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Abstract: This paper proposed a method through a time domain Markov decision process as a countermeasure of 
random periodic impulse jamming for a user in a time slotted environment. First, the random periodic 
impulse jamming is modelled. Then the time domain MDP-based anti-jamming communication model is 
proposed and the optimal transition probability on each state is calculated. Finally, we proposed an online 
learning algorithm to approach the optimal transition probabilities. Simulation results show that our method 
is better than other countermeasures of impulse jamming. 

1 INTRODUCTION 

Impulse jamming can corrupt the data transmission 

of communication system(Poisel, 2011) in various 

applications like IoT systems(Landa et al., 2017), 

OFDM systems(Epple and Schnell, 2017) et al. A   
short form periodic jamming (SFPJ) attack can cause 

huge reduction of packet delivery ratio (PDR)  with 

little cost and traditional anti-jamming schemes such 

as spread spectrum techniques in frequency domain 
is not appropriate to the situation due to the impulse 

signal has a wide spectrum density(Debruhl and 

Tague, 2013). One usual pulse jamming pattern is 

called periodic impulse jamming, which generates 
impulse jamming periodically.  The jamming source 

is widely distributed in practice, such as high-

voltage equipment(Lin et al., 2015). Despite the 

interferences generated by nature, impulse jamming 
is also commonly used by malicious users to corrupt 

communication links. Jie et al. derived a closed form 

of BER (Bit Error Rate) of optimal periodic impulse 

jamming for QPSK system(Jie et al., 2017). As a 
countermeasure, the detection of periodic impulse 

jamming is studied. Yuan Yuan He, et al.(He et al., 

2008) used wavelet transforming method to estimate 

impulse jamming. 
Instead of periodic impulse jamming, malicious 

user can use variants of periodic impulse jammings 

to improve jamming effect and to avoid being 

detected. Random periodic impulse jamming is a 
kind of impulse jamming whose occurrence time 

obeys some distribution. We proposed a Markov 

decision process (MDP) based countermeasures to 

mitigate the jam effects. 

This paper is organized as follow. The system 
model is introduced in Section 2. In Section 3, we 

calculated the optimal transmission probability 

under certain jamming probability. An online 

learning algorithm is provided in section 4 to obtain 
the optimal transition probability vector. Section 5 

presents computer simulation results. Finally, in 

Section 6, some concluding remarks are provided. 

2 SYSTEM MODEL 

Consider the situation where a synchronized time-

slotted communication system consists 2 licensed 
users, one of which sender, the other receiver. In 

each time slot, the sender sends a frame with length

Lt . A malicious jamming generates impulse 

jamming sequentially with some distributions based 

on certain period , LT T t . We consider each pulse 

duration is too short than a frame length, but can 
corrupt the frame. In this paper, We assume that the 

launched time of k ’s jamming impulse is 

independent normally distributed with a mean of 

, 1,2,3,...kT k  , variance 
2 . 
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Figure 1: Jamming probability density. 

The pdf of the arrival interval is the convolution 

of the pdf of 2 adjacent jammings, denoted as ( )f x . 

Apparently ( )f x  is normally distributed with mean 

T  and variance 22 . If current time slot is 
0t nT . 

For convenience, we denote the conditional 

probability of jamming next time slot is 
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As a countermeasure which depicted in Figure 

2, in each time slot the sender sends a frame 

consists 3 elements: payload, verification code 

and the Next Action Indicator (NAI). The 

verification code part is used to check whether this 

frame is corrupted by the jammer, while the NAI 

indicates whether to continue send signal or keep 

silent next frame, i.e. indicates the receiver 

whether a legitimate frame comes next time slot. 

We consider the duration of the NAI part is too 

small that cannot be influenced by the jamming. 

To make the problem clear to understand, we 

assume the receiver can immediately sensor the 

communication status i.e. whether the channel is 

jammed by the malicious attacker. 

Payload

Verification Code

Next Action Indicator

 

Figure 2: Component of a frame. 

We define the current the state of the current 

time slot 
nS , At the end of each time slot, the sender 

observes the state of the current time slot 
nS , and 

select the corresponding action {0,1}na   with a 

probability
np , “0” represents “to silent”, “1” 

represents “to continue”. When taking action “to 

silent”, the sender would stop sending message until 
a jamming is detected; when taking action “to 

continue”, the sender would continue sending 

message next time slot. If this is the Kth consecutive 

slot with successful transmission, the state is 

denoted by 
nS K . The transmitter receives an 

immediate payoff ( )U n  in the nth time slot, decided 

by 

 

  ( ) Send (Transmitted) (Jammed)U n R L    1 1 1   (3) 

 

where R  represents communication gain, while 

L  represents jammed loss. ( )1  is the indicator 

function returns 1 when the statement in the 

parenthesis holds TRUE and 0 otherwise. 

The transition of states can be described as a 

Markov chain, as show in Figure 3. The transition 
probabilities depend on the action taken by the 

transmitter. We use  ( , 0| )m nP S S  and  ( , 1| )m nP S S  

to represent the transition probability from the 

current state
nS to a new state

mS when taking action 

0 and 1, respectively. Obviously, 
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(a) Transition of states when taking action  silent 

(b) Transition of states when taking action  continue  

Figure 3: Markov chains of state transitions when different 
actions are taken. 

Note that the jammer may jam the channel with 

some probability, the transmitter will have 

possibility being jammed when taking action 
“continue” at a certain state. The state of the next 

time slot depends on the action of the current time 

slot, the jamming condition and the state of current 

time slot, hence we can model this scenario as a 
Markov decision process (MDP), from which the 

defense strategy is obtained. 

0 1 2 K...

pJ(0) 1-pJ(0) (1-pJ(1))pa(1) (1-pJ(K-1))pa(K-1)

1-(1-pJ(1))pa(1)

1-(1-pJ(2))pa(2)
1

 

Figure 4: Total transition probability. 

An MDP consists of four important components, 

namely, a finite set of states, a finite set of actions, 
transition probabilities, and immediate payoffs(Wu 

et al., 2011). As the attacker jams the channel with 

some distribution, if the transmitter continues 

sending message, it will be eventually blocked by 
the jammer. Thus, the state S will be finite. Denote 

the maximum possible According to (3), the 

immediate payoff depends on both the state and the 

action of previous time slot, i.e. 
 

, if {0,1,2,...}, 1,
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3 CALCULATION 

Our goal is to find the appropriate 
ap  that can 

maximize the sum of immediate payoff and expected 
payoff conditioned on the current action probability. 
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In all the scenarios above, the interval between 2 

jamming signals is not infinite in practice, so we can 

be informed that the states are also finite. Denote 

max

L

t
N

t
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 as the maximum states count, where 

max( ) threshf t p . 
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Denote 
0 1( , ,... )NS S SS  which represents state 

vector, 
0 1( , ,... )Na a aa  represents action vector;

( (0), (1),... ( ))S S Sp p p NSp  represents vector of 

probabilities of each state; 

( (0), (1),... ( ))a a ap p p Nap  represents vector of 

probabilities of action on each state; 

( (0), (1),... ( ))J J Jp p p NJp  represents vector of 

jamming probability on each state. 

From the definition, (0) 1ap  , ( ) 1Jp N  , 

( ) 0ap N  . With the transition probability 
ap  we 

can derive the total state transition probability matrix 

P . 
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Proposition 1: The states probability 
Sp  is 

determined by 
Jp  and 

ap . 

Proof: from (8), the following stationary 

distribution of the Markov chain can be formulated 

as below: 
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Subject to 
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mnp  denotes the transition probability of state m  

to n . Thus, the states’ probability can be figured out 

as 
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According to (8)(10)(12),  
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Thus, the states’ probability 
Sp  can be 

determined by 
Jp  and 

ap . 

The returning to state 
0S  from state 

0S  through 

several states is defined as a cycle. It is obvious that 

the state will eventually return to 
0S . The total 

probability from each path in a cycle is 1, i.e. 
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The expectation of total payoff in one cycle is 

denoted as *( )U S , which can be obtained by the 

equation below. 
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From the equation, it can be inferred that *( )U S  

is determined by 
ap  and 

Jp . Our algorithm aims to 

achieve the goal of maximizing *( )U S , the 

following equation is needed. 
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It is theoretically possible to calculate the 

optimal 
ap . However, the calculation is too 

complex to solve due to 
ap  is a max

L

t

t

 
 
 

 dimension 

vector. If the probability resolution is dp , the 

solution space will be 

max

1 L

t

t

dp

 
 
 


 
. To find the max 

value and its index in acceptable time, the Simulated 

Annealing Algorithm(Ogbu and Smith, 1990) is 

introduced into this model. We set the vector 
ap  as 

argument. At each epoch, we make a random change 

of 
ap  and compare the expectation of corresponding 

*( )U S . The change is accepted according to 

metropolis criterion. After sufficiently large time, 

the probability of  *argmax ( )Uap S  will be 1.  

4 ONLINE LEARNING APPROAH 

In practice, the jamming probability vector 
Jp  

cannot be obtained from the environment 
immediately. To approach the optimal transition 

probability vector 
ap , We propose an online 

learning algorithm. According to the simulation 

results, the optimal {0,1}ap , and all “1” occur 

before a certain time slot and all “0” after that 

certain time slot. So we translate the problem into 
find this certain time slot as boundary before which 
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continuously transmitting signal. We formulate the 

problem as a multi-armed bandit problem. The user 

selects Kth arm represents continuously transmit K  

time slots. Facing this problem, the trade-off 
between exploration and exploitation is the focus of 

the problem. If the user chooses the exclusively on 

the arm that he thinks is best(exploit), he may miss 

the actual best arm. If the user keeps trying out all 
the arms and gathering statistics (“exploration”), he 

may fail to play the best arm often enough to get a 

high return(Auer et al., 2011). 
We define 2 variables, exploration rate   and 

temperature t  to solve the problem. Both the two 

variables decrease over iteration. If the exploration 

rate is higher, the user is more likely to choose the 

new state to calculate the new payoff and vise versa. 
If the temperature is higher, the user is more likely 

to accept the new arm and vice versa. 

The user selects the first arm at first transmitting 

cycle and calculate the sum payoff according to 
actual jammings. Our algorithm is depicted as 

Figure 5. 

Init:  ,   
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Update  
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Update    

Convergence?
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Calcuate        
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end

Y

N

Y

N
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Figure 5: Online learning algorithm to approach optimal 
boundary. 

5 SIMULATION RESULTS 

First, we calculated the effect of different parameters 

to transmitting probability 
ap . We set transmission 

gain 10R  , time slot length 0.01Lt s . For a 

normal distributed jamming, the jamming period 

0.5T   and variance 2 20.1  . With different 

10,20,30,40,50L  . The result is shown in Figure 6. 

The transmitting probability goes from 1 to 0 with as 

sharp gradient. Different jamming loss result in 

different transmitting probability vector. With 

greater jamming loss, the transmitting time slot 
trends to be shorter. 

 

Figure 6: Optimal transmitting probability with different 

jamming loss with 
2 20.1  . 

In Figure 7, we compared our scheme with 

different combinations of the attack and the defense 

strategy. The transmission gain and jamming loss 
are set to 10 and 30 respectively. We plotted the 

average sum payoff of a cycle in all the 5 situations. 

First, the communication is under a non-jamming 

environment. The equivalent average sum payoff of 
a cycle is the highest. After that, a periodic impulse 

jamming occurs and makes the average sum payoff a 

great loss. As a countermeasure, the authorized user 

takes periodic transmission to withstand the impulse 
jamming. The malicious attacker then chooses 

random periodic impulse jamming strategy, which 

drops the average sum payoff most. To mitigate the 

jamming effect, the authorized user then chooses 
MDP-Based impulse jamming mitigation scheme 

that rises the average sum payoff curve. 
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Figure 7: Comparison of different anti-jamming schemes. 

In Figure 8, the proposed algorithm in section 4 
is verified. We generated normally distributed 

jamming with a mean of , 1,2,3,...kT k  , 0.5T  , 

variance 2 0.1  . Transmitting gain 10R  , 

jamming loss 50L  . The theory value optimal state 

is calculated based on optimal 
ap  obtained at the 

beginning of this section.  

 

Figure 8: Comparison between learned value and 
theoretical value. 

6 CONCLUSIONS 

In this paper, we proposed a Markov decision 
process based impulse jamming mitigation scheme 

and used simulated annealing algorithm to obtain the 

numerical result. The optimal transmitting 

probability is either 0 or 1, and the continuously 

transmission slot is shorter when jamming loss L  
grows. We have shown that our scheme is better 

than periodic transmission scheme under same 

random periodic impulse jamming environment.  
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