
A Detection Algorithm of Malicious Domain Based on Deep Learning

and Multi-Head Attention Mechanism

Siqi Huang1 , Bo Yan1 , Dongmei Zhang2
1School of Cyberspace Security, Beijing University of Posts and Telecommunication, Beijing.

2School of Computer Science, Beijing University of Posts and Telecommunication, Beijing,

Keywords: Domain name detection, Multi-head attention mechanism, PCFG model.

Abstract: DGA (domain generation algorithms) domain names are a class of domain names generated by specific
algorithms which are used to communicate with malicious C&C servers. DGA based on the PCFG model has
been proposed Lately. Under the test of existing DGA detection techniques, its anti-detection effect is very
obvious. One of the reasons is that these domains are generated by legal domain names and have the same
statistical characteristics of legitimate domain names. This paper proposes a detection model which combines
deep learning and Multi-head attention mechanism. It employs these two techniques to extract the features of
the domain names. Experiment results show that the model has a good effect on detecting domain names
based on PCFG model.

1 INTRODUCTION

Botnets have been problematic for over a decade and

botmasters have developed techniques to evade

detection. One of the widely used techniques is
domain fluxing. Domain names are generated with

DGA (Domain Generated Algorithms) and they are

used as the ‘rendezvous’ points between botnets and

hidden C&C (Command and Control) servers. In this
way, botnets and botmasters establish communication.

According to the relevant experiment, 23 of the 43

malware samples used the DGA to generate domain

names (Plohmann, 2016). It is very important for
security personnel to detect malicious domain name

which are generated by DGA.

2 RELATED WORK

There are two main directions to detect

algorithmically generated domain names (AGDs).

The first one focuses on the distribution of domain

name’s structure and character features, while the
other one focuses on group behaviours of botnet DNS

requests generated by DGAs.

Yadav focused on the character distribution

differences between AGDs and benign domain names.
He used three metrics: Kullback-Leibler (KL)

distance, Edit distance (ED) and Jaccard Index (JI) to

detect AGDs (Yadav, 2010). Weiwei classified AGDs

by analysing the morphemes in the domain name

sequence (Weiwei, 2013). Mowbray analysed the
character composition of the fixed domain name, and

then used the machine learning model to detect AGDs

(Mowbray, 2014).

In terms of traffic characteristics, Antonakakis used
non-existent domain name traffic data to monitor

randomly generated domain names (Antonakakis,

2012). Erquiaga used Markov model which is used to

distinguish between normal traffic and DGA-based
domain name traffic (Erquiaga, 2016). DNSRadar

(X.ma, 2014) infers unknown malicious domains

from the distribution of domain cache-footprints in

the network. Wang et al. proposed BotMeter to assess
the population distribution of DGA-based botnets by

analyzing DNS query patterns (Wang, 2016). Wang

et al. proposed a method DBod for assessing botnet

traffic distribution through DNS query mode (Wang,
2017).

The current DGA detection methods can

effectively detect existing AGDs, but they are not able

to detect all the new emerging DGA. Two new DGAs

are proposed by Yu Fu, one is based on Hidden

Markov Model (HMM) and the other one is based on

Probabilistic Context-Free Model (PCFG) (Yu Fu,

2017). The experiments in their paper showed that

84
Huang, S., Yan, B. and Zhang, D.
A Detection Algorithm of Malicious Domain Based on Deep Learning and Multi-Head Attention Mechanism.
DOI: 10.5220/0008098200840091
In Proceedings of the International Conference on Advances in Computer Technology, Information Science and Communications (CTISC 2019), pages 84-91
ISBN: 978-989-758-357-5
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

under the detection of commercial DGA detection

systems BotDigger (H. Zhang, 2016) and Pleiades,
these two DGAs had better anti-detection effects than

the existing DGAs.

This paper aims to detect one of the DGA which is

based on the PCFG model. Using the neural network
combined with the Multi-Head Attention mechanism,

the model for detecting PCFG-based domain names is

proposed.

3 ANALYSIS OF PCFG-BASED

DOMAINS’S FEATURES

Yu Fu proposed a method for domain name
generation using PCFG model. A context-free

grammar (CFG) is a set of recursive production rules

used to generate or recognize string patterns. It is

represented as a tuple G = (N, Σ, R, S) where N is a
set of nonterminal symbols, Σ represents a set of

terminal symbols, S is a set of special starting

symbols and R represents a set of production rules. A

Probabilistic Context-Free Grammar (PCFG), uses a
probability vector θ to assign a probability to each

production rule in R. The grammar can be visualized

with a parse tree, which is a finite tree regulated by

grammar rules.
Based on the above concepts, Yu Fu’s paper used

PCFG model to generate domain names. The rules

and the parsing tree used in the paper are shown in

Figure 1.

Figure 1: Grammar and parse tree of PCFG model.

The terminators ‘a’ and ‘c’ are taken from the two

disjoint sets A and C respectively. Yu Fu’s paper also
gives several alternative sources of A and C in Figure

2.

Figure 2: Source of domain name composition of PCFG
model.

(1) pcfg_dict: A syllable list generated from an

English dictionary using hyphenation.

(2) pcfg_dict_num: The syllable list in pcfg_dict plus

a number set;

(3) pcfg_ipv4: A syllable list parsed from IPv4

domain names;

(4) pcfg_ipv4_num: The collection comes from

pcfg_ipv4 plus a non-alphabetic list;

The experiment results in Yu Fu’s paper showed

that if “a” and “c” are selected from the

‘pcfg_ipv4_num’ set, the generated domain names

have the best anti-detection effect. Therefore, in this

article we will focus on the detection of domain

names which are composed of ‘pcfg_ipv4_num’.

After study, PCFG-based domain names have the

following features:

1.Generated by legal domain name, the

distribution of characters is very close to legal

domain names.

Some previous detecting methods use relative

entropy for analysis. The relative entropy of one

single character is calculated as follows:

𝑯 =

𝑯

𝑯𝒎𝒂𝒙
=

−∑ 𝒑(𝒙𝒊)
𝒏
𝒊=𝟏 𝒍𝒐𝒈𝟐 𝒑(𝒙𝒊)

−𝒍𝒐𝒈𝟐
𝟏
𝒏

(1)

 𝑝(𝑥𝑖) represents the probability of character 𝑥𝑖

occurrence, and n is the total number of the character

types. Table 1 shows a comparison of the relative

entropy of character distribution between PCFG-

based domain names and other kinds of domain

names:

Table 1: Relative entropy of different DGAs.

 1-gram 2-gram example

legit 0.861 0.813 google; youtube

PCFG-
based

0.857 0.864 hrab321; 1245ickb

corebot 0.999 0.952
at367lsnux1n1vg

kl3xe0gf3md

kraken 0.995 0.938 xfdvisu; gopquidnxu

locky 0.999 0.947 evwjnhxh; xwkkckka

ramnit 0.999 0.926 Fhafkjiud; kxoggoma

banjori 0.93 0.916 ptmstring; umpfstring

As shown in Table 1, the PCFG-based domain

names and legal domain names are very close in
character distribution. This is because the PCFG-

A Detection Algorithm of Malicious Domain Based on Deep Learning and Multi-Head Attention Mechanism

85

based domain names are derived from legal domain

names. The domains composed of splitted legal
domain names have the same character distribution

feature with the legal domain name without doubt.

2.Once the PCFG model is confirmed, what

domain names will be generated only relate to the

selection of source sets and the probability of every

rule. It also means that one PCFG model can

generate multiple types of domain names.

The domain name generated by the
‘pcfg_ipv4_num’ is composed of part of the legal

domain name and numbers and the PCFG model for

generating these domain names defines three rules.

We find that the generated domain name can be
described as “letter + number” finally. We can also

try to generate other types of domain names by

constructing other PCFG models (See Appendix):

Table 2: Domains generated by different PCFG models.

Model
Source

collection
examples

Model1 pcfg_ipv4_num hrabei7123; face01

Model2 pcfg_ipv4_num china568; glove782

Model3 pcfg_ipv4_num grass56; milk45

Model4 pcfg_ipv4_num
herb98beer; tariy890

76ricky78

As shown in Table 2, how the domain names are

generated depends on the rules defined by the

model and the probability distribution. If the rules

are complex enough and the probability

distribution is uniform, one PCFG model can

generate multiple types of domain names. From the

other side, we can see that the DGA based on the

PCFG model is very scalable, which challenges us

in finding the domain name by identifying features.

4 DETECTION MODEL

4.1 Multihead-Deep Detection Model

︷
CELL

CELL

CELL

CELL

CELL

Multi-Head

Attention

CELL

CELL

CELL

CELL

CELL

Linear softmax

r

o

a

d

e

g

word

embedding Bi-LSTMⅠ
Multi-Head

Layer
Bi-LSTMⅡ

Figure 3: MultiHead-Deep model structure.

With the above analysis, it is extremely difficult to

detect PCFG-based names by manually extracting

features. The neural network provides us convenience

that the output of the network layer can be considered

as another expression of data, which can be

considered as the feature extracted by neural network

(Woodbridge J, 2016). Therefore, we adopted neural

network in the construction of detection model.

In order to capture features better, the model uses

the Multi-Head Attention mechanism (Ashish

Vaswani, 2017). Multi-Head Attention is a leading

technique in the field of natural language processing.

Its usage scenarios include reading comprehension,

abstractive summarization, textual entailment, etc.

Multi-Head Attention uses the Self-Attention

mechanism. Sometimes called intra-attention, it has

the advantage of calculating the attention of current

position and all the other positions, which can be used

to compute a representation of the sequence.

Based on the above ideas, the structure of the entire

model is shown in Figure 3. The Embedding layer is

followed by the neural network layer, then is followed

by the Multi-head Attention layer. After extracting

the features from the first two layers, the output is sent

to the subsequent BRNN layer, which combines the

state of the last two units in the forward and backward

directions respectively. Finally, this input will be

passed to the closely followed SoftMax layer to get

the final probability distribution after a linear

transformation.

4.2 Multihead-Deep Detection Method

4.2.1 Pre-Processing

Before the detection, the domain sequence needs to be

encoded in the Embedding layer. The input of neural
network layer should be the word vector matrix of

domain names, so we need to pre-process the domain

name first in the Embedding layer. Pre-processing is

divided into two steps:

(1) Dictionary Construction

Firstly, an index dictionary for each character is

generated, in the form of (character: subscript). A

mapping of characters to ids is constructed.

CTISC 2019 - International Conference on Advances in Computer Technology, Information Science and Communications

86

(2) Vector Coding

Each character is encoded as a vector which has the

number of hidden units of the Multi-Head Attention

Layer dimension. Then, a word vector matrix with

dimensions [Sequence length, Number of hidden

dims of Multi-Head Attention Layer] will be obtained,

which will be trained along with the network. The

word vector corresponding to each character can be

found by the index of the previous step.

4.2.2 Network Processing

Neural Network Layer. After the processing of

Embedding layer, we input the vector sequence into

the neural network layer for preliminary extraction of

features. At this layer, we construct FNN, CNN, and

RNN as the main part of the neural network layer

(Zhixing Tan, 2018).

(1) FFN（feedforward neural network）

Feedforward neural network, also known as

multilayer perceptron (MLP). It is the simplest neural

network in which neurons are arranged hierarchically.

Each neuron is only connected to the neurons of the

previous layer. It receives the output of the previous

layer and passes it to the next layer. There is no

feedback between the layers.

If we adopt the FFN, the formula for this layer is:

𝑭𝑭𝑵(𝑿) = 𝑹𝒆𝑳𝑼(𝑿𝑾𝟏)𝑾𝟐 (2)

(2) CNN（Convolutional neural network）

Generally, the basic structure of CNN includes two

layers, one is feature extraction layer. The input of
each neuron is connected to the part of the previous

layer, then the features of that part are extracted. The

second layer is the feature mapping layer, each

computing layer of the network is composed of
multiple feature mappings, and each feature mapping

is a plane. All neurons in the plane have equal weights.

Each convolutional layer in the CNN is followed by a

computational layer for local averaging and quadratic
extraction. This unique two-feature extraction

structure reduces feature resolution.

If we adopt CNN, our formula will be:

𝑆(𝒊, 𝒋) = (𝑿 ∗ 𝑾)(𝒊, 𝒋) + 𝒃 (3)

(3) RNN（Recurrent neural network）

Bi-LSTM is adopted in this experiment. It is

composed of a forward LSTM and a backward LSTM.

The LSTM unit controls, discards or adds

information through a "gate" to enable forgetting or
memorizing. A "gate" is a structure that selectively

passes information. It consists of a sigmoid function

and an element-level multiplication operation. An

LSTM unit has three such gates: a forget gate, an
input gate, and an output gate. Such a unit design

allows the neural network to store access states over

long sequences, thereby mitigating gradient

disappearance issues.
Bi-LSTM is used to capturing bidirectional

semantic dependence and we adopt the following

formula:

 �⃗⃗� 𝒕 = 𝑳𝑺𝑻𝑴(𝑬𝒕, �⃗⃗� 𝒕−𝟏) (4)

 �⃗⃗⃖�𝒕 = 𝑳𝑺𝑻𝑴(𝑬𝒕, �⃗⃗⃖�𝒕−𝟏) (5)

 𝒚𝒕 = �⃗⃗� 𝒕 + �⃗⃗⃖�𝒕 (6)

𝐸𝑡 represents the encoded vector.

Multi-Head Attention Layer. The Multi-Head

Attention layer is responsible for receiving the output

of the previous neural network layer. This layer

obtains the feature information of each position

through the calculation of Multi-Head Attention.

Figure 4: Structure of Multi-Head Attention.

The basic structure of Multi-Head Attention is

shown in Figure 4. The Scaled Dot-Product Attention

at the center is a variant of the general Attention,

given the matrix Q ∈ 𝑅𝑛∗𝑑，K ∈ 𝑅𝑛∗𝑑，V ∈ 𝑅𝑛∗𝑑，

Scaled Dot-Product Attention can be used to calculate

the Attention score by the following formula:

 𝑨𝒕𝒕𝒆𝒏𝒕𝒊𝒐𝒏(𝑸,𝑲,𝑽) = 𝒔𝒐𝒇𝒕𝒎𝒂𝒙(
𝑸𝑲𝑻

√𝒅
)𝑽 (7)

“d” represents the number of neural network hidden

units.

In the MultiHead-Deep model, Multi-Head
Attention first needs to linearly transform the input

vectors of Q, K, and V, then calculate them. “Multi-

Head” means the calculation in the Scaled Dot-

Product Attention section needs to be performed

A Detection Algorithm of Malicious Domain Based on Deep Learning and Multi-Head Attention Mechanism

87

multiple times. The "head" number means the number

of calculations, but the linear projection of Q, K, and
V is different for each head’s calculation. Take the i-

th head as an example:

 𝑸′ = 𝑸∗ 𝑾𝒊
𝑸 (8)

 𝑲′ = 𝑲 ∗ 𝑾𝒊
𝑲 (9)

 𝑽′ = 𝑽 ∗ 𝑾𝒊
𝑽 (10)

Since this layer receives the output of the neural

network, therefore:

 𝑸 = 𝑲 = 𝑽 = 𝒚𝒕 (11)

Finally, the result of this head is:

 𝑴𝒊 = 𝒔𝒐𝒇𝒕𝒎𝒂𝒙(
𝑸′𝑲′𝑻

√𝒅
)𝑽′ (12)

After h operations, we splice these 𝑀𝑖:

 𝑴 = 𝑪𝒐𝒏𝒄𝒂𝒕(𝑴𝟏,𝑴𝟐 ,… ,𝑴𝒉) (13)

MultiHead-Deep does not directly transform the
stitched result in this layer, but it sends the output of

this layer to the next layer for subsequent processing.

BRNN Layer. The processing of this layer is simple.
After receiving the output of the Multi-Head

Attention layer, the model will combine the state of

the last two units in the forward and backward
directions, As follows:

 𝑺𝒕 = ∈⃗⃗ 𝒕 + ∈⃗⃗⃖𝒕 (14)

Soft Max Layer. The output of the BRNN Layer
will be linear transformed, then the result will be

processed by the SoftMax layer to obtain the final

probability distribution. We define the loss function

as the cross-entropy loss function:

 𝑬 = −∑𝒚𝒊

𝑻

𝒋=𝟏

𝒍𝒐𝒈𝑷𝒋 (15)

5 EXPERIMENT

5.1 Experiment Design

This experiment intends to use the data set to find a

better network model through comparison
experiments and test the accuracy of the MultiHead-

Deep model for PCFG-based malicious domain

names. For this purpose, we have prepared two sets of

comparative experiments:
(1) Using different neural network models (RNN,

CNN and FFN) to detect the detection effect of

MultiHead-Deep against PCFG-based malicious

domain names under different models;

(2) Using a conventional DGA detection algorithm to

detect PCFG-based malicious domain names, and

comparing the results with the MultiHead-Deep

model;

5.2 Experiment Procedure

5.2.1 Data Set Preparation

In this paper, the data set is prepared in the way given

in Yu Fu’s paper. Considering the actual situation,
the domain names generated by the PCFG model are

second-level domain names.

The experiment crawl top 100,000 legal domain

names from Alexa, and the domain names are used to
regenerate PCFG-based domains according to the

algorithm given in the Yu Fu’s paper.

60% of the domain name collection (a mixture of

legal domain names and PCFG-based domain names)
will be used as a training set, 20% as a test set and the

left 20% as a verification set.

5.2.2 Parameter Settings

The parameters that need to be determined when the

model is initialized.

Table 3 Initialization parameters of MultiHead-Deep model.

Parameter index value

Number of Multi-Head Attention
hidden Units

288

Heads of Multi-Head Attention 8

Learning rate 0.001

Gradient 5.0

Dropout rate 0.5

Epoch number 10

5.3 Experiment Result

Experiment one: Compare MultiHead-Deep’s

detection of PCFG-based domain names using

different neural network models.

Table 4: Results of MultiHead-Deep’s detection using
different network models detecting Model 1.

Model1 Recall/% Precision/% F1/%

MultiHead-CNN 96.13 89.78 92.85

MultiHead-FFN 86.48 84.25 85.35

MultiHead-LSTM 92.48 91.25 91.86

CTISC 2019 - International Conference on Advances in Computer Technology, Information Science and Communications

88

Table 5: Results of MultiHead-Deep’s detection using
different network models detecting Model 2.

Model2 Recall/% Precision/% F1/%

MultiHead-CNN 96.29 91.27 93.71

MultiHead-FFN 87.26 87.74 88.99

MultiHead-LSTM 91.73 93.86 92.70

Table 6: Results of MultiHead-Deep’s detection using
different network models detecting Model 3.

Model3 Recall/% Precision/% F1/%

MultiHead-CNN 95.78 89.67 92.62

MultiHead-FFN 85.37 84.91 85.13

MultiHead-LSTM 90.41 90.93 90.67

Table 7: Results of MultiHead-Deep’s detection using
different network models detecting Model 4.

Model4 Recall% Precision/% F1/%

MultiHead-CNN 95.14 91.13 93.09

MultiHead-FFN 87.29 87.01 87.14

MultiHead-LSTM 91.79 91.99 91.62

The results show that when detecting the same

PCFG model, we can get the conclusion that

MultiHead-CNN > MultiHead-LSTM > MultiHead-

FFN. It can be seen that in the experimental

environment, CNN is a network model that is more

suitable for detecting PCFG-based malicious domain

names. Although the overall performance of

MultiHead-CNN is more excellent, the difference

between MultiHead-CNN and MultiHead-LSTM is

very small. The disparity is no more than 2.1%.

Experiment two: Compare detection methods for

different PCFG-based domain names.

Table 8: Results of different methods detecting Model 1.

Model1 Recall/% Precision/% F1/%

KL 22.70 22.20 22.35

ED 43.50 42.70 43.09

JI 51.90 51.15 51.52

MultiHead-CNN 96.13 89.78 92.85

Table 9: Results of different methods detecting Model 2.

Model2 Recall/% Precision/% F1/%

KL 22.70 22.20 22.35

ED 43.50 42.70 43.09

JI 51.90 51.15 51.52

MultiHead-CNN 96.29 91.27 93.71

Table 10: Results of different methods detecting Model 3.

Model3 Recall/% Precision/% F1/%

KL 22.70 22.20 22.35

ED 43.50 42.70 43.09

JI 51.90 51.15 51.52

MultiHead-CNN 95.78 89.67 92.62

Table 11: Results of different methods detecting Model 4.

Model4 Recall/% Precision/% F1/%

KL 22.70 22.20 22.35

ED 43.50 42.70 43.09

JI 51.90 51.15 51.52

MultiHead-CNN 95.14 91.13 93.09

 In this experiment, MultiHead-Deep uses CNN as

a network model for detection. When these four

methods detect the same PCFG model, we can get the

conclusion that MultiHead-CNN > Jaccard Index >
Edit Distance > KL Divergence. It can be seen that

the detection effect of the MultiHead-CNN model on

the PCFG-based domain name is indeed better than

the traditional method. From the perspective of the
model and in the case of “detected” rate, we have

model 2 > model 4 > model 1 > model 3. It can be

seen that the detection effect of MultiHead-CNN is

also affected by different PCFG models.

6 EXPERIMENT ANALYSIS

6.1 Feature Extraction Analysis

Traditional methods focus mainly on the random

distribution of characters. Such as Zeus, Kraken and
other DGA, the distribution characteristics of

characters and the legal domain name are very

different. Therefore, we can use KL divergence,
Editing Distance and Jaccard Index to get better

results. However, the PCFG-based domain names are

assembled with the character part and the digital part

from the legal domain names, supplemented by some
hyphens. In terms of construction, it is exactly the

same as the legal domain name. Even if the ‘source

collection’ is large enough, it is possible to generate a

domain name that is identical to the legal domain
name. In the process of manually generating PCFG-

based domain names, we found that with the

increasing complexity of the PCFG model, domain

names can be iteratively nested, and they show a
certain partial regularity. However, using character

features to distinguish between legitimate domain

names and PCFG-based domain names is still very

difficult, because the same feature is difficult to

A Detection Algorithm of Malicious Domain Based on Deep Learning and Multi-Head Attention Mechanism

89

completely "measure" different types of domain

names generated by the same model.
The results of the above experiments show that the

detection effect of CNN and Bi-LSTM network is

more prominent, while the effect of FFN is relatively

poor. Comparing the Bi-LSTM network with the FFN,
the Bi-LSTM can synthesize the forward and

backward information, and it solves the long-distance

dependence problem in the ordinary RNN network

and can memorize historical information. The FFN
cannot learn the surrounding "context" because the

data fed to the FFN is not related to the previous data,

and it cannot remember the previous context

information. Therefore, the features captured by the
LSTM network are more detailed.

The effect of CNN is even better. After the domain

name is vectorized, a domain name can be regarded

as a vector matrix, which is very similar to the image
processing of CNN. Every time in convolution,

CNN processes the data in whole line. It's like an

n-gram model. If you process every two rows, it will

be a 2-gram model. At the same time, since multiple
convolution kernels can be set in the model to capture

different features, it has stronger feature extraction

capability than FFN.

The results prove that the effect of using CNN on
PCFG-based domain name detection is slightly better

than that of LSTM. In the short-sentence task, CNN

has an overall ability to summarize the overall

structure of the sentence because of its convolution
function; but in the long-sentence task, CNN can only

process the information in its window. The

information of adjacent windows can only be

supported by the latter convolutional layer, which
depends heavily on the parameters of the convolution

window and the length of the movement. The domain

name of this mission is not particularly long, so using

the CNN model is a suitable solution.

6.2 Multi-Head Attention Layer Analysis

The MultiHead-Deep model not only uses the neural

network as a way of feature extraction, but also adopts
Multi-Head Attention layer, which is also the key to

improving the detection effect. Multi-Head Attention

employs self-attention mechanism. Its advantage is

that it can capture the global connection in one step
and completely solve the long-distance dependence

problem. In addition, Multi-Head computing can be

considered as learning in a number of different

subspaces, integrating information in different
subspaces to capture the features of each location as

much as possible.

Figure 5 shows the accuracy curve of the

MultiHead-CNN model. Under different PCFG
models, the accuracy convergence value of

MultiHead-CNN is different. This is because that the

detection complexity of domain names generated by

different models is different.
Figure 5 also shows that the MultiHead-CNN

model converges faster, and MultiHead-CNN

converges before the fifth iteration in different models.

It is proved that the model extraction feature is
excellent from the other side.

7 CONCLUSIONS

This paper proposes a model for detecting PCFG-

based domain names using neural networks and

Multi-Head Attention mechanism. Experiments show
that the MultiHead-Deep model is better than

traditional detection methods in detecting such DGA

domain names. This model takes advantage of the

neural network that does not require manual capture
of features and the intrinsic link of domain names. It

uses the Multi-Head Attention mechanism to capture

the overall features more deeply. Different PCFG

models have different detection rates, which also
indicates that the PCFG mode can be extended

according to the rules established by the user. In the

experiment, MultiHead-Deep has shown decent

results on different PCFG models, which proves the
effectiveness of the model in PCFG-based domain

name detection

REFERENCES

Plohmann D, Yakdan K, Klatt M, A comprehensive
measurement study of domain generating malware[C]//
25th USENIX Security Symposium. Austin: Usenix,
2016:263-278.

S. Yadav, A. K. K. Reddy, A. L. N. Reddy, and S. Ranjan,
“Detecting algorithmically generated malicious
domain names,” in Proc. 10th ACM SIGCOMM Conf.
Internet Meas., 2010, pp. 48–61.  

Figure 5: Accuracy trends of different PCFG model.

CTISC 2019 - International Conference on Advances in Computer Technology, Information Science and Communications

90

Z. Wei-Wei and G. J. L. Qian, “Detecting machine
generated domain names based on morpheme features,”
in Proc. Int. Workshop Cloud Comput. Inf. Secur., 2013,
pp. 408–411.

M. Mowbray and J. Hagen, “Finding domain-generation
algorithms by looking at length distribution,” in Proc.
IEEE Int. Symp. Softw. Rel. Eng.  Workshops
(ISSREW), Nov. 2014, pp. 395–400.  

M. Antonakakis et al., “From throw-away traffic to bots:
Detecting the rise of DGA-based malware,” in Proc.
USENIX Secur. Symp., 2012, pp. 491–506.  

Maria Jose Erquiaga, “Detecting DGA Malware Traffic
Through Behavioral Models ” IEEE, 2016-6

X. Ma, J. Zhang, J. Tao, J. Li, J. Tian, and X. Guan,
“DNSRadar: Outsourcing malicious domain detection
based on distributed cache- footprints,” IEEE Trans.
Inf. Forensics Security, vol. 9, no. 11, pp. 1906–1921,
Nov. 2014.

T. Wang, X. Hu, J. Jang, S. Ji, M. Stoecklin, and T.
Taylor, “BotMeter: Charting DGA-botnet landscapes
in large networks,” in Proc. IEEE 36th Int. Conf.
Distrib. Comput. Syst. (ICDCS), Jun. 2016, pp. 334–
343.

T.-S. Wang, H.-T. Lin, W.-T. Cheng, and C.-Y. Chen,
“DBod: Clustering and detecting DGA-based botnets

using DNS traffic analysis,” Comput. Secur., vol. 64,
pp. 1–15, Jan. 2017.

Yu Fu, Lu Yu, Oluwakemi Hambolu, Ilker Ozcelik,
Benafsh Husain, “Stealthy Domain Generation
Algorithms” IEEE Transactions on Information
Forensics and Security (Volume: 12 , Issue: 6, June
2017)

H. Zhang, M. Gharaibeh, S. Thanasoulas, and C.
Papadopou- los, “BotDigger: Detecting DGA bots in a
single network,” in Proc. IEEE Int. Workshop Traffic
Monitor. Anal., Louvain La Neuve, Belgium, Apr. 2016,
pp. 16–21. [Online]. Available:
http://www.cs.colostate.edu/hanzhang/papers/BotDigg
er-TMA16.pdf

Ashish Vaswani, Noam Shazeer, Niki Parmar, “Attention is
all your need”, Computation and Language (cs.CL);
Machine Learning (cs.LG), arXiv:1706.03762

Woodbridge J, Anderson H S, Ahuja A, et al. Predic ting
domain generation algorithms with long short-term
memory networks[EB/OL]. arXiv, 2016-11-2[1018-3 -
10]. https://arxiv.org/abs/1611.00791.

Zhixing Tan, Mingxuan Wang, Jun Xie “Deep Semantic
Role Labeling with Self-Attention” AAAI-2018,
arXiv:1712.01586 [cs.CL]

APPENDIX:

Different PCFG Models:

Model 1：

Terminals a, c

Non-terminals S, B

Productions

S -> BB

B -> a B c (p = 0.25)

B -> Ø (p = 0.75)

Model 2：

Terminals a, c

Non-terminals S, B

Productions

S -> BB

B-> a B c (p = 0.5)

B -> Ø (p = 0.5)

Model 3：

Terminals a, c

Non-terminals S, B

Productions

S -> BB

B-> a c (p = 0.25)

B -> Ø (p = 0.75)

Model 4：

Terminals a, c

Non-terminals S, A, B, C

Productions

S -> A B C

A -> a

B -> c

C -> a (p = 0.5)

C -> Ø (p = 0.5)

A Detection Algorithm of Malicious Domain Based on Deep Learning and Multi-Head Attention Mechanism

91

