
Sensing as a Service- A Service-Oriented Collaborative Sensing
Framework for Detecting Composite Events in Industrial Cyber-

Physical System

Tao Wang1, Hong Xiao2 and Lianglun Cheng2
1 Faculty of Automation, Guangdong University of technology, Guangzhou, China

2 Faculty of Computer, Guangdong University of technology, Guangzhou, China

Keywords: Sensing as a service, RESTful sensing service, Collaborative sensing, Composite event, Service composition,

Industrial cyber-physical system.

Abstract: The widespread deployment of sensors in Industrial Cyber-Physical System (ICPS) enables real-time

monitoring kinds of composite events occurring in the industrial process. However, due to the high degree of

heterogeneity of the sensing nodes in ICPSs, it is very hard to effectively composing the platform-specific

functionalities provided by heterogeneous sensor nodes for detecting various composite events. In this article,

by exploiting REST framework and expanding the basic architecture of S2aaS, we propose a service-oriented

and lightweight collaborative sensing framework for detecting multiple composite events in ICPSs. Further,

the specific implementation details about the process of RESTful service registry of sensing node, sensing

service discovery and service composition is presented. We develop an application prototype to test the

feasibility and scalability of the system, and the experiment results show that RESTful-based sensing service

collaboration outperforms SOAP-based one with more lightweight communication and less power

consumption as expected. Based on our proposed collaborative sensing framework with Restful sensing

services, it is very convenient to provide a sensor web services for various requirements of composite event

detection.

1 INTRODUCTION

Recently, the widespread deployment of RFIDs,

sensors, wireless sensor networks, and embedded

systems has fostered the rise of industrial Cyber-

Physical Systems (ICPS), which is considered as
transformative technologies for managing

interconnected systems between industrial physical

assets and computational capabilities. ICPS is the

basic premise for the implementation of industry 4.0.
By integrating the emerging information and network

technologies (e.g., data sensing, network

transmission, high-performance computing, big data,

intelligent decision-making and controlling), ICPS is
able to greatly improves the performance on real-time

interaction, efficient collaboration and dynamic

optimization for the industrial system, and create a

new industrial manufacturing and information service
mode.

With the sensing devices deployed in industrial

lines, it is able to monitor the real-time status of the

industrial process for high quality. Specially, we are

very concerned about the composite events occurring
in the industrial process, e.g., abnormal changes in the

industrial production environment, abnormal

working status of mechanical equipment, and the

detection of such composite events is very helpful for
realizing dynamic feedback controlling and

scheduling on the industrial process. Unlike an

atomic event which depends on single-mode sensing

data, a composite event is a combination of several
atomic events and its occurrence is jointly determined

by collaborative sensing with heterogeneous sensors

(Chen, 2015). For example, in order to identify an

abnormal working status of mechanical equipment,
maybe it is necessary to collect the following multi-

modal sensing data from video sensors,

temperature/moisture sensors, displacement sensors,

vibration sensors, etc.
In general, with the widespread deployment of

RFIDs/ RFID readers and sensors in ICPSs, it is able

to detect kinds of composite events for obtaining

more meaningful information within a factory. On the

264
Wang, T., Xiao, H. and Cheng, L.
Sensing as a Service- A Service-Oriented Collaborative Sensing Framework for Detecting Composite Events in Industrial Cyber-Physical System.
DOI: 10.5220/0008099402640271
In Proceedings of the International Conference on Advances in Computer Technology, Information Science and Communications (CTISC 2019), pages 264-271
ISBN: 978-989-758-357-5
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

one hand, each composite event is determined with

the data from a set of heterogeneous sensing devices,
in the other hand some sensing devices could be

exploited simultaneously for detecting multiple

composite events. Various different types of

composite events are the consumers of sensor data, so
we need easy and feasible mechanisms to access the

large-scale distributed sensor devices in ICPSs.

However, in such environments, due to the device

heterogeneity and differing accompanying protocols,
integrating diverse sensing devices into observation

systems for detecting multiple composite events is not

straightforward (Guinard, 2010). Therefore, it is

crucial to build a coherent infrastructure which treats
sensors in an interoperable, platform-independent

way.

In recent years, several efforts have been invested

in order to handle the challenges related to the
integration of large-scale heterogeneous sensing

devices in an interoperable and uniform way. Sensing

as a service (S2aaS) is introduced to provide sensing

services using kinds of sensors via a cloud computing
system (Sheng, 2013). In the S2aaS cloud,

heterogeneous sensing devices are abstracted as

services and expose their functionalities with

common accessing interfaces and encodings. Web
Services (Hoang, 2012) are proposed to provide a

standard and interoperable accessing means for

heterogeneous sensing devices. Because of the

constrained resources in the context of the ICPS, the
RESTful Web Services (Garriga, 2016) have been

exploited in some studies for many advantages over

arbitrary Web Services (i.e., SOAP), such as less

overhead, less parsing complexity, statelessness, and
tighter integration with HTTP. Therefore, with the

architecture of S2aaS and RESTful Web Services, it

is able to provide high-level abstraction for the

development of detecting multiple composite events
in ICPSs.

There are some related researches on building

lightweight REST framework for wireless sensor

networks. In the study of environmental sensor
monitoring (Lee, 2014), Restful Web Service is used

for communication with the Arduino-based sensors.

To address the constrained resources in sensor nodes,

Rouached et al. (Rouached, 2012) propose a
lightweight RESTful approach based on Restful SWE

services for interacting with the constrained WSNs.

Taherkordi et al. (Taherkordi, 2011) apply REST

concepts to develop Web services for WSNs and
smartphones as two representative resource-

constrained platform. The above studies have

provided a framework for developing Restful web
services for sensor nodes, however, there are also few

researches on how to efficiently combine kinds of

Restful sensing services for detecting various
composite events.

In this paper, by exploiting REST framework and

expanding the basic architecture of S2aaS, we study

to present a service-oriented and lightweight
collaborative sensing framework with more specific

implementation details for detecting multiple

composite events in ICPSs. Each sensing device

register its service in the sensing cloud platform.
When a user initiates a request of detecting a

composite event, the proposed framework will

automatically resolve the request into a set of sensing

tasks and then push it to a subset of sensing devices
that happen to be in the area of interest. Based on our

proposed collaborative sensing framework with

Restful sensing services, it is very convenient to

provide a sensor web services for various
requirements of composite event detection, enable

users to connect and share the heterogeneous sensor

resources more efficiently.

The rest of this paper is organized as follows. The
Restful sensing services and composite event model

are described in Section 2. In Section 3, we present

the service-oriented collaborative sensing framework.

In Section 4, an automatic sensing service
composition process for detecting a composite events

is introduced. We provide the experimental results in

Section 5 and conclude the paper in Section 6.

2 RESTFUL SENSING SERVICES

2.1 Restful Web Service for Sensing
Nodes

Representational State Transfer (REST) is an
architectural model for building distributed

applications flexibly (Pautasso, 2008). It exploits the

natural structure of the Web and is efficiently

implemented with the Hypertext Transfer Protocol
(HTTP). Considering the constrained resources of

sensing nodes in ICPS, RESTful web service is

suitable to be used in ICPS due to its lightweightness

and its resource-oriented conception. In RESTful
architecture, every sensing sources can be uniquely

identified as a URI, for example, a URI for a vibration

sensor on a sensing node which monitors the status of

the equipment m located in workshop n is shown as
follows:

/{Location}/sensingnode/{n_id}/sensor/vibration,

here, location= /workshop_n/equipment_m.

Based on the unique identification through URIs,
a node is able to provide a RESTful Web service with

Sensing as a Service- A Service-Oriented Collaborative Sensing Framework for Detecting Composite Events in Industrial Cyber-Physical
System

265

a uniform interface by using standard HTTP methods

(GET, PUT, POST, DELETE).The sensing node is
embedded with a lightweight web server with basic

HTTP functionality, e.g., NanoHTTPD (Elonen,

2018), a tiny web server which has been proven to be

suitable for the resource constrained environment.
We can obtain the data from the light sensor by the

following HTTP GET request:

GET /{Location}/sensingnode/{n_id}/sensor/light

HTTP/ 1.1
Content-type: application/json

Although the whole set of standard HTTP

methods could be used, there are some resources

which don’t offer all of them. Some HTTP methods
is not able to be matched to any functionality of the

corresponding resources, e.g., no functionality of the

temperature sensor that could be matched on a

DELETE action.
As shown in Figure 1, for a sensing node deployed

with several sensors, we present a hierarchical

organization of the sensing resources, which are in

turn helpful for generating the URIs of sensing
resources. We can notice that a sensing node may

generally contain the following resources: some

sensors for provide sensing data, LEDs that offers

pulling and changing its state, battery, and tasks that
can be created, supervised, altered and deleted.

Unlike sensors and LEDs which are physical entities,

a task is a logical resource. Given the parameters of

execution frequency, threshold and target sensor, a
task is able to periodically check the corresponding

sensor value against a certain threshold and then alert

if the threshold is exceeded.

Sensing node

{id}

sensor

temperature

vibration

humidity

pressure

led
{id}

battery
task

Equipment m

{id}

actuator node

{id}

Workshop n

Figure 1: Hierarchical organization of sensing

resources.

Therefore, each service provide by a sensing node

can be addressed and accessed with a unique URI.
URIs provide a global naming scheme which allows

lightweight service discovery. With the URIs, kinds

of resources can be organized more effectively and

helpful for building an automatic service discovery
and composition framework.

2.2 The Composite Event Model

Events are classified into atomic events and
composite events. An atomic event denotes an

observable occurrence of a phenomenon or an object

reflected by a single sensing value, e.g., the

temperature of the workshop exceeds a warning
threshold. An atomic event can be represented by e(t,

l, R), where t is the occurrence time of the event and

it could be a time-interval or a time point, l is the

occurrence location which could be a specific point
or field in the workshop, R is expressed by a logic

expression which denotes the condition of the event

occurring. For example, e(14/06/2017, /workshop_n/

equipment_m, temperature>60℃) expresses that the
temperature of the equipment m on 14/06/2017 is

greater than 60℃.

A composite event characterizes an observable

occurrence of a complex phenomenon or an object,
and it is composed by several atomic events with the

specific temporal and spatial constraints. Given an

atomic event ei(ti, li, Ri), a model of the composite

event can be described as follows (Gao, 2015).

1 2

1 1 2 2

(... ,)

((,),(,),...,(,), , ,)

k t l

k k t l

E R R R C C

E e e e C C



   

    


 (1)

where i (0≤ i ≤1) is the confidence of an atomic

event ei which indicates the occurrence probability of
the composite event E when ei is occurring. Ct and Cl

respectively represent the temporal and location

constraints on the atomic events. Ri defines the

occurrence conditions of the atomic events. The
parameter  could be computed from 1 2{ , ,..., }k   ,

and it denotes the occurrence confidence of the

composite event E when all the related atomic events

happen. Therefore, based on the formula (1), each
composite event can be parsed to be several atomic

events with the same temporal and location

constraints and different event occurring conditions.

CTISC 2019 - International Conference on Advances in Computer Technology, Information Science and Communications

266

3 SERVICE-ORIENTED

COLLABORATIVE SENSING

FRAMEWORK

In this section, in order to provide a flexible platform

for building the applications for detecting composite

events, we introduce a service-oriented collaborative

sensing framework based on the RESTful web
services of sensing nodes. The framework shown in

Figure 2 consists of several subsystems and modules.

The first subsystem Rest-Based Sensing Node is

composed by kinds of heterogeneous sensing devices
with different operation systems (e.g., Z-Stack, Tiny

OS, Contiki) and communication methods (e.g., WiFi,

IEEE 802.15.4). These sensing devices are equipped

with a tiny web server supporting the basic web
service interface, and then provide lightweight

RESTful web services with HTTP methods. Each

sensing node registers its services with the following

root URI: /{Location}/sensingnode/{n_id}.

Rest-based

sensing node

Restful Service

URI Publish

Restful Service Registry

Root URI

Registry

URI Resolution
Service

Repository

Service Discovery

Context

Matching

Instance

Searching

Instance

Ranking

Service Composition

Service Query
Candidate services

and their URIs

Composition

Broker

Service Selector

Service Binder

Service

Executor and

Subscriber

Restful Service

Subscribe

Composite Event Detection

Temporal and

Spatial Context

Extract

Composition

Plan Creator

Z-Stack Tiny OS AndriodContiki Z-Stack WinCE

Restful

service URI

crawler

Figure 2: A service-oriented collaborative sensing
framework based on the RESTful web services.

Service Registry is the second subsystem which is
responsible for handling the register requests of each

node, and then gets all the service URIs with a web

service crawler. The URI Resolution module in this

subsystem resolves the URIs of RESTful web
services and then obtains its functionality and spatial

property, which are helpful for the implementation of

service discovery. The third subsystem Service

Discovery has three main modules including Context
Matching, Instance Search and Instance Ranking, and

finds out candidate services and their URIs from

Service Cache according to kinds of service queries

from the subsystem of Service Composition.
The fourth and central subsystem Service

Composition is mainly responsible for providing

composition services in the framework. The

Composition Broker receives a request with
composition plan of a composite event detection tasks,

and then deliver an appropriate composition service

by calling three functional modules including Service
Selector, Service Binder, Service Executor and

Subscriber. The fifth subsystem Composition Event

Resolution is also an important part, which is playing

as a link between the service composition subsystem
and the user who launches the detection request of

composite event. This subsystem is functionally

divided into two main modules including

Composition Plan Creator, Temporal and Spatial
Context Extractor.

3.1 Service Registry

All the Rest-based sensing nodes publish the services
with their root URIs, e.g., /{Location}/sensingnode/{id}.

With the root URIs of sensing nodes, the Restful

service URI crawler sends a request for obtain the

specific service description of each sensing node with
the hRESTS microformat. Then, by using

MicroWSMO, which is a lightweight semantic

service description approach based on WSMO-Lite

service ontology, the service resolution module is
able to add semantic information on top of hRESTS

service document. With the WSMO-Lite service

ontology, a sensing service can be described with the

following four types of service semantics:
information semantics, functional semantics, non-

functional semantics and behavioral semantics.

We can then extract RDF data from the

MicroWSMO semantic descriptions for the RESTful
services. The RDF data could be mapped with the

four types of semantics (functional, nonfunctional,

behavioral and information) defined by WSMO-Lite,

and then a RESTful service can be described with
RDF data as follows.

RESTful Service

Functional semantics:
Has_ServiceId: onto:restws#ServiceId
Has_ServiceLabel: onto:restws#Label
Has_Provider: onto:restws#NodeId

Nonfunctional semantics:
Has_ServiceLocation: onto:restws#ServLocation
Has_ServiceTime: onto:restws#ServTime
Has_BatteryLevel: onto:restws#BatteryLevel
Has_cost: onto:restws#Cost

Behavioral semantics:
Has_OperationId: onto:restws#OpId
Has_OperationLabel: onto:restws#OpLabel
Has_OpMethod: onto:restws#OpMethod
Has_URI: onto:restws#URI

Information semantics:
Has_input: onto:restws#OpInput
Has_output: onto:restws#OpOutput

Sensing as a Service- A Service-Oriented Collaborative Sensing Framework for Detecting Composite Events in Industrial Cyber-Physical
System

267

3.2 Service Discovery

Given a service query SQ={FQ,NQ,IQ} from the
service composition module, the service discovery

module returns an appropriate service instance

SI={FI,NI,BI,I I} by matching the query with the huge
amount of candidate service instances. As shown in

Figure 3, we present a multi-stage semantic service
discovery process, which includes the following steps:

1) service type lookup based on functional and

information semantics; 2) service filtering by context

matching with nonfunctional semantics (mainly with
spatial and temporal contexts); 3) service ranking

with some key factors from the service nonfunctional

semantics (e.g., cost, residual battery level), and

service monitor module collects the dynamic
nonfunctional information.

Service

query
Service

instance

1. Service

type lookup

3. Service

instance ranking

2. Service filtering

by context matching

Service Discovery

Service Repository Service Monitor

Service Composition Module

SQ={FQ,NQ,IQ} SI={FI,NI,BI,II}

Figure 3: A multi-stage service discovery process.

3.2.1 Service Type Lookup

This the first stage of service discovery process. The

service type lookup module matches the service query

and the service instances based on the functional and

information semantics, and it selects out a set of
appropriate RESTful services with the same service

type of the service query. However, because the

process of matching semantic ontology concepts

among all the individual service instances has
typically been time and resource intensive, some

efficient service organization model and matching

algorithms should be adopted.

As shown in Figure 4, a service organization and
Matching with Dynamic Bloom Filter (DBF) is

exploited. Firstly, the RESTful semantic services in

the service cache is categorized with different service

types, and each service type is mapped into a bloom
filter with m bits which manages kinds of service

types. With a number of j hash functions hj(), the

functional and information semantics of a service

instance are hashed into random numbers between 1

and m, and plus one to the numerical numbers of

corresponding bits. Then, the service instances which
have the same hash operation results are clustered

together.

Secondly, each cluster of service instances with

the same service type is managed with a dynamic
bloom filter including multiple static bloom filters

with m bits. The service instances which have the

same contexts (mainly refer to spatial and temporal

contexts) are managed with a static bloom filter.

Service

Cluster1

Service Type 2 Service Type 3

0

2

0

0

2

0

2

0

2

0

2

0

0

0

2

0

SBF1 SBF2

h1(sa)

h1(sb)

h2(sb)

h2(sa)

hj(sa)

hj(sb)

h1(sc)

h1(sd)

h2(sd)

h2(sc)

hj(sc)

hj(sd)

m
 b

it
 v

e
ct

o
r

SBF1 SBF2

DBF

Service Type 1

Service

Cluster2

Service

Cluster3

DBF DBF

Context1 Context2

1 1 1 2 0 1 1 0 2Bloom Filter

for service type lookup

h1(sc1) hj(sc1) h1(sc2) hj(sc2)

Figure 4: Service organization and Matching with
Dynamic Bloom Filter.

3.2.2 Service Filtering by Context Matching

This module is helpful for reducing the service
exploration space greatly, and it is a lightweight

service filtering process based on a small set of

contexts (mainly on spatial and temporal contexts,

e.g., service location, service time) which are
extracted from the service nonfunctional semantics.

In order to improve the efficiency and success ratio of

service discovery, the context matching module

filters out the RESTful semantic services of which the
spatial and temporal contexts do not match the

contexts of the service query apparently. For example,

in order to monitor a dangerous gas leakage which

may happen at workshop A, the services provided by
the sensors far away from workshop A should be

filtered out first.

Besides, depending on their value types, the

contexts are generally classified into numeric and
instance contexts. For example, the service location

“workshop A” is an instance and spatial context, and

the service time “14/06/2017” is a numeric and

temporal context. As shown in Figure 5, the service
instances with the same spatial and temporal contexts

are managed by the same static bloom filter. Then, the

service location and service time of a service query

and service instances are matched by the static bloom
filters contained by a DBF with the same service type.

CTISC 2019 - International Conference on Advances in Computer Technology, Information Science and Communications

268

After service type lookup and service filtering by

context matching, we can obtain a set of service
instances that match the functionality and context

requirements of a service query.

3.2.3 Instance Ranking

In order to get a most appropriate service instance
from the candidate service instances selected out by
the above steps, this module ranks the candidate
service instances based on their service cost, quality
of service, residual battery level, etc. The output of
the ranking process is an ordered list of service
instances corresponding to the non-functional
requirements expressed by the service query.
Generally, those service instances that have high
battery level and low service cost get higher rankings.

4 AUTOMATIC SENSING

SERVICE COMPOSITION FOR

DETECTING A COMPOSITE

EVENTS

4.1 Composition Plan Description
Language (CPDL) for Composite
Event

For a composite event detection request, we need

make a composition plan for it. As described in
section 3.2, a composite event is denoted as

1 2(... ,)k t lE R R R C C      , and Ri denotes the

condition of an event occurring which is monitored

by a sensing service Si. For example, an atomic event
temperature>60℃ should be monitored by a

temperature sensor with its service SensingTemperature.
In order to distribute a composite event detection request

to kinds of sensing services, here, the language called

Composition Plan Description Language (CPDL)

(Han, 2014) has been designed to describe

composition plans.
An example of a CPDL document for a fire event

detection is shown in Listing 1. This document

describes a composition plan with the context

requirements including a specific location and a
specific data acquisition frequency. It also describes

the composite service consisting of three component

services SensingTemperature, SensingLight and

SensingHumidity which detect the related atomic
events.

Listing 1. Composition Plan Description Language
(CPDL) for a fire event detection

4.2 Automatic Sensing Service
Composition

The service composition plan of a composite event
detection is then transferred to the service broker

module in the Service Composition subsystem. The

service broker invokes three functional modules to

accomplish the task of service composition, and the
specific process is described as follows:

1） Service Query: The service broker resolves the

CPDL for a composite event detection request,

and extracts the specific contexts and component
services defined by the CPDL. For example, the

location workshop_n and the required component

service SensingLight can be extracted. Then, the

service queries are sent to the service discovery
subsystem and then waiting for the returned

candidate service instances and their URIs.

2） Service Selection: With the candidate service
instances for each required component service,

this module selects the appropriate combination

according to the overall non-functional

requirements of the composite event detection,
such as available battery level, service cost.

Therefore, there will be a combinatorial

optimization problem for selecting service

instances for detecting multiple atomic events,
and the intelligent particle swarm optimization

algorithm is exploited to handle this problem.

3） Service Binding: This module binds the selected

service instances to their operations. For example,
the service SensingLight provided by a sensor

node 1 in workshop 1 is bound to the following

operation:
GET http://workshop_1/sensingnode/{1}/sensor/light

4） Service Executor and Subscriber: This module is

responsible for executing the whole process of

service composition, and sends the requests
according to the defined operations. Generally,

there are two ways to get sensor data: the

request/response mode is always used to get

sensor data once, and the subscription/

1. <CSDL xmlns:xsi=http://xxxx/SaaS>
2. <context location=workshop_n, data_freq=5
seconds>
3. <service> SensingTemperature</service>
4. <service>SensingLight</service>
5. <service>SensingHumidity</service>

6. </context>

7. </CSDL>

Sensing as a Service- A Service-Oriented Collaborative Sensing Framework for Detecting Composite Events in Industrial Cyber-Physical
System

269

publishing mode is always suitable for gathering

data periodically.

5 PROTOTYPE AND

EXPERIMENTS

As shown in Figure 5, a system prototype was

developed to illustrate the operation of the service-

oriented collaborative sensing system and to test the

feasibility and scalability of the system. There are
kinds of sensor nodes which are deployed in two

workshops, and the sensor nodes includes

temperature and humidity sensor node, light sensor

node, smoke sensor node, CO2 sensor node, CCD
node, and so on. The sink node is responsible for

forwarding the sensing data from the sensor nodes to

the platform and the operation commands from the

platform to the sensor nodes. All the sensor nodes are
equipped with a lightweight web server NanoHTTPD
[11], and respond kinds of HTTP requests in JSON

format. The sensor nodes register their ID and service

capabilities at the platform. The gateway is mainly
responsible for data forwarding and network protocol

conversion. The platform of SaaS (Sensing as a

service) in Figure 5 implements the subsystems

defined in Figure 3, including service registry, service
discovery and service composition. The platform

receives various requests of composite event

detection from web clients and returns the related

messages when the composite events happen and
have been detected.

Temperature/Humi

dity sensor node

Platform of

Sensing as a Service

Event

Detection

Request

Event

Detection

Response

Sink

Node

Sink

Node

Light sensor

node

Smoke

sensor node

CO2 sensor node CCD node
WSN Sink

node

workshop 1

workshop 2 Gateway

Web

Client

Figure 5: A system prototype for verifying the

proposed service-oriented collaborative sensing

framework.

 In order to evaluate the feasibility and scalability

of the proposed system, the following experiments

were carried out to verify the service discovery,

service selection as well as service composition and
execution processes. Firstly, we measure the cost of

data transmission for the proposed Restful service

composition method. For the request/response
process of the same component service (e.g.,

SensingLight), we study the performance on data

transmission duration by comparing different

technologies of web services including REST/JSON,
SOAP/XML and REST/XML, and the experiment

results are shown in Figure 6. It is clear that the

reduction of the transmission time is more obvious by

using REST instead of SOAP. Even for REST, with
JSON format the results are better than with XML

since XML is verbose.

Figure 6: Data transmission duration – REST/JSON

vs REST/XML vs SOAP/XML.

As shown in Figure 7, we also evaluate the power

consumption of getting list of all services on a
specific sensing node when using different

technologies of web services including REST/JSON

with SOAP/XML. As it is expected, SOAP/XML-

based Web service consumes much more energy,
especially for data communication. The CPU power

consumption due to parsing and processing SOAP

messages is ignorable when compared with the power

usage of radio.

Figure 7: Power consumption for different
technologies of web services.

The service discovery and selection process is the

most time-consuming part in the whole service

CTISC 2019 - International Conference on Advances in Computer Technology, Information Science and Communications

270

composition process. Therefore, the second set of

experiments aims to measure the time performance of
service discovery and selection as the number of

sensor nodes increases from 50 to 500, and the results

are shown in Figure 8. We can find that the time of

service composition keeps under 150ms even in a
critical situation with the participation of 500 devices,

and the stability of the system has been well

guaranteed with the proposed service discovery and

selection method.

Figure 8: Duration of service composition process vs

the number of sensor nodes increase from 50 to 500.

6 CONCLUSION AND FUTURE

WORK

In this paper, by exploiting the technology of
RESTful web service, we have proposed a loosely-
coupled, lightweight and service-oriented
collaborative sensing framework for detecting
multiple composite events in ICPSs, and provides
more specific implementation details about RESTful
service registry, service discovery, service
composition. We also present an application
prototype and evaluate the performance of
REST/JSON based web service by comparing with
other technologies of web services including
SOAP/XML and REST/XML. The experiment
results show that RESTful-based sensing service
collaboration outperforms SOAP-based one with
more lightweight communication and less power
consumption as expected. The future work will focus
on how to optimize the process of service
composition when handling concurrent requests of
composite event detection.

ACKNOWLEDGEMENT

Our work is supported by Guangdong Provincial Key
Laboratory of Cyber-Physical System as well as
multiple funds in china, including the National
Natural Science Foundation of China (61502110,

61672170), the Key Program of NSFC-Guangdong
Joint Funds (U1801263, U1701262), Major projects
of science and technology plan of Guangdong
Province (2015B090922013, 2017A010101017,
2017B090901019,2016B090918045,2016B0909180
17).

REFERENCES

C. L. Chen, J. Yan, N. Lu, et al., 2015. Ubiquitous
Monitoring for Industrial Cyber-Physical Systems Over
Relay Assisted Wireless Sensor Networks. IEEE
Transactions on emerging topics in computing, vol 3,
no. 3, pp. 352-362.

D. Guinard, Vlad Trifa, et al., 2010. Interacting with the
SOA-Based Internet of Things: Discovery, Query,
Selection, and On-Demand Provisioning of Web
Services. IEEE Transactions on services computing,
vol. 3, no. 3, pp. 223-235.

X. Sheng, J. Tang, X. J. Xiao, et al., 2013. Sensing as a
Service: Challenges, Solutions and Future Directions.
IEEE Sensors Journal, Vol. 13, No. 10, pp. 3733- 3741.

D. D. Hoang, H. Y. Paik, 2012. Service-Oriented
Middleware Architectures for Cyber-Physical Systems.
IJCSNS International Journal of Computer Science and
Network Security, Vol.12 No.1, pp.79-87.

M. Garriga, C. Mateos, Andres Flores, et al., 2016.
RESTful service composition at a glance: A survey.
Journal of Network and Computer Applications, 60, pp.
32-53.

S. C. Lee, J. Y. Jo, et al., 2014. Environmental Sensor
Monitoring With Secure Restful Web Service.
International Journal of Services Computing, Vol. 2,
No. 3.

M. Rouached, S. Baccar, et al., 2012. RESTful Sensor Web
Enablement Services for Wireless Sensor Networks,
IEEE Eighth World Congress on Services, pp. 65-72.

A. Taherkordi, F. Eliassen, et al., 2011. Chapter 9: RESTful
Service Development for Resource-Constrained
Environments. REST: From Research to Practice.

C. Pautasso, O. Zimmermann, et al., 2008. Restful web
services vs. "big" web services: making the right
architectural decision. In Proceedings of the 17th
international conference on World Wide Web, pp. 805-
814, NY, USA.

J. Elonen. Nanohttpd. https://github.com/NanoHttpd/
nanohttpd. (last accessed 24 Nov 2018)

J. Gao, J. Z. Li, Z. P. Cai, et al., 2015. Composite Event
Coverage in Wireless Sensor Networks with
Heterogeneous Sensors. INFOCOM, pp.217-225.

S. N. Han, G. M. Lee and N. Crespi, 2014. Semantic
Context-aware Service Composition for Building
Automation System. IEEE Transactions on industrial
informatics, vol.10, no.1, pp.752-761.

Sensing as a Service- A Service-Oriented Collaborative Sensing Framework for Detecting Composite Events in Industrial Cyber-Physical
System

271

