
They are integrated in the mobile OS, and only for
TaintART the mobile OS has to be rooted addition-
ally. The property device (emulator or real device)
deserves special attention as well as the possibility
for iterative security analysis. Systems designed to

Dynamic Taint-tracking: Directions for Future Research

Table 1: General Information and Assumed Target Group.

Name Base Year Version \ avg admin dev
TaintDroid - 2011 2X-43 - (@) [®)
(TD)

TaintART - 2016 6.0 - (@))
TaintMan SB 2017 4.0-5.0 - (@) [®)
Andrubis TD, A 2012 n/a - v v
AppFence TD 2011 2.1) - -
AppsPlayground TD 2013 n/a - v v
DroidBox TD n/a 23-4.1.1 v)
(DB)

Graa et al. TD 2015 n/a @) (@)
Mobile TD/DB 2013 n/a-4.1.X v @)
Sandbox

MOSES TD 2012 234.rl1 v (@)
Droid

Ndroid TD,DS,D 2014 n/a-4.1.116 v)
TreeDroid TD,D2J 2012 2.3 v [©)
QuantDroid TD 2012 2.3-n/a v v
VetDroid TD 2013 2.3 v ?
YAASE TD 2011 n/a v)

Legend: avg ... average user, admin ... administrator/pen tester, dev ... app
developer; TD ... TaintDroid, A .. Anubis, D ... Darm 1), D2J ... dex2jar 2),
DB ... DroidBox, DS ... DroidScope, SB ... Smali/Baksmali 3)

1) https://github.com/jbremer/darm, 2) https://sourceforge.net/projects/dex2jar/,
3) https://github.com/JesusFreke/smali/wiki

run on real devices cannot detect every malicious be-
havior. Note that every false-negative ends in an in-
formation disclosure of sensitive data. Even worse,
the warning message in Taintdroid is not generated
until the sensitive data we want to protect has already
left the device. No doubt, a solution can be found
to counteract this weakness. It occurs only because
Taintdroid is of academic origin and has to be devel-
oped further.

Since mobile devices have limited resources, the
location where the security analysis is executed is an-
other interesting characteristic. Basically, there exist
host-based security analysis approaches that are exe-
cuted on the mobile device itself, and distributed ap-
proaches that help to minimize the needed resources.
All systems except for QuantDroid and Mobile Sand-
box are host-based. If the security system is executed
on an emulated device, the difference between both
characteristics can mostly be neglected.

The ability to run iterative tests and the compa-
rability of two or more test runs have yet to be ad-
dressed. All shown systems are based on monitoring
and offer no features for comparison because moni-
toring is a process without a clearly defined start or
end of analysis. In contrast, systems that run in an
emulation environment normally use a scanning ap-
proach, which is started and stopped for an analysis
run. None of the publications on the systems com-
pared above have mentioned the possibility of com-
paring the results of analysis runs. None of them are
able to analyze native code. However, You et al. have
disscussed the possible integration of NDroid to ex-
tend its analysis capabilities to native code (You et al.,
2017).

Table 2 summarizes information about the secu-

299

SECRYPT 2019 - 16th International Conference on Security and Cryptography

Table 2: Security Analysis.

a

g £ §

£ a £ 2| e

-1 -1 2 o2

g T3 0% suZE g|S

g £ 5 F ¢ of 2z E OB og|g

i Z2 ¢ % 3 %2 Z BEE|F gz E|3

» & & 2 & £ A =E§|<« & O |Z
TaintDroid - vV v - rv m v v
TaintART - v vV r v m v v v
TaintMan vovoo- - rv m v v
Andrubis v vV e Vv s v v
AppFence - v Vv na 1 V m v v v
AppsPlayground v vV - e Vv s v v
DroidBox - v Y e Vv s v v
Graa et al. v v Y rovoo- m v v v
Mobile Sandbox v v v - e v s v v -
MOSES Droid - v Vv na r Vv - m v vV
Ndroid v v - e v - s v v
TreeDroid v Vv na r Vv - m v v Vv
QuantDroid v Vv na 1 v V s v v v
VetDroid v Vv na 1l V - ms | vV V-
YAASE v VvV na r V m v vV

It ... real device; e ... emulator-based

S ... scanner; m ... monitor

rity analysis approach. All taint-tracking systems
mentioned above can be used to evaluate the security
of a single app. At least theoretically, they should
also be able to evaluate two or more apps, for exam-
ple, in order to detect colluding apps. Since most
of the systems are not publicly available, it is im-
possible to check this out. The system’s ability to
secure the whole device is questionable: Taintdroid
and TaintART were developed to monitor information
disclosure attacks on the application level. Neither
Taintdroid as the basis of the discussed systems nor
TaintART monitor the OS itself. The second part of
Table 2 shows the analysis range of the security sys-
tems. Analysis range means the scope analyzed by
the system: (1) a single app, (2) two or more apps,
and (3) the complete OS with all running apps and
3rd party libraries. The analysis range is important
because attack vectors can stretch over more than one
app, cf. colluding apps. Systems that are limited to
one app are not able to detect such attack vectors. The
category complete system means that all apps that run
together in one OS instance can be analyzed simulta-
neously. However, the term complete system does not
refer to the OS itself.

Taintdroid and TaintART focus solely on dynamic
taint-tracking for the detection of information disclo-
sure attacks. Most of the mentioned systems com-
bine the dynamic taint-tracking approach with some
additional analysis techniques. TaintART and Taint-
droid are integrated in the Android’s app runtime en-
vironment and can therefore use analysis data from
the OS. This also affects other security systems based
on Taintdroid. Some of the systems additionally ex-
tract analysis data from the apps or rather the source
code after decompiling the app. None of the systems
uses data sources from outside the analyzed device.
Analyzing data from outside the analyzed device can
be important to security analysis, especially for de-

300

tecting information disclosure attacks.
The following classification of static and dynamic
security systems is adopted from (Neuer et al., 2014).
Static security analysis systems:

e Extraction of Metadata. “Tools extract informa-
tion from an application’s manifest and provide
information about requested permissions, activi-
ties, services and registered broadcast receivers.
Meta information is often used during later dy-
namic analysis in order to trigger an application’s
functionality.”

o Weaving. “Tools rewrite bytecode of applications
using a bytecode weaving technique. This allows
them, for instance, to insert tracing functionality
into an existing application.”

e Decompiler. “Tools implement a Dalvik bytecode
decompiler or disassembler.”

Dynamic security analysis systems:

o Taint-tracking. “Taint-tracking tools are often
used in dynamic analysis frameworks to imple-
ment system-wide dynamic taint propagation in
order to detect potential misuse of users’ private
information.”

e Virtual Machine Introspection (VMI). “VMI-
based frameworks ... intercept events that occur
within the emulated environment. Dalvik VMI-
based systems monitor the execution of Android
APIs through modifications in the Dalvik VM.
Qemu VMlI-based systems are implemented on
the emulator level to enable the analysis of native
code. However, emulators are prone to emulator
evasion.”

e System Call Monitoring. “Frameworks collect an
overview of executed system calls, by using, for
instance, VMI, strace or a kernel module. This
enables (partial) tracing of native code.”

e Method Tracing. “Frameworks trace Java method
invocations of an app in the Dalvik VM.”

We distinguish the following possible sources of
analysis data:

e App or Source Code: About half of the systems
gain information from the analyzed app, the com-
piled bytecode or the source code.

e Meta Data: Also about half of the systems evalu-
ate app meta data like the manifest file of Android
apps.

e Mobile OS: The OS generates information that
can be used for security analysis like systems log
files. Furthermore, altered Application Program-
ming Interfaces (APIs) etc. can be used to gen-
erate additional analysis data. All systems dis-

cussed above use information from the mobile OS
in some form.

o Agents and Network: None of the systems dis-
cussed above uses agents or other network anal-
ysis techniques outside the mobile OS.

Table 3 summarizes security analysis approaches
used by the different taint-tracking systems, which
implement different analysis methods for static and
dynamic analysis.

Table 3: Static and dynamic analysis methods.

Static Analysis | Dynamic Analysis | Analysis Data Source

H] H i .
2 & @ g < = g
5 £ £ & zZ g H
= = |2 & = g 3
t 3 |% 8 c £ |2 2
K] « § Al E O s |25 . & 2
5 g i E = T |2E 5] s
= £ bt g2 = g zE < 2 2
3 Y 5 2 |23 o & E 2
25 2 5 2|5 22 :s 2 |55 BEZ gz & 3
=% 2 £ 2 |f & s = |<8 <8 = S <« z
TaintDroid - - - v - - - -0 - -
TaintART - v - vV v
TaintMan v o - v v -V -
Andrubis v - - VYV v v - v v
AppFence - - B ey - - v ooV
AppsPlayground - vV ona Vv na voona v
DroidBox - VO - v - -V
Graa et al. Voona na nal| v - - - voona v
Mobile Sandbox v n/a VoA V) VO | - v v v
MOSES Droid - Vv - na na | - - v oY
Ndroid vona VO YO - -
TreeDroid voo- - - | - A na Vv
QuantDroid v - v v - -V
VetDroid - vV - na na | - - nh v
YAASE v v v - v v

S POTENTIAL RESEARCH
DIRECTIONS

All security systems described above share a subset
of shortcomings. We will discuss these shortcomings
along with directions for possible research.

5.1 Detection Rates

No security system is able to detect all possible in-
formation disclosure attacks. This is in the nature of
things, but it proves that analysis at runtime on a mo-
bile device with real sensitive data is problematic. Ev-
ery false-negative on a real mobile device that stores
real sensitive data leads to a real information disclo-
sure, which is irreversible. On real mobile devices,
it is also problematic to execute an upstream analysis
before executing the app because it slows down the
start of the app. Another point is the analysis of apps
that use native code functions or libraries. Most of
the evaluated security systems are not able to analyze
native code.

Potential Research. To increase detection rates
(true-positives and true-negatives) and, thus, to de-
crease false alarms (false-positives), more security
relevant analysis data is needed. Ideally, the analy-
sis data should be enlarged by additional data sources

Dynamic Taint-tracking: Directions for Future Research

that are independent from the existing ones. Indepen-
dent here means that two analysis data sources should
not depend on each other. For example, an informa-
tion disclosure attack can be detected by the analysis
of information flow among apps and by network traf-
fic analysis. The analysis data collection of existing
systems is often limited . ..

e ...to one app at a time: a security system is not
able to detect attack vectors like colluding appli-
cations, confused deputy or covert channels be-
cause the relevant analysis data cannot be col-
lected.

e ...to the external borders of a mobile device: se-
curity systems are not able to collect analysis data
beyond the device context. Especially for infor-
mation disclosure attack detection, information
flows in both directions — to and from a mobile
device to other devices — seem to be an important
source of analysis data.

e ...by time and resources: dynamic analysis on a
mobile device suffers because of the strong limi-
tations of the device resources. If security is eval-
uated by an upstream analysis system, it is limited
by time in order to speed up the app installation or
loading time.

The analysis data collection mechanism of dy-
namic analysis systems, which are executed live on a
real mobile device, is often intentionally limited for
performance reasons. For example Taintdroid sup-
ports only 32 different kinds of taint-sources for that
matter.

5.2 Limited System Resources

Security analysis at runtime on a mobile device costs
valuable resources. Even if devices become more
powerful, we may not forget that Android penetrates
also into other areas. Android Wear powered devices
like smart watches are just one example. This short-
coming becomes evident only on security systems
running on the mobile device directly.

Potential Research. There are three ways to de-
crease the performance overhead of mobile device se-
curity systems:

e Security analysis approaches can be optimized in
favor of better performance. The problem is that
the optimization potential is limited because it di-
rectly depends on the amount of analysis data.
As discussed above, using additional data sources
will lead to an additional slowdown of the security
analysis.

301

SECRYPT 2019 - 16th International Conference on Security and Cryptography

e Performance of the mobile device can be in-
creased by moving security analysis to an external
system. Security systems like Paranoid Android
(Portokalidis et al., 2010) and Mobile-Sandbox
(Spreitzenbarth et al., 2015) are already using this
approach. However, this leads to a further limi-
tation because the next bottleneck on mobile de-
vices is caused by network connectivity and per-
formance. Additionally, trust is a big issue if se-
curity analysis does not run on the mobile device
itself.

e Security analysis can be executed before the ap-
plication is used on a mobile device. In terms
of performance, this is the best solution because
it generates no performance overhead on the mo-
bile device. The problem of this approach is — of
course — that the behavior of the app is not moni-
tored at runtime. Eventually, this limitation could
be mitigated by rerunning security analysis over
the time of use.

5.3 User Interface Complexity

A runtime security analysis either has to be fully au-
tomated or the user has to react manually to identify
potential security risks. Without expert knowledge in
computer security, however, the average user may re-
act incorrectly to the security systems warning. An-
other — maybe worse — reaction to messages of the
security system could be deactivation of the detection
mechanism in case the user is overwhelmed by the
amount and complexity of security warnings.

Potential Research. The complexity of the exist-
ing security systems for average users is theoretically
easy to reduce by transferring the responsibility from
the average user to an expert. However, this respon-
sibility transfer is accompanied by rising costs for the
company, which originally did not intend to put the
security in the hands of their employees. Neverthe-
less, it is irresponsible to force an average user to take
security-relevant decisions.

5.4 Analysis Abstraction Level

Most of the security systems use a fully automated
high level analysis or a manual low level analysis. A
good balance between these two analysis approaches
is rare. Especially the lack of customizability of the
data collection mechanisms and security analysis is
the major disadvantage of most existing systems.

Potential Research. There are reasons for low-
level and high-level approaches; however, their focus

302

is different: fully automated security analysis systems
are designed to minimize the analysis effort for the
user, whereas manually executed analysis, which is a
high effort for the user, has other advantages like the
ability to analyze specific parts — say system calls —
of an application. A good balance between these two
approaches can mitigate various disadvantages. Addi-
tionally, it is be beneficial if the security system user
can choose the abstraction level on basis of the given
app, the security objectives and a given suspicion as
discussed below. To make the analysis level adapt-
able, future systems should be able to provide anal-
ysis methods of different analysis levels. A modular
architecture, which can be extended with additional
analysis methods, can satisfy this need.

The potential reseach directions of 5.3 and 5.4 go
hand in hand. Systems that aim end users often try
to automate the complete analysis process. In doing
so, however, the systems are limited to detecting spe-
cific attacks (with signature-based analysis) or detect-
ing abnormal behavior (with anomaly-based analy-
sis). Abnormal behavior does not necessarily indicate
that the system is under attack. Otherwise, “normal”
behavior does not necessarily indicate that the system
is free of ongoing attacks.

5.5 Detection of Collaborating Apps

Taint-tracking systems can be used to detect informa-
tion flows between apps. However, they are only able
to analyze information flows that use overt channels
like IPC.

Potential Research. All security analysis ap-
proaches which are limited to the analysis of one app
are inappropriate. Future systems should allow, to
install and execute more than one app at a time and
to monitor possible information flows between these

apps.
5.6 Security Analysis Rerun

Because of the short release cycles of Android apps as
well as of Android itself, an automated rerun of secu-
rity analysis and a subsequent comparison of analysis
results seem to be an important function of a secu-
rity system. In order to fully exhaust the potential of
analysis reruns, degrees of freedom as well as varia-
tions should be considered. Variation arises through
even minimal divergences in automatic security anal-
ysis reruns. Degrees of freedom instead are desirable
because they enable the user to repeat a security anal-
ysis run with slightly different variables, if necessary.

Such variables can, for example, be a newer version
of an app or a new version of a mobile device OS.

Potential Research. The inability of a system to re-
run security analyzes is a major limitation of exist-
ing systems. However, this issue occurs only on up-
stream security analysis approaches, which have a de-
fined start and end. For security analysis approaches
which are not executed at runtime on mobile devices,
it makes sense to enable the system to record an exe-
cuted security test and to replay it automatically to re-
run the security test for a given application. This can
decrease the amount of work for testing because the
responsible employee does not have to repeat the tests
manually. Linked to an automated security test re-
run functionality, other useful features should be dis-
cussed:

e An automatically executed test replay is particu-
larly useful when certain degrees of freedom are
possible. Examples for reasonable degrees of
freedom are: app version, Android version as well
as a variety of apps which are executed simultane-
ously.

o A second useful feature is the possibility to replay
recorded security analysis runs in parts. Thereby,
a rerun can be speeded up in case only some spe-
cific parts have to be analyzed, for example, when
only a specific part of the original test run leads to
an information disclosure attack.

e To save resources, the automatically executed test
rerun can be speeded up by shortening pauses be-
tween user interactions and system events.

e A security system that provides automated test re-
runs does not have to be executed locally: at least
the replays can be executed in a cloud or web ser-
vice. In combination with the additional compar-
ing function, the security analysis can be further
automated: after an executed test rerun, the results
of the original test run and of the actual one can be
compared. If the security level had changed, that
could also be reported to the user.

5.7 Granularity of Reaction

Most systems adopt the all-or-nothing principle. It
means that possible reactions are not fine-grained
enough. An example is AppFence that disconnects
all internet connections as soon as a possible infor-
mation disclosure is detected (Russello et al., 2011).
In this case, it would actually be sufficient to inter-
rupt only the connection through which the informa-
tion has been leaked.

Dynamic Taint-tracking: Directions for Future Research

Potential Research. The security systems dis-
cussed above neither provide automated reactions nor
suggest reactions to the user. For systems, no au-
tomated reaction system is needed when the system
does not run on mobile devices with real sensitive
data.

5.8 Suspicion-based Analysis

This shortcoming is closely connected with restric-
tions due to the predetermined analysis abstraction
level. A fully automated analysis or a manual analysis
system are not appropriate to analyze an application
for a specific suspicion. A security analysis approach
is needed that can be used to analyze the behavior of
an app to confirm or rule out the suspicion.

Potential Research. A suspicion-based analysis
can not be done with taint-tracking systems or most of
the other security systems discussed previously. That
means that these systems are not able to analyze a spe-
cific part of an application that seems suspicious for
whatever reason. To analyze a specific suspicion, the
analysis data collection and the analysis itself have to
be adaptable; thus, a fully automated test run is not
appropriate. For suspicion-based analysis, the data
collection phase needs to be manually controlled by
the user. Therefore, analysis systems which run in
parallel are neither appropriate. In order to prevent
misunderstandings: the inappropriate ability of au-
tomatic analysis systems to perform suspicion-based
analysis should not be confused with automated re-
plays, as discussed before. Automated replays can
also be used in a suspicion-based analysis, for exam-
ple to test a suspicious function of an app under dif-
ferent conditions.

Table 4 shows the mapping between shortcomings
and taint-tracking systems. Stars (*) indicate a short-

Table 4: Summary of Shortcomings.

@ e . -
s8 g T °°uw = 2
-8 & 4 @
E Tty £ _% 5. .5
] 3=] &
S 3% EE 85 =5 zg S8 S8
Sy S22 2 =% ©2 T8 €% 2
28 £5 B 2% 85« & B]
2 g 8 =8 224 2« &5 22
35 EE 25 =8 %2 8% S£,. 3%
AE =S8 P3S <% A3s wx KnE na
TaintDroid * * * * * *
TaintART * * * * * *
TaintMan * * * * *
Andrubis - - * * * - *
AppFence * * * * * * *
AppsPlayground - - * * * -
DroidBox # # * * % _ %
Graa et al. * * * * * - *
Mobile Sandbox - - * * * - *
MOSES Droid * * * * * ® *
Ndroid - - * - * * *
TreeDroid - - * * * *
QuantDroid # # * * % %
vetDroid - - * * * *
Legend: * ... shortcoming applies; - ... shortcoming does not apply

303

SECRYPT 2019 - 16th International Conference on Security and Cryptography

coming for a specific system. Dashes (-) are used
when a shortcoming has not been proved to be true.

To address some of the above shortcomings, we
propose a changed security analysis concept, that is
based on dynamic taint-tracking: instead of a live
analysis we propose an (1) upstream analysis ap-
proach, which is executed by a security expert before
the the app is used in a productive way. The analysis
is executed in a (2) virtualized environment, which al-
lows an extended analysis data collection mechanism.
Existing systems, that are executed on real mobile de-
vices are limited by performance reasons. Since the
virtualized device is not used in a productive way, it
is possible to use fake data instead of real sensitive
data. Thereby the analysis puts no real sensitive data
on risk. To extend the system’s architecture, the sys-
tem needs to be built on an (3) extendable and open
architecture. Our future work will target this security
analysis concept.

6 SUMMARY

In this paper, advantages and disadvantages of static
and dynamic security analyzes have been compared.
Because of the limitations of static analysis, we have
focused on dynamic analysis systems for detecting
app-based information disclosure attacks. Android as
the given target platform has narrowed the evaluated
systems for analyzing Android apps.

To detect information disclosure attacks, taint-
tracking seems to be a promising approach. At
the time of this writing, neither the source code of
TaintART nor that of TaintMan has been released,
Taintdroid and its unofficial successors remain the
main available taint-tracking approaches for analyz-
ing Android apps. Some of the discussed systems
seem to be outdated; however, since every system has
its specific purpose, we believe it is necessary to re-
view the research done on the topic and different ap-
proaches for improving taint-tracking. The evolved
shortcomings show that there is a need for further re-
search and new security systems.

Although all discussed shortcomings are impor-
tant, we are convinced that particularly the replay of
security analysis runs with the ability to compare the
security analysis results are an important feature for
future taint-tracking and other security systems. For
all security systems that follow a scanner approach,
the possibility of automated security analysis reruns
with result comparison seems the only appropriate
way given the amount of apps used, the short re-
lease cycles of apps and mobile device OS as well as
the heterogeneity of mobile computing caused by the

304

amount of mobile device manufactures, mobile device
OS and versions.

REFERENCES

Bosman, E., Slowinska, A., and Bos, H. (2011). Minemu:
The world’s fastest taint tracker. In Hutchison, D.
e. a., editor, Recent Advances in Intrusion Detection,
volume 6961 of Lecture Notes in Computer Science,
pages 1-20. Springer Berlin Heidelberg.

Dam, M., Le Guernic, G., and Lundblad, A. (2012). Tree-
droid: A tree automaton based approach to enforcing
data processing policies. In Proceeding CCS ’12 Pro-
ceedings of the 2012 ACM conference on Computer
and communications security, page 894.

Enck, W., Gilbert, P., Chun, B.-G., Cox, L. P, Jung, J., Mc-
Daniel, P., and Sheth, A. N. (2010). Taintdroid: an
information-flow tracking system for realtime privacy
monitoring on smartphones. In Proceeding OSDI’10
Proceedings of the 9th USENIX conference on Oper-
ating systems design and implementation.

Enck, W., Gilbert, P, Han, S., Tendulkar, V., Chun, B.-G.,
Cox, L. P, Jung, J., McDaniel, P., and Sheth, A. N.
(2014). Taintdroid: An information-flow tracking sys-
tem for realtime privacy monitoring on smartphones.
ACM Transactions on Computer Systems, 32(2):1-29.

Enck, W. H. (May 2011). Analysis Techniques for Mobile
Operating System Security. PhD thesis, Pennsylvania
State University.

Graa, M., Cuppens-Boulahia, N., Cuppens, F., and Cavalli,
A. (2015). Detection of illegal control flow in an-
droid system: Protecting private data used by smart-
phone apps. In Cuppens, F., Garcia-Alfaro, J., Zincir
Heywood, N., and Fong, P. W. L., editors, Founda-
tions and Practice of Security, volume 8930 of Lecture
Notes in Computer Science, pages 337-346. Springer
International Publishing.

Hornyack, P, Han, S., Jung, J., Schechter, S., and Wether-
all, D. (2011). These aren’t the droids you're looking
for: retrofitting android to protect data from imperious
applications. In Chen, Y., Danezis, G., and Shmatikov,
V., editors, Proceedings of the 18th ACM conference
on Computer and communications security, page 639.

Lantz, P. and Delosieres, L. (2015). Droidbox - android
application sandbox.

Lindorfer, M., Neugschwandtner, M., Weichselbaum, L.,
Fratantonio, Y., Victor van der Veen, and Platzer, C.
(2014). Andrubis - 1,000,000 apps later: A view on
current android malware behaviors. In Proceedings of
the the 3rd International Workshop on Building Anal-
ysis Datasets and Gathering Experience Returns for
Security (BADGERS).

Mollus, K., Westhoff, D., and Markmann, T. (2014). Cur-
tailing privilege escalation attacks over asynchronous
channels on android. In /4th International Conference
on Innovations for Community Services (I4CS), pages
87-94.

Neuer, S., van der Veen, V., Lindorfer, M., Huber, M.,
Merzdovnik, G., Mulazzani, M., and Weippl, E.

(2014). Enter sandbox: Android sandbox compari-
son. In Koved, L., Singh, K., Chen, H., and Just, M.,
editors, Proceedings of the Third Workshop on Mobile
Security Technologies (MoST) 2014.

Portokalidis, G., Homburg, P., Anagnostakis, K., and Bos,
H. (2010). Paranoid android: versatile protection for
smartphones. In Gates, C., Franz, M., and McDer-
mott, J., editors, Proceedings of the 26th Annual Com-
puter Security Applications Conference (ACSAC ’10),
page 347.

QEMU Project (2017). Documentation/networking.

Qian, C., Luo, X., Shao, Y., and Chan, A. T. (2014). On
tracking information flows through jni in android ap-
plications. In 2014 44th Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Net-
works (DSN), pages 180-191. IEEE.

Rasthofer, S., Arzt, S., Miltenberger, M., and Bodden, E.
(February 21-24, 2016). Harvesting runtime values
in android applications that feature anti-analysis tech-
niques. In Capkun, S., editor, Proceedings 2016 Net-
work and Distributed System Security Symposium. In-
ternet Society.

Rastogi, V., Chen, Y., and Enck, W. (2013). Appsplay-
ground: automatic security analysis of smartphone ap-
plications. In Bertino, E., Sandhu, R., Bauer, L., and
Park, J., editors, Proceedings of the third ACM con-
ference on Data and application security and privacy,
page 209.

Russello, G., Conti, M., Crispo, B., and Fernandes, E.
(2012). Moses: Supporting operation modes on smart-
phones. In Proceedings of the 17th ACM symposium
on Access Control Models and Technologies - SAC-
MAT 12, page 3. ACM Press.

Russello, G., Crispo, B., Fernandes, E., and Zhauniarovich,
Y. (2011). Yaase: Yet another android security exten-
sion. In 2011 IEEE Third Int’l Conference on Privacy,
Security, Risk and Trust (PASSAT) / 2011 IEEE Third
Int’l Conference on Social Computing (SocialCom),
pages 1033-1040.

Sarwar, G., Mehani, O., Boreli, R., and Kaafar, M. A.
(2013). On the effectiveness of dynamic taint anal-
ysis for protecting against private information leaks
on android-based devices. In Samarati, P., editor, SE-
CRYPT 2013, 10th International Conference on Secu-
rity and Cryptography. SciTePress.

Shirey, R. (2007). Rfc 4949: Internet security glossary, ver-
sion 2.

Spreitzenbarth, M., Freiling, F., Echtler, F., Schreck, T.,
and Hoffmann, J. (2013). Mobile-sandbox: having
a deeper look into android applications. In Shin, S. Y.
and Maldonado, J. C., editors, the 28th Annual ACM
Symposium, page 1808.

Spreitzenbarth, M., Schreck, T., Echtler, E.,, Arp, D., and
Hoffmann, J. (2015). Mobile-sandbox: combining
static and dynamic analysis with machine-learning
techniques: Combining static and dynamic analy-
sis with machine-learning techniques. International
Journal of Information Security, 14(2):141-153.

Sufatrio, Tan, D. J. J., Chua, T.-W., and Thing, V. L. L.
(2015). Securing android: A survey, taxonomy, and
challenges. ACM Computing Surveys, 47(4):1-45.

Dynamic Taint-tracking: Directions for Future Research

Sun, M., Wei, T., and Lui, J. C. (2016). Taintart: A prac-
tical multi-level information-flow tracking system for
android runtime. In Katzenbeisser, S. and Weippl, E.,
editors, Proceedings of the 2016 ACM SIGSAC Con-
ference on Computer and Communications Security,
pages 331-342. Association for Computing Machin-
ery.

Tam, K., Feizollah, A., Anuar, N. B., Salleh, R., and Caval-
laro, L. (2017). The evolution of android malware and
android analysis techniques. ACM Computing Sur-
veys, 49(4):1-41.

Wei, E, Roy, S., Ou, X., and Robby (2014). Amandroid: A
precise and general inter-component data flow analy-
sis framework for security vetting of android apps. In
Ahn, G.-]., editor, Proceedings of the 21st ACM Con-
ference on Computer and Communications Security,
pages 1329-1341. ACM.

Weichselbaum, L., Neugschwandter, M., Lindorfer, M.,
Fratantonio, Y., van der Veen, V., and Platzer, C.
(2014). Andrubis: Android malware under the mag-
nifying glass.

Xia, M., Gong, L., Lyu, Y., Qi, Z., and Liu, X. (2015). Ef-
fective real-time android application auditing. In 2015
IEEE Symposium on Security and Privacy (SP), pages
899-914. IEEE.

Xu, M., Qian, C., Lee, S., Kim, T., Song, C., Ji, Y., Shih,
M.-W.,, Lu, K., Zheng, C., Duan, R., Jang, Y., and
Lee, B. (2016). Toward engineering a secure android
ecosystem. ACM Computing Surveys, 49(2):1-47.

You, W., Liang, B., Shi, W., Wang, P, and Zhang, X.
(2017). Taintman: An art-compatible dynamic taint
analysis framework on unmodified and non-rooted an-
droid devices. IEEE Transactions on Dependable and
Secure Computing, page 1.

Zhang, Y., Yang, M., Xu, B., Yang, Z., Gu, G., Ning, P,
Wang, X. S., and Zang, B. (2013). Vetting undesirable
behaviors in android apps with permission use analy-
sis. In Sadeghi, A.-R., Gligor, V., and Yung, M., edi-
tors, The 2013 ACM SIGSAC conference, pages 611—
622.

Zhauniarovich, Y., Russello, G., Conti, M., Crispo, B.,
and Fernandes, E. (2014). Moses: Supporting and
enforcing security profiles on smartphones. [EEE
Transactions on Dependable and Secure Computing,
11(3):211-223.

Zheng, M., Sun, M., and Lui, J. C. (2014). Droid-
trace: A ptrace based android dynamic analysis sys-
tem with forward execution capability. In 2014 Inter-
national Wireless Communications and Mobile Com-
puting Conference (IWCMC), pages 128—133.

305

