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Abstract: With the recent surge of deep neural networks, depth prediction from a single image has seen substantial 

progress. Deep regression networks are typically learned from large data without much constraints about the 

scene structure, thus often leading to uncertainties at discontinuous regions. In this paper, we propose a 

structure-aware depth prediction method based on two observations: depth is relatively smooth within the 

same objects, and it is usually easier to model relative depth than model the absolute depth from scratch. 

Our network first predicts an initial depth map and takes an object saliency map as input, which helps to 

teach the network to learn depth refinement. Specifically, a stable anchor depth is first estimated from the 

detected salient objects, and the learning objective is to penalize the difference in relative depth versus the 

estimated anchor. We show such saliency-guided relative depth constraint unveils helpful scene structures, 

leading to significant gains on the RGB-D saliency dataset NLPR and depth prediction dataset NYU V2. 

Furthermore, our method is appealing in that it is pluggable to any depth network and is trained end-to-end 

with no overhead of time during testing. 

1 INTRODUCTION 

Depth prediction plays an essential role in 

understanding the 3D geometry of a scene. It has 
been shown that depth information can largely 

facilitate other vision tasks such as reconstruction 

(Silberman et al. 2012), recognition (Fox 2012) and 

semantic segmentation (Cheng et al. 2017). Stereo 
images (Kong and Black 2016) or image sequence 

(Suwajanakorn, Hernandez, and Seitz 2015) usually 

suffice for accurate depth prediction. While for 

single-view depth prediction, it is an ill-posed 
problem due to the lack of geometric information. 

Ambiguities or uncertainties often happen at those 

discontinuous regions between objects. 

In this paper, we propose a structure-aware 
depth prediction method based on two observations: 

1) depth is relatively smooth within the same objects 

when compared to within the full image; 2) and it is 

often easier to model relative depth than model the 
absolute depth value. 

We incorporate such observations by learning 

to refine depth map with the guidance of object 

saliency (we use the saliency detector (Tong et al. 
2015)). Generally, the saliency map of objects is a 

simple way to reveal the scene structure in terms of 

objects. Saliency map is also class-agnostic, thus can 

cover a broad range of objects each with spatially 

smooth depth values within its contour. As a result, 

we are able to first estimate an anchor depth value of 

the whole scene, from an initial depth map 
reweighted by object saliency. Since almost all 

object regions have small variance in depth values, 

such anchor depth estimation can act as a reliable 

reference. Then we take the anchor depth for depth 
refinements of entire image in a relative way. 

Previously (Chen et al. 2016) explored relative depth 

estimation, but both their depth ground truth and 

prediction are just ordinal, not real depth values. 
Here we design a relative depth loss for our network 

to learn the genuine relative depth of other pixels 

versus the estimated anchor depth, and penalize the 

deviation to correct relative depth. 
Fig. 1 demonstrates our overall learning 

framework. During training, we propose two 

formulations of relative depth constraints to 

supervise the depth refinement process. At test time, 
such finetuned network is simply applied for depth 

prediction without any overhead. Obviously, our 

method is pluggable to any depth network and can 

be easily trained end-to-end. We show our saliency-
guided depth model does learn some scene structures, 

leading to significant gains on the RGB-D saliency 

dataset NLPR and depth prediction dataset NYU V2. 
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In summary, the contributions of our method 

are as follows: 

 We propose the first single-image depth 
prediction method guided by object saliency, to 

the best of our knowledge. 

 A novel relative depth loss is proposed to learn 

residuals versus salient anchor depth to 
improve prediction. 

 Our method improves over state-of-the-art 

depth networks at no time cost while being 

pluggable to any type of depth prediction 
networks. 

2 METHOD 

2.1 Training Initialization 

For each training image, we need to get the initial 
depth map prediction and a saliency map to improve 

the former. Our method is applicable to any depth 

network architecture, and we will show some 

popular ones in our experiments. The saliency map 
is acquired following the method in (Tong et al. 

2015), which uses a bootstrap learning algorithm for 

salient object detection where both weak and strong 

models are exploited. 

2.2 Anchor Depth Estimation 

We already know that the depth is relatively smooth 

within object regions, which means their depth 
variance is pretty low compared to the variance in 

the full image. Hence we rely on object saliency 

detection to segment out all object regions with 

consistent depth values. We also find it reasonable to 
rely on the class-agnostic salient regions to obtain a 

weighted average of depth value as a stable 

reference in depth. 

We consider the output depth map from the 

network as N

iid 1}{ 
, and the input saliency map as N

iip 1}{ 
, 

where
ip means the probability that i th pixel belongs 

to the salient object. After that, we define the 

saliency map as a weighting map and the normalized 

weights
ip̂ as follows: 
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Figure 1: Overview of our saliency-guided depth prediction framework. One base depth network first 

generates an initial depth map and we take an extra saliency map by (Tong et al. 2015) to refine depth. We 

first estimate a reliable anchor depth from object saliency-weighted depth values, and impose the relative 

depth loss (versus anchor) as well as regular regression loss to finetune our network. This leads to improved 

structure-aware predictions, which can be obtained by simply forwarding the network at test time. 
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Then the depth conditional expectation of both 

prediction d and ground truth
*d on p̂ can be 

formulated as: 
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Through these calculations, we obtain the 

baseline depth values of the prediction and the 
ground truth, which are relatively more reliable than 

the global mean values: )()|( * dVarpdVar  . 

2.3 Relative Depth Loss 

To define the relative depth loss, we first normalize 

the prediction and the ground truth with the anchor 

depth value as shown in Figure 2. Here we design 
two kinds of relative depth constraints, 

corresponding to two common types of monocular 

ambiguities. By means of these, the accurate 

prediction can be propagated from the reliable 
salient regions. 

2.3.1 Absolute Difference Formulation 

One representation of monocular ambiguity is that 

the absolute difference of depth values between 

different regions of a single image can be hardly 
confirmed. To deal with this kind of ambiguity, we 

define the depth absolute relation both over the 

prediction and the ground truth as follows: 

)ˆ|(
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The depth absolute relation measures depth 

differences as if both the prediction and the ground 

truth values are shift along the optical line of sight 
regardless of the bias between two expectations 

calculated in Equation (2). 

2.3.2 Relative Ratio Formulation 

Another representation of monocular ambiguity is 

that the depth ratio between different regions of a 
single image can be hardly judged. Likewise we 

define the depth ratio relation like this: 
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By the constraint towards depth ratio relations, 

we can exact the depth scale between the prediction 

and the ground truth as if the two depth maps are 

projected and aligned with their salient regions. 

2.4 Full Objective 

Generally speaking, a standard loss function for non-

parametric regression problems is L norm loss 
(usually MSE) or even some advantage regression 

loss(i.e. BerHu from (Laina et al. 2016)) between the 

prediction d and ground truth depth value *d . We 

record this loss as
dL . 

Figure 2: Illustration of the Relative Depth Loss. After estimating the anchor depth value, we normalize 

both the predicted and ground-truth depth maps by their absolute values within salient regions. We design two 

approaches to constrain relative depth relation corresponding to two kinds of depth ambiguities. 
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Besides the standard depth loss
dL above, we 

choose L1 loss as the criterion over two kinds of 

depth relations. That is: 
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And our final loss function can be formulated 

as follows: 

ratioratioabsabsd LLLL **    (6) 

Here
abs and

ratio act as the loss weights. 

3 EXPERIMENTS 

3.1 Datasets 

To evaluate the effectiveness of our method, we 

perform experiments over two datasets: the RGB-D 
saliency dataset NLPR (Peng et al. 2014) and indoor 

depth prediction benchmark dataset NYU depth v2  

(Silberman et al. 2012). 

3.1.1 NLPR Dataset 

The NLPR dataset consists of 1000 RGB-D pairs 
collected with Kinect, whose salient object is 

already labeled out. The aspect ratios of data in this 

dataset are not uniformed, with 698 horizontal and 

302 vertical. To make a fair comparison, we 
randomly choose a test set with 245 horizontal and 

108 vertical, which shares almost the same 

proportion between different aspect ratios. 

3.1.2 NYU Dataset 

The NYU depth dataset is one of the largest RGB-D 
datasets for indoor scene reconstruction. The labeled 

part contains 1449 RGB-D pairs with dense depth 

maps. We perform this part of experiments on the 

labeled part of this dataset and use the common test 
subset of 654 images split by (Eigen, Puhrsch, and 

Fergus 2014). 

3.2 Metrics 

We evaluate each method using several errors and 

accuracy settings from previous depth prediction 

works: 
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3.3 Results 

3.3.1 NLPR Dataset 

Quantitative results for NLPR dataset are provided 

in Table 1. It is illustrated that our method benefits 

each baseline method both on accuracies and errors. 
From the qualitative results shown in Figure 3, we 

find that through our method the structure of the 

salient region could be preserved compared to the 

baseline method. And the performance of our 
method would be limited by the accuracy of the 

saliency map. The structure of salient object in the 

vertical case are not so clear compared to the 

horizontal case, as the quality of these two saliency 
maps vary obviously. The effects by the accuracy of 

saliency maps are further evaluated in the Ablation 

Study subsection. 

 

3.3.2 NYU Dataset 

The quantitative results in Table 2 illustrate that our 

method help each baseline method to gain an overall 

boost in performance. Although the ability of pure-

learning baseline methods is relatively limited with 
small amount of training data, our proposed method 

cascading on baselines would be comparable with 

Figure 3: Qualitative results of the NLPR 

dataset. (a): input images. (b): ground truth 

saliency labels. (c): saliency maps generated off-

line following the method in (Tong et al. 2015). 

(d): output depth maps of the best baseline 

method (Laina et al. 2016)*. (e): output depth 

maps of our proposed method. 
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other state-of-the-art methods. Note that the NYU 

Depth dataset actually does not contain salient object 
label, but the saliency maps we obtained are still 

meaningful. 
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3.4 Ablation Study 

We conduct a series of ablation studies to analyze 

the details of our method on both datasets. 
Quantitative results are shown in Table 3. 

3.4.1 Mode of Anchor Depth Estimation 

In our method we use the saliency map to reweight 

both the prediction and ground truth to confirm the 

anchor depth. To confirm the effects of this 
reweighting, we design two other reweighting ways: 

full-image reweighting and foreground reweighting. 

Full-image reweighting makes the weight of every 

pixel ip equals to 1. Foreground reweighting makes 

the weights equals to 1 on pixels whose depth value 
ranks front within the threshold percentage and 

leaves the rest to 0. 

The results on both datasets indicate that 

different reweighting ways have some effects but 
our reweighting based on salient object detection is 

more effective than alternative ways. 

3.4.2 Constraints of Depth Relations 

The two kinds of constraints towards depth relations 

are designed for different representations of 
monocular ambiguity. Thus we evaluate the gain of 

each kind independently. 

The results on both datasets show that two 

kinds of constraints have their own positive effects 
and would gain advance when performed together. 

3.4.3 Accuracy of Saliency Map 

The saliency maps used in our method are generated 

off-line following (Tong et al. 2015). We explore the 

effects of saliency accuracy for the saliency ground 
truth is contained in the NLPR dataset. According to 

Equation (1) in section 2.2, the saliency map only 

have proportional meaning so we evaluate saliency 

accuracy with cosine similarity. 
Results in Table 3 show that the accuracy of 

saliency would slightly contribute to lower RMSE 

and higher 3 , but the overall effect is difficult to 

evaluate. One possible reason is that the definition of 

saliency is subjective so that the confidence of the 
accuracy remains some doubt. However, this does 

not fade the effectiveness of our method. 

 

4 CONCLUSIONS 

This paper proposes a structure-aware deep model 

for depth prediction from single image. Our network 
predicts an initial depth map and uses an extra object 

saliency map to learn depth refinement. Concretely, 

we estimate a stable anchor depth value from the 

detected salient depth regions, and learn to penalize 
the difference in relative depth versus the estimated 

anchor. We show such relative depth constraint 

significantly improves depth prediction accuracy, 

and learns some helpful scene structures. 
Furthermore, our method is pluggable to any depth 

network and can be trained end-to-end without 

inference overhead. 
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