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Abstract: Traditional Viterbi decoding algorithm degrades performance under correlated noise. Inspired by the 

powerful learning from data of deep neural networks, we apply denoising convolutional neural network 

(DnCNN) to channel decoding under correlated noise. In this paper, we propose a DnCNN hard decision 

Viterbi decoder (short for DHDV decoder) architecture to enhance the performance of convolutional codes 

under correlated noise. The architecture applies DnCNN to denoise and improves the decoding SNR (signal 

to noise ratio) through the correlation of noise correlation. Then, the Viterbi Algorithm decoder decodes 

from the denoised data. DHDV decoder obtains greater BER performance improvement under stronger 

noise correlation, and it is robust under different convolutional codes and correlated noise models. 

Comparing the complexity of DnCNN network and matrix multiplication whitening method, DnCNN 

network complexity is lower when the code length is longer. 

1 INTRODUCTION 

The convolutional code is a type of error-correcting 

code that generates parity symbols through the 

sliding application of a boolean polynomial function 

to source bits and is widely used in WLAN and TD-
LTE communication system. The Viterbi algorithm 

based on Maximum Likelihood Decoding Method 

performs well under AWGN channels. However, the 

practical channel is not ideal like AWGN channel. 
The correlation in channels and noise exists in the 

real communication system. Noise correlation is 

caused by filtering, oversampling and device noise 

(S. K. Sharma et al, 2013). Colored noise is from 
common buildings, residential electronic in power 

line communication (L. Di Bert et al, 2011) and 

exists in 10GBASE-t Ethernet (B. Karanov, 2018). 

The channel decoder is always designed for the 
realistic channel environment, but not performing 

well under correlated noise (J. D. Wang and H. Y. 

Chung, 1900). The popular method to solve the 

noise correlation is to transform correlated noise to 
white noise. However, it is hard to get expert 

knowledge about the correlated noise, which 

increases the difficulty of estimating noise. In 

addition, correlated noise presents diverse, so the 

specific structure is desired for each type of 

correlated noise. Moreover, the problem of high 
complexity exists in noise whitening (T. Ishihara 

and S. Sugiura, 2016), which needs matrix 

multiplication.  

Nowadays, Deep learning (DL) provides new 
ideas for solving complex problems and it shines in 

computer vision (K. He et al, 2016), natural 

language processing (I. Sutskever et al, 2014), 

pattern recognition and many other areas for his 
strong ability to learn from the training data. The 

potential of DL to the physical layer has increasingly 

attracted our attention and the DL-based methods 

provide new ideas to tackle communication 
problems (T. Wang et al, 2017). However, no work 

is mentioned about the channel decoder for 

convolutional code under correlated noise. 

In this paper, we use DnCNN to remove the 
interference caused by correlated noise before hard 

decision Viterbi decoder decoding for the 

convolutional codes. The DnCNN hard decision 

Viterbi decoder (short for DHDV decoder) receives 
the bits from the channel. Then, we divide the 

received bits into several fixed-size blocks and input 

them in the trained DnCNN model. The data from 

the channel can be regarded as a 2D image and 
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Figure 1: Network architecture of the DnCNN denoise. 

DnCNN can extract feature for denoising. After the 
DnCNN model, the hard decision Viterbi algorithm 

follows to decode for the source bits. The DnCNN 

model can improve the decoding SNR and hence the 

DHDV decoder achieves better decoding 
performance. 

The DHDV decoder has many advantages. 

Firstly, it performs better than the hard decision 
Viterbi decoder, even better than the soft decision 

Viterbi decoder under the strongly correlated noise. 

Besides, the DnCNN model mainly consists of CNN 

structure, which requires a few parameters to 
generate the neural network, so it runs fast in the 

calculation. Secondly, the DnCNN model learns the 

network directly from the training data, so it does 

not require knowledge from the channel and 
additional ways. Thirdly, the DHDV decoder 

structure is flexible. As for different situations, we 

can obtain the new training data and retrain the 

DnCNN model. Unlike the difficulty of data 
acquisition in images and texts, we can generate as 

many training samples as we like through man-made 

signals. 

2 RELATED WORK 

2.1 DnCNN Network 

Combined with Residual learning and batch 

normalization techniques based on CNN, DnCNN 

gets the better performance in Gaussian denoising, 
image resolution and JPEG image deblocking (K. 

Zhang et al, 2017). Figure 1 illustrates the DnCNN 

architecture.It consists of 6 convolutional layers. For 

the first Conv+ReLU layer, 20 filters of size 2×3×1 
are used to generate 20 feature maps and rectified 

linear unit is respectively defined as 

 

 ( ) max{0, }relug x z  (1) 

As for Conv+BN+ReLU layer, 20 filters of size 

2×3×20 are used, and batch normalization is added 
between convolution and ReLU, which can speed up 

the convergence of training. For the last Conv layer, 

1 filter of size 2×3×20 is used to reconstruct the 
output. Besides, output matrix size should keep the 

same as the input matrix size, we directly pad zeros 

before convolution to make sure that each feature 

map of the middle layers has the same size as the 
input matrix. 

In general, the training efficiency of mini-batch 

stochastic gradient descent (SGD) is largely reduced 

by internal covariate shift. Batch normalization is 
proposed to alleviate the internal covariate shift by 

incorporating a normalization step and a scale and 

shift step before the nonlinearity in each layer (K. 

Zhang et al, 2017). For batch normalization, only 
two parameters per activation are added, and they 

can be updated with back-propagation. Batch 

normalization performs well at fast training, better 

performance, and low sensitivity to initialization. 
The DnCNN adopts a residual learning strategy, and 

the hidden CNN layers aim to remove the clean 

signals implicitly. The motivation for doing this is to 

use residuals to learn described entity mapping or 
approximate identity mapping. 

2.2 Deep Learning for Communicaition 

O’Shea et al (2017) use auto-encoder to design the 
communication system through the machine learning. 

The DnCNN based on CNN is robust and low-

complexity in image denoising (K. Zhang et al, 

2017). Learned Denoising-based Approximate 
Message Passing (LDAMP) network based on 

DnCNN has been applied to the channel
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Figure 2: The channel decoding structure.

estimation for beamspace mmWave massive MIMO 

system and thus presents excellent performance (H. 

He et al, 2018). The deep learning-based decoding 

of polar codes shows a competitive performance (T. 
Gruber et al, 2017; S. Cammerer et al, 2017). Fei 

Liang et al (2018) design an iterative BP-CNN 

architecture for decoding LDPC code under 

correlated noise and use CNN network to estimate 
the noise efficiently. In addition, deep learning is 

applied to communication over the air (S. Dörner et 

al, 2018) and enables the optimization of the 

transceiver in a single end-to-end process (B. 
Karanov et al, 2018). 

The early studies do not provide an effective 

solution to the performance degradation problem of 

traditional convolutional code decoding algorithms 
under correlated noise. In this paper, we design the 

DHDV decoder to improve the decoding 

performance.  

3 SYSTEM MODEL  

In this section, we introduce the DHDV decoder in 

detail. In order to show our system clearly, we will 

present our system framework firstly. Besides, the 
noise correlation model is explained in order to 

demonstrate our system model comprehensively.   

Then, we will explain why DnCNN can work in 
DHDV decoder. Finally, we will introduce how to 

train the network. 

3.1 System Framework 

Figure 2 illustrates our proposed architecture. At the 

transmitter, the convolution code is defined as 

( , , )n k K  code with k input bits, n output bits, and K 

constraint length. The uniformly distributed source 

bits u of length k is encoded into target bits s of 
length n through the boolean polynomial function. 

Then, the target bits s are mapped to a symbol vector 

x through BPSK modulation. The symbols will pass 

through the Gaussian additive noise channel. 

The convolutional codes such as (2, 1, 7) and (3, 

1, 7) convolutional codes have small receive 

dimensions, so we apply the temporal dimension to 

the correlated noise in our model. The correlated 
noise is denoted as   

 

 
1/2

c wn n C  (2) 

where 
wn  is an n M  matrix of independent 

identically distributed, standard Gaussian random 

variables. To keep the power of noise constant, 

(1 / ) { }=1M trace C  is required. We use the standard 

noise correlation model mentioned in the literature 

(S. K. Sharma et al, 2013). The correlation matrix C 

is given by: 
 

 
    ,   

=
( ) ,   

j i

ij i j

c i j
C

c i j



 

 



  (3) 

where ijC  is the ( , )i j th element of C and c is the 

correlation coefficient with 1c  . 

At the receiver, the symbols are obtained by 

 

 cy x n   (4) 

Then, the DnCNN model filters the noise from y 

according to the noise correlation. The DnCNN 
estimate the noise, and y subtract it to obtain the 

estimation of x, which is denoted as x̂ . The symbol 

x̂  will be judged as ŝ  just consist of 0 or 1 through 

the hard decision. At last, we can use the Viterbi 

algorithm to decode for the source code. 

We regard the data from the channel as a 2D 
image, and not only the correlation between the 

convolutional code symbols but also the correlation 

between the noise signals is well suited for the 

feature extraction. 

3.2 Training 

In our design for the DnCNN, the input matrix size 

keeps same as the length of the decoding window of 

the Viterbi decoder, designed as 50n  matrix. We 
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train the DnCNN model to perform well before 

putting it into the DHDV architecture. 
Many parameters influence the performance of 

the DnCNN. The parameters optimization dealing 

with the optimization of neural work is called hyper-

parameter optimization (J. S. Bergstra et al, 2011). 
In this paper, we do not further consider the 

optimization and choose general parameters to 

achieve the performance of the DHDV decoder. The 

network is initialized using random initialization. 
We choose mean squared error (MSE) as the loss 

function to train the DnCNN. The goal of the 

training process is to minimize the loss. 

 

 
2

2
( , )f u v u v   (5) 

The training data needs to be generated before 

training the DnCNN network. In the practical use for 
network training, the validation data is generated to 

test the capability of network and void overfitting. 

We use single SNR (measured as 0/bE N ) training 

data to train the network. Our training of DnCNN 

network is implemented in Keras (Manaswi and 

Kumar N, 2018). The neural network runs on fast 
concurrent GPU architecture, which speeds up 

learning. After choosing {1,2,3,4,5,6}dB  training 

data to train the network individually, we found 
training model based on 3dB training data presents 

slightly better performance comparing the loss value 

on the uniform validation data containing different 

SNRs. We should emphasize that this is a reasonable 
but not best way to select a training model. We just 

provide a simple basis for selecting model. 

Table 1: DnCNN SETTING FOR EXPERIMENTS 

DnCNN input data size 50n  

Kernel size 2 3  
Total parameter number 15261 

Trainable parameter 
number 

15021 

Mini-batch size 500 

Num of the training 
data 

1000000 

Num of the validation 
data 

100000 

SNR for generating the 
training data 

3dB 

Initialization method Random initialization 

Optimization method Adam optimization 

We use the mini-batch gradient descent method 
to train the network. Each mini-batch contains 500 

blocks of training data and the network updates the 

parameters one time based on one mini-batch. We 

adopt Adam optimization (D. Kingma and J. Ba, 

2015) method to adjust the learning rate adaptively 

for training. We check the loss value for each epoch, 
in which the gradient of the loss function is 

calculated over the entire training set. In addition, 

the early stopping (training will stop if the loss of 

validation does not drop for a consecutive period of 
time) is used to against the overfitting. The DnCNN 

setting is summarized in Table 1. 

4 SIMULATION RESULTS 

 

(a) 0.8c   

 

(b) 0.5c   

Figure 3: Performance of DHDV decoder for (2, 1, 3) 
convolutional code. 

In this section, we present simulated and analytical 

results of the DHDV decoder based on the trained 

DnCNN network. Firstly, we get the DHDV decoder 

performance measured by the BER and the BER 
performance of traditional Viterbi algorithm is given 

in the simulation results. Then, we compare the 

complexity of DnCNN network and matrix 
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multiplication whitening method. The four parts 

following present the results in detail. 

4.1 Performance Based On (2,1,3) 
Convolutional Code 

We first compare the performances of the DHDV 

decoder and the Viterbi Algorithm decoder based on 

general (2, 1, 3) convolutional code. Our simulation 

results are based on two correlation parameters: 

0.8c   means a relatively strong correlation model 

and 0.5c   means a moderate correlation model. In 

addition, we test the results under an AWGN 

channel without any correlation ( 0c  ).  

The experiments results are shown in Figure 3. 

We can see that the DHVD decoder totally achieves 
enhanced performance in different parameters c. In 

case where 0.8c  , the DHVD decoder can improve 

the decoding performance by approximately 4.5dB 

at 410BER   comparing hard decision Viterbi 

algorithm decoder. Comparing the performance with 

the soft decision Viterbi algorithm decoder, the 

DHVD decoder can also improve the decoding 

performance by approximately 3dB at 410BER  . In 

the case where 0.5c  , at moderate correlation 

model, the performance improvement becomes 

smaller than that where 0.8c  , because the noise 

correlation is weaker and DnCNN model has 
degraded performance for denoising. 

4.2 Performance under Different 
Convolutional Codes 

Then, we choose (2, 1, 7), (3, 1, 7) convolutional 

codes and (3, 1, 7) tail-biting convolutional code to 

test the performance of DHDV decoder. The (2, 1, 7) 
convolutional code has longer constraint length. The 

(3, 1, 7) convolutional code has different code rate. 

As for (3, 1, 7) tail-biting convolutional code, we 

choose the Wrap Around Viterbi Algorithm (WAVA) 
as the Viterbi algorithm decoder to present the 

performance.  

The simulation results of different convolutional 

codes illustrate the robustness of the DHDV decoder 

under strong correlation 0.8c   in Figure 4. The 

DHVD decoder improves the decoding performance 

by more than 4dB at 410BER   comparing hard 

decision Viterbi algorithm decoder and more than 2 

dB at 410BER   comparing soft decision Viterbi 

algorithm for (2, 1, 7) convolutional code, which 

presents slightly lower improvement extent than 

(2,1,3) convolutional codes. 

Moreover, as for (3, 1, 7) convolutional code, the 

BER capability achieves greater improvement 
comparing (2, 1, 3) and (2, 1, 7) convolutional code, 

improved by approximately 5dB at 410BER   

comparing hard decision Viterbi algorithm decoder 

and approximately 3dB at 410BER   comparing soft 

decision Viterbi algorithm decoder. As for WAVA 

decoder, we choose 3 as the number of the max 
iterations. The (3, 1, 7) tail-biting convolutional 

code gets the almost the same performance 

improvement as general (3, 1, 7) convolutional code. 

 

(a) (2, 1, 7) convolutional code 

 

(b) tailbiting and non-tailbiting (3, 1, 7) convolutional 
code 

Figure 4: Performance of DHDV decoder under different 

convolutional codes where 0.8c  . 

The BER capability improvement of DHDV 

decoder depends on the benefits from the DnCNN 

denoising. From the results above, we can conclude 

that the longer constraint length of the convolutional 
code suppresses the potential of performance 

enhancement for DHDV decoder. However, the 

smaller code rate has the opposite effect in this 
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respect. As for the smaller code rate with the same 

length of source bits, it has longer target bits, so the 
DnCNN can get a better effect on denoising.  

4.3 Robustness under Different 
Correlation Noise Models 

So far, our simulation results are based on the noise 

correlation model defined in (2) and (3). In this 

section, we will test the robustness of DHDV 
decoder under another noise correlation model, 

which is defined as 
c wn n  . We apply Symbol 

interference model with weighted values to the noise 
model, and consider the number of adjacent 

interference symbols as 10, so the correlation matrix 

is given by: 

 

  / ,  10

     0    ,      

i j
c p if i j

ij else


 

   (6) 

In (6), c is the correlation coefficient with 1c   

and normalization of noise power is done through 

dividing p. 

 
2

2

10

,

i j
i j

i j

p c

 


   (7) 

As for the new correlation model, the methods 

still work by retraining the DnCNN network. Figure 
5 presents the performance of (2, 1, 3) convolutional 

code under the new noise correlation model. The 

BER capability of DHDV decoder is close to it 

under standard noise correlation model in (2) and (3). 
It should be emphasized that DHDV decoder can 

extract features efficiently for different situations, so 

it achieves great BER capability under different 

noise models. 

4.4 Computational Complexity 

In this section, we will compare the computational 

complexity of DnCNN and traditional whitening 
methods. In general, matrix multiplication is used 

for whitening noise. We denote the receive data as 

an n M  matrix. Then in the whitening process, the 

received data needs to be multiplied by a left matrix 

of n n , and the matrix of right multiplication by

M M . It is easy to get the computational 

complexity as 
2 2( )O n M M n . 

In addition to the size of the input data, the 
computational complexity of DnCNN depends on 

the number of convolution kernels k (20 in our 

experiment), the convolution kernel size ×a b  ( 2 3
in our experiment), and the number of convolutional 

layers v (6 in our experiment). The computational 

complexity of  DnCNN is 2( * * * * * )O n M k a b v . 

In general, the number of convolution kernels k, 

the convolution kernel size ×a b , and the number of 

convolutional layers v are fixed and relatively small. 
Comparing the computational complexity above, we 

can conclude that when the input data dimension is 

small, the model complexity of DnCNN is greater 

than the whitening computational method. 
Conversely, when the input data dimension is large, 

the whitening computational complexity will be 

greater than the DnCNN computational method. 

 

(a) 0.8c   

 

(b) 0.5c   

Figure 5: Performance of DHDV decoder under another 
correlation model for general (2, 1, 3) convolutional code. 

5 CONCLUSIONS 

In this paper, we apply DnCNN network to the 

decoder of the convolutional codes and propose a 
DHDV decoder for correlated noise. The DHDV 
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decoder presents an excellent performance for 

different kinds of convolutional codes and correlated 
noise models. From the simulation results, we also 

found the constraint length and code rate of 

convolutional codes will affect the BER capability. 

Comparing the complexity of DnCNN network and 
matrix multiplication whitening method, DnCNN 

network complexity is lower when the code length is 

longer; DnCNN network complexity is higher when 

the code length is shorter. 
Furthermore, future investigations will be based 

on the hyperparameter optimization and DHDV 

decoder complexity optimization. 
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