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Abstract: The widespread deployment of sensors in Industrial Cyber-Physical System (ICPS) enables real-time 

monitoring kinds of composite events occurring in the industrial process. However, due to the high degree of 

heterogeneity of the sensing nodes in ICPSs, it is very hard to effectively composing the platform-specific 

functionalities provided by heterogeneous sensor nodes for detecting various composite events. In this article, 

by exploiting REST framework and expanding the basic architecture of S2aaS, we propose a service-oriented 

and lightweight collaborative sensing framework for detecting multiple composite events in ICPSs. Further, 

the specific implementation details about the process of RESTful service registry of sensing node, sensing 

service discovery and service composition is presented. We develop an application prototype to test the 

feasibility and scalability of the system, and the experiment results show that RESTful-based sensing service 

collaboration outperforms SOAP-based one with more lightweight communication and less power 

consumption as expected. Based on our proposed collaborative sensing framework with Restful sensing 

services, it is very convenient to provide a sensor web services for various requirements of composite event 

detection. 

1 INTRODUCTION 

Recently, the widespread deployment of RFIDs, 

sensors, wireless sensor networks, and embedded 

systems has fostered the rise of industrial Cyber-

Physical Systems (ICPS), which is considered as 
transformative technologies for managing 

interconnected systems between industrial physical 

assets and computational capabilities. ICPS is the 

basic premise for the implementation of industry 4.0. 
By integrating the emerging information and network 

technologies (e.g., data sensing, network 

transmission, high-performance computing, big data, 

intelligent decision-making and controlling), ICPS is 
able to greatly improves the performance on real-time 

interaction, efficient collaboration and dynamic 

optimization for the industrial system, and create a 

new industrial manufacturing and information service 
mode. 

With the sensing devices deployed in industrial 

lines, it is able to monitor the real-time status of the 

industrial process for high quality. Specially, we are 

very concerned about the composite events occurring 
in the industrial process, e.g., abnormal changes in the 

industrial production environment, abnormal 

working status of mechanical equipment, and the 

detection of such composite events is very helpful for 
realizing dynamic feedback controlling and 

scheduling on the industrial process. Unlike an 

atomic event which depends on single-mode sensing 

data, a composite event is a combination of several 
atomic events and its occurrence is jointly determined 

by collaborative sensing with heterogeneous sensors 

(Chen, 2015). For example, in order to identify an 

abnormal working status of mechanical equipment, 
maybe it is necessary to collect the following multi-

modal sensing data from video sensors, 

temperature/moisture sensors, displacement sensors, 

vibration sensors, etc.  
In general, with the widespread deployment of 

RFIDs/ RFID readers and sensors in ICPSs, it is able 

to detect kinds of composite events for obtaining 

more meaningful information within a factory. On the 
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one hand, each composite event is determined with 

the data from a set of heterogeneous sensing devices, 
in the other hand some sensing devices could be 

exploited simultaneously for detecting multiple 

composite events. Various different types of 

composite events are the consumers of sensor data, so 
we need easy and feasible mechanisms to access the 

large-scale distributed sensor devices in ICPSs. 

However, in such environments, due to the device 

heterogeneity and differing accompanying protocols, 
integrating diverse sensing devices into observation 

systems for detecting multiple composite events is not 

straightforward (Guinard, 2010). Therefore, it is 

crucial to build a coherent infrastructure which treats 
sensors in an interoperable, platform-independent 

way. 

In recent years, several efforts have been invested 

in order to handle the challenges related to the 
integration of large-scale heterogeneous sensing 

devices in an interoperable and uniform way. Sensing 

as a service (S2aaS) is introduced to provide sensing 

services using kinds of sensors via a cloud computing 
system (Sheng, 2013). In the S2aaS cloud, 

heterogeneous sensing devices are abstracted as 

services and expose their functionalities with 

common accessing interfaces and encodings. Web 
Services (Hoang, 2012) are proposed to provide a 

standard and interoperable accessing means for 

heterogeneous sensing devices. Because of the 

constrained resources in the context of the ICPS, the 
RESTful Web Services (Garriga, 2016) have been 

exploited in some studies for many advantages over 

arbitrary Web Services (i.e., SOAP), such as less 

overhead, less parsing complexity, statelessness, and 
tighter integration with HTTP. Therefore, with the 

architecture of S2aaS and RESTful Web Services, it 

is able to provide high-level abstraction for the 

development of detecting multiple composite events 
in ICPSs. 

There are some related researches on building 

lightweight REST framework for wireless sensor 

networks. In the study of environmental sensor 
monitoring (Lee, 2014), Restful Web Service is used 

for communication with the Arduino-based sensors. 

To address the constrained resources in sensor nodes, 

Rouached et al. (Rouached, 2012) propose a 
lightweight RESTful approach based on Restful SWE 

services for interacting with the constrained WSNs. 

Taherkordi et al. (Taherkordi, 2011) apply REST 

concepts to develop Web services for WSNs and 
smartphones as two representative resource-

constrained platform. The above studies have 

provided a framework for developing Restful web 
services for sensor nodes, however, there are also few 

researches on how to efficiently combine kinds of 

Restful sensing services for detecting various 
composite events.  

In this paper, by exploiting REST framework and 

expanding the basic architecture of S2aaS, we study 

to present a service-oriented and lightweight 
collaborative sensing framework with more specific 

implementation details for detecting multiple 

composite events in ICPSs. Each sensing device 

register its service in the sensing cloud platform. 
When a user initiates a request of detecting a 

composite event, the proposed framework will 

automatically resolve the request into a set of sensing 

tasks and then push it to a subset of sensing devices 
that happen to be in the area of interest. Based on our 

proposed collaborative sensing framework with 

Restful sensing services, it is very convenient to 

provide a sensor web services for various 
requirements of composite event detection, enable 

users to connect and share the heterogeneous sensor 

resources more efficiently.  

The rest of this paper is organized as follows. The 
Restful sensing services and composite event model 

are described in Section 2. In Section 3, we present 

the service-oriented collaborative sensing framework. 

In Section 4, an automatic sensing service 
composition process for detecting a composite events 

is introduced. We provide the experimental results in 

Section 5 and conclude the paper in Section 6. 

2 RESTFUL SENSING SERVICES 

2.1    Restful Web Service for Sensing 
Nodes 

Representational State Transfer (REST) is an 
architectural model for building distributed 

applications flexibly (Pautasso, 2008). It exploits the 

natural structure of the Web and is efficiently 

implemented with the Hypertext Transfer Protocol 
(HTTP). Considering the constrained resources of 

sensing nodes in ICPS, RESTful web service is 

suitable to be used in ICPS due to its lightweightness 

and its resource-oriented conception. In RESTful 
architecture, every sensing sources can be uniquely 

identified as a URI, for example, a URI for a vibration 

sensor on a sensing node which monitors the status of 

the equipment m located in workshop n is shown as 
follows:  

/{Location}/sensingnode/{n_id}/sensor/vibration,  

here, location= /workshop_n/equipment_m.  

Based on the unique identification through URIs, 
a node is able to provide a RESTful Web service with 

Sensing as a Service- A Service-Oriented Collaborative Sensing Framework for Detecting Composite Events in Industrial Cyber-Physical
System

265



 

a uniform interface by using standard HTTP methods 

(GET, PUT, POST, DELETE).The sensing node is 
embedded with a lightweight web server with basic 

HTTP functionality, e.g., NanoHTTPD (Elonen, 

2018), a tiny web server which has been proven to be 

suitable for the resource constrained environment. 
We can obtain the data from the light sensor by the 

following HTTP GET request: 

GET /{Location}/sensingnode/{n_id}/sensor/light 

HTTP/ 1.1 
Content-type: application/json 

Although the whole set of standard HTTP 

methods could be used, there are some resources 

which don’t offer all of them. Some HTTP methods 
is not able to be matched to any functionality of the 

corresponding resources, e.g., no functionality of the 

temperature sensor that could be matched on a 

DELETE action. 
As shown in Figure 1, for a sensing node deployed 

with several sensors, we present a hierarchical 

organization of the sensing resources, which are in 

turn helpful for generating the URIs of sensing 
resources. We can notice that a sensing node may 

generally contain the following resources: some 

sensors for provide sensing data, LEDs that offers 

pulling and changing its state, battery, and tasks that 
can be created, supervised, altered and deleted. 

Unlike sensors and LEDs which are physical entities, 

a task is a logical resource. Given the parameters of 

execution frequency, threshold and target sensor, a 
task is able to periodically check the corresponding 

sensor value against a certain threshold and then alert 

if the threshold is exceeded. 

Sensing node

{id}

sensor

temperature

vibration 

humidity

pressure

led
{id}

battery
task

Equipment m

{id}

actuator node

{id}

Workshop n

 

Figure 1:  Hierarchical organization of sensing 

resources. 

Therefore, each service provide by a sensing node 

can be addressed and accessed with a unique URI. 
URIs provide a global naming scheme which allows 

lightweight service discovery. With the URIs, kinds 

of resources can be organized more effectively and 

helpful for building an automatic service discovery 
and composition framework. 

2.2 The Composite Event Model 

Events are classified into atomic events and 
composite events. An atomic event denotes an 

observable occurrence of a phenomenon or an object 

reflected by a single sensing value, e.g., the 

temperature of the workshop exceeds a warning 
threshold. An atomic event can be represented by e(t, 

l, R), where t is the occurrence time of the event and 

it could be a time-interval or a time point, l is the 

occurrence location which could be a specific point 
or field in the workshop, R is expressed by a logic 

expression which denotes the condition of the event 

occurring. For example, e(14/06/2017, /workshop_n/ 

equipment_m, temperature>60℃) expresses that the 
temperature of the equipment m on 14/06/2017 is 

greater than 60℃. 

A composite event characterizes an observable 

occurrence of a complex phenomenon or an object, 
and it is composed by several atomic events with the 

specific temporal and spatial constraints. Given an 

atomic event ei(ti, li, Ri), a model of the composite 

event can be described as follows (Gao, 2015).  

1 2

1 1 2 2

( ... , )

(( , ),( , ),...,( , ), , , )

k t l

k k t l

E R R R C C

E e e e C C



   

    


             (1) 

where i (0≤ i ≤1) is the confidence of an atomic 

event ei which indicates the occurrence probability of 
the composite event E when ei is occurring. Ct and Cl 

respectively represent the temporal and location 

constraints on the atomic events. Ri defines the 

occurrence conditions of the atomic events. The 
parameter  could be computed from 1 2{ , ,..., }k   , 

and it denotes the occurrence confidence of the 

composite event E when all the related atomic events 

happen. Therefore, based on the formula (1), each 
composite event can be parsed to be several atomic 

events with the same temporal and location 

constraints and different event occurring conditions.  
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3  SERVICE-ORIENTED 

COLLABORATIVE SENSING 

FRAMEWORK 

In this section, in order to provide a flexible platform 

for building the applications for detecting composite 

events, we introduce a service-oriented collaborative 

sensing framework based on the RESTful web 
services of sensing nodes. The framework shown in 

Figure 2 consists of several subsystems and modules. 

The first subsystem Rest-Based Sensing Node is 

composed by kinds of heterogeneous sensing devices 
with different operation systems (e.g., Z-Stack, Tiny 

OS, Contiki) and communication methods (e.g., WiFi, 

IEEE 802.15.4). These sensing devices are equipped 

with a tiny web server supporting the basic web 
service interface, and then provide lightweight 

RESTful web services with HTTP methods. Each 

sensing node registers its services with the following 

root URI: /{Location}/sensingnode/{n_id}. 

Rest-based 

sensing node

Restful Service 

URI Publish

Restful Service Registry

Root URI 

Registry

URI Resolution
Service 

Repository

Service Discovery

Context 

Matching

Instance 

Searching

Instance 

Ranking

Service Composition

Service Query
Candidate services 

and their URIs

Composition 
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Service Selector

Service Binder

Service 

Executor and 

Subscriber

Restful Service 

Subscribe

Composite Event Detection 

Temporal and 

Spatial Context 

Extract

Composition 

Plan Creator

Z-Stack Tiny OS AndriodContiki Z-Stack WinCE

Restful 
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Figure 2:   A service-oriented collaborative sensing 
framework based on the RESTful web services. 

Service Registry is the second subsystem which is 
responsible for handling the register requests of each 

node, and then gets all the service URIs with a web 

service crawler. The URI Resolution module in this 

subsystem resolves the URIs of RESTful web 
services and then obtains its functionality and spatial 

property, which are helpful for the implementation of 

service discovery. The third subsystem Service 

Discovery has three main modules including Context 
Matching, Instance Search and Instance Ranking, and 

finds out candidate services and their URIs from 

Service Cache according to kinds of service queries 

from the subsystem of Service Composition.  
The fourth and central subsystem Service 

Composition is mainly responsible for providing 

composition services in the framework. The 

Composition Broker receives a request with 
composition plan of a composite event detection tasks, 

and then deliver an appropriate composition service 

by calling three functional modules including Service 
Selector, Service Binder, Service Executor and 

Subscriber. The fifth subsystem Composition Event 

Resolution is also an important part, which is playing 

as a link between the service composition subsystem 
and the user who launches the detection request of 

composite event. This subsystem is functionally 

divided into two main modules including 

Composition Plan Creator, Temporal and Spatial 
Context Extractor. 

3.1 Service Registry 

All the Rest-based sensing nodes publish the services 
with their root URIs, e.g., /{Location}/sensingnode/{id}. 

With the root URIs of sensing nodes, the Restful 

service URI crawler sends a request for obtain the 

specific service description of each sensing node with 
the hRESTS microformat. Then, by using 

MicroWSMO, which is a lightweight semantic 

service description approach based on WSMO-Lite 

service ontology, the service resolution module is 
able to add semantic information on top of hRESTS 

service document. With the WSMO-Lite service 

ontology, a sensing service can be described with the 

following four types of service semantics: 
information semantics, functional semantics, non-

functional semantics and behavioral semantics.  

We can then extract RDF data from the 

MicroWSMO semantic descriptions for the RESTful 
services. The RDF data could be mapped with the 

four types of semantics (functional, nonfunctional, 

behavioral and information) defined by WSMO-Lite, 

and then a RESTful service can be described with 
RDF data as follows.  

RESTful Service 

Functional semantics: 
Has_ServiceId:    onto:restws#ServiceId   
Has_ServiceLabel:  onto:restws#Label 
Has_Provider:              onto:restws#NodeId 

Nonfunctional semantics: 
Has_ServiceLocation:             onto:restws#ServLocation 
Has_ServiceTime:  onto:restws#ServTime 
Has_BatteryLevel:              onto:restws#BatteryLevel 
Has_cost:    onto:restws#Cost 

Behavioral semantics: 
Has_OperationId:  onto:restws#OpId 
Has_OperationLabel:             onto:restws#OpLabel 
Has_OpMethod:  onto:restws#OpMethod 
Has_URI:    onto:restws#URI 

Information semantics: 
Has_input:   onto:restws#OpInput 
Has_output:   onto:restws#OpOutput 
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3.2 Service Discovery 

Given a service query SQ={FQ,NQ,IQ} from the 
service composition module, the service discovery 

module returns an appropriate service instance 

SI={FI,NI,BI,I I} by matching the query with the huge 
amount of candidate service instances. As shown in 

Figure 3, we present a multi-stage semantic service 
discovery process, which includes the following steps: 

1) service type lookup based on functional and 

information semantics; 2) service filtering by context 

matching with nonfunctional semantics (mainly with 
spatial and temporal contexts); 3) service ranking 

with some key factors from the service nonfunctional 

semantics (e.g., cost, residual battery level), and 

service monitor module collects the dynamic 
nonfunctional information.  

Service 

query
Service 

instance

1. Service 

type lookup

3. Service 

instance ranking

2. Service filtering 

by context matching

Service Discovery

Service Repository Service Monitor

Service Composition Module

SQ={FQ,NQ,IQ} SI={FI,NI,BI,II}

 

Figure 3:  A multi-stage service discovery process. 

3.2.1 Service Type Lookup 

This the first stage of service discovery process. The 

service type lookup module matches the service query 

and the service instances based on the functional and 

information semantics, and it selects out a set of 
appropriate RESTful services with the same service 

type of the service query. However, because the 

process of matching semantic ontology concepts 

among all the individual service instances has 
typically been time and resource intensive, some 

efficient service organization model and matching 

algorithms should be adopted.  

As shown in Figure 4, a service organization and 
Matching with Dynamic Bloom Filter (DBF) is 

exploited. Firstly, the RESTful semantic services in 

the service cache is categorized with different service 

types, and each service type is mapped into a bloom 
filter with m bits which manages kinds of service 

types. With a number of j hash functions hj( ), the 

functional and information semantics of a service 

instance are hashed into random numbers between 1 

and m, and plus one to the numerical numbers of 

corresponding bits. Then, the service instances which 
have the same hash operation results are clustered 

together.  

Secondly, each cluster of service instances with 

the same service type is managed with a dynamic 
bloom filter including multiple static bloom filters 

with m bits. The service instances which have the 

same contexts (mainly refer to spatial and temporal 

contexts) are managed with a static bloom filter.  

Service 

Cluster1 

Service Type 2 Service Type 3

0

2

0

0

2

0

2

0

2

0

2

0

0

0

2

0

SBF1 SBF2

h1(sa)

h1(sb)

h2(sb)

h2(sa)

hj(sa)

hj(sb)

h1(sc)

h1(sd)

h2(sd)

h2(sc)

hj(sc)

hj(sd)

m
 b

it
 v

e
ct

o
r

SBF1 SBF2

DBF

Service Type 1

Service 

Cluster2 

Service 

Cluster3 

DBF DBF

Context1 Context2

1 1 1 2 0 1 1 0 2Bloom Filter

for service type lookup

h1(sc1) hj(sc1) h1(sc2) hj(sc2)

 

Figure 4:   Service organization and Matching with 
Dynamic Bloom Filter. 

3.2.2 Service Filtering by Context Matching   

This module is helpful for reducing the service 
exploration space greatly, and it is a lightweight 

service filtering process based on a small set of 

contexts (mainly on spatial and temporal contexts, 

e.g., service location, service time) which are 
extracted from the service nonfunctional semantics. 

In order to improve the efficiency and success ratio of 

service discovery, the context matching module 

filters out the RESTful semantic services of which the 
spatial and temporal contexts do not match the 

contexts of the service query apparently. For example, 

in order to monitor a dangerous gas leakage which 

may happen at workshop A, the services provided by 
the sensors far away from workshop A should be 

filtered out first.  

Besides, depending on their value types, the 

contexts are generally classified into numeric and 
instance contexts. For example, the service location 

“workshop A” is an instance and spatial context, and 

the service time “14/06/2017” is a numeric and 

temporal context. As shown in Figure 5, the service 
instances with the same spatial and temporal contexts 

are managed by the same static bloom filter. Then, the 

service location and service time of a service query 

and service instances are matched by the static bloom 
filters contained by a DBF with the same service type. 
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After service type lookup and service filtering by 

context matching, we can obtain a set of service 
instances that match the functionality and context 

requirements of a service query.  

3.2.3 Instance Ranking  

In order to get a most appropriate service instance 
from the candidate service instances selected out by 
the above steps, this module ranks the candidate 
service instances based on their service cost, quality 
of service, residual battery level, etc. The output of 
the ranking process is an ordered list of service 
instances corresponding to the non-functional 
requirements expressed by the service query. 
Generally, those service instances that have high 
battery level and low service cost get higher rankings.   

4    AUTOMATIC SENSING 

SERVICE COMPOSITION FOR 

DETECTING A COMPOSITE 

EVENTS 

4.1    Composition Plan Description 
Language (CPDL) for Composite 
Event  

For a composite event detection request, we need 

make a composition plan for it. As described in 
section 3.2, a composite event is denoted as

1 2( ... , )k t lE R R R C C      , and Ri denotes the 

condition of an event occurring which is monitored 

by a sensing service Si. For example, an atomic event 
temperature>60℃ should be monitored by a 

temperature sensor with its service SensingTemperature. 
In order to distribute a composite event detection request 

to kinds of sensing services, here, the language called 

Composition Plan Description Language (CPDL) 

(Han, 2014) has been designed to describe 

composition plans.  
An example of a CPDL document for a fire event 

detection is shown in Listing 1. This document 

describes a composition plan with the context 

requirements including a specific location and a 
specific data acquisition frequency. It also describes 

the composite service consisting of three component 

services SensingTemperature, SensingLight and 

SensingHumidity which detect the related atomic 
events.  

 

 

Listing 1. Composition Plan Description Language 
(CPDL) for a fire event detection 

4.2    Automatic Sensing Service 
Composition  

The service composition plan of a composite event 
detection is then transferred to the service broker 

module in the Service Composition subsystem. The 

service broker invokes three functional modules to 

accomplish the task of service composition, and the 
specific process is described as follows: 

1） Service Query: The service broker resolves the 

CPDL for a composite event detection request, 

and extracts the specific contexts and component 
services defined by the CPDL. For example, the 

location workshop_n and the required component 

service SensingLight can be extracted. Then, the 

service queries are sent to the service discovery 
subsystem and then waiting for the returned 

candidate service instances and their URIs.  

2） Service Selection: With the candidate service 
instances for each required component service, 

this module selects the appropriate combination 

according to the overall non-functional 

requirements of the composite event detection, 
such as available battery level, service cost. 

Therefore, there will be a combinatorial 

optimization problem for selecting service 

instances for detecting multiple atomic events, 
and the intelligent particle swarm optimization 

algorithm is exploited to handle this problem.  

3） Service Binding: This module binds the selected 

service instances to their operations. For example, 
the service SensingLight provided by a sensor 

node 1 in workshop 1 is bound to the following 

operation:  
GET http://workshop_1/sensingnode/{1}/sensor/light  

4） Service Executor and Subscriber: This module is 

responsible for executing the whole process of 

service composition, and sends the requests 
according to the defined operations. Generally, 

there are two ways to get sensor data: the 

request/response mode is always used to get 

sensor data once, and the subscription/ 

1. <CSDL xmlns:xsi=http://xxxx/SaaS> 
2.    <context location=workshop_n, data_freq=5 
seconds> 
3.        <service> SensingTemperature</service> 
4.        <service>SensingLight</service> 
5.        <service>SensingHumidity</service> 

6. </context> 

7. </CSDL> 
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publishing mode is always suitable for gathering 

data periodically. 

5    PROTOTYPE AND 

EXPERIMENTS 

As shown in Figure 5, a system prototype was 

developed to illustrate the operation of the service-

oriented collaborative sensing system and to test the 

feasibility and scalability of the system. There are 
kinds of sensor nodes which are deployed in two 

workshops, and the sensor nodes includes 

temperature and humidity sensor node, light sensor 

node, smoke sensor node, CO2 sensor node, CCD 
node, and so on. The sink node is responsible for 

forwarding the sensing data from the sensor nodes to 

the platform and the operation commands from the 

platform to the sensor nodes. All the sensor nodes are 
equipped with a lightweight web server NanoHTTPD 
[11], and respond kinds of HTTP requests in JSON 

format. The sensor nodes register their ID and service 

capabilities at the platform. The gateway is mainly 
responsible for data forwarding and network protocol 

conversion. The platform of SaaS (Sensing as a 

service) in Figure 5 implements the subsystems 

defined in Figure 3, including service registry, service 
discovery and service composition. The platform 

receives various requests of composite event 

detection from web clients and returns the related 

messages when the composite events happen and 
have been detected.  

Temperature/Humi

dity sensor node

Platform of 

Sensing as a Service

Event 

Detection 

Request

Event 

Detection 

Response

Sink 

Node

Sink 

Node

Light sensor 

node

Smoke 

sensor node

CO2 sensor node CCD node
WSN Sink 

node

workshop 1

workshop 2 Gateway

Web 

Client

 

Figure 5:  A system prototype for verifying the 

proposed service-oriented collaborative sensing 

framework. 

 In order to evaluate the feasibility and scalability 

of the proposed system, the following experiments 

were carried out to verify the service discovery, 

service selection as well as service composition and 
execution processes. Firstly, we measure the cost of 

data transmission for the proposed Restful service 

composition method. For the request/response 
process of the same component service (e.g., 

SensingLight), we study the performance on data 

transmission duration by comparing different 

technologies of web services including REST/JSON, 
SOAP/XML and REST/XML, and the experiment 

results are shown in Figure 6. It is clear that the 

reduction of the transmission time is more obvious by 

using REST instead of SOAP. Even for REST, with 
JSON format the results are better than with XML 

since XML is verbose.  

 

Figure 6:  Data transmission duration – REST/JSON 

vs REST/XML vs SOAP/XML. 

As shown in Figure 7, we also evaluate the power 

consumption of getting list of all services on a 
specific sensing node when using different 

technologies of web services including REST/JSON 

with SOAP/XML. As it is expected, SOAP/XML-

based Web service consumes much more energy, 
especially for data communication. The CPU power 

consumption due to parsing and processing SOAP 

messages is ignorable when compared with the power 

usage of radio. 

 

Figure 7:  Power consumption for different 
technologies of web services. 

The service discovery and selection process is the 

most time-consuming part in the whole service 
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composition process. Therefore, the second set of 

experiments aims to measure the time performance of 
service discovery and selection as the number of 

sensor nodes increases from 50 to 500, and the results 

are shown in Figure 8. We can find that the time of 

service composition keeps under 150ms even in a 
critical situation with the participation of 500 devices, 

and the stability of the system has been well 

guaranteed with the proposed service discovery and 

selection method.  

 

Figure 8:  Duration of service composition process vs 

the number of sensor nodes increase from 50 to 500. 

6    CONCLUSION AND FUTURE 

WORK 

In this paper, by exploiting the technology of 
RESTful web service, we have proposed a loosely-
coupled, lightweight and service-oriented 
collaborative sensing framework for detecting 
multiple composite events in ICPSs, and provides 
more specific implementation details about RESTful 
service registry, service discovery, service 
composition. We also present an application 
prototype and evaluate the performance of 
REST/JSON based web service by comparing with 
other technologies of web services including 
SOAP/XML and REST/XML. The experiment 
results show that RESTful-based sensing service 
collaboration outperforms SOAP-based one with 
more lightweight communication and less power 
consumption as expected. The future work will focus 
on how to optimize the process of service 
composition when handling concurrent requests of 
composite event detection.     
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