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Abstract: DGA (domain generation algorithms) domain names are a class of domain names generated by specific 
algorithms which are used to communicate with malicious C&C servers. DGA based on the PCFG model has 
been proposed Lately. Under the test of existing DGA detection techniques, its anti-detection effect is very 
obvious. One of the reasons is that these domains are generated by legal domain names and have the same 
statistical characteristics of legitimate domain names. This paper proposes a detection model which combines 
deep learning and Multi-head attention mechanism. It employs these two techniques to extract the features of 
the domain names. Experiment results show that the model has a good effect on detecting domain names 
based on PCFG model. 

1 INTRODUCTION

Botnets have been problematic for over a decade and 

botmasters have developed techniques to evade 

detection. One of the widely used techniques is 
domain fluxing. Domain names are generated with 

DGA (Domain Generated Algorithms) and they are 

used as the ‘rendezvous’ points between botnets and 

hidden C&C (Command and Control) servers. In this 
way, botnets and botmasters establish communication. 

According to the relevant experiment, 23 of the 43 

malware samples used the DGA to generate domain 

names (Plohmann, 2016). It is very important for 
security personnel to detect malicious domain name 

which are generated by DGA. 

2 RELATED WORK 

There are two main directions to detect 

algorithmically generated domain names (AGDs). 

The first one focuses on the distribution of domain 

name’s structure and character features, while the 
other one focuses on group behaviours of botnet DNS 

requests generated by DGAs. 

Yadav focused on the character distribution 

differences between AGDs and benign domain names. 
He used three metrics: Kullback-Leibler (KL) 

distance, Edit distance (ED) and Jaccard Index (JI) to 

detect AGDs (Yadav, 2010). Weiwei classified AGDs 

by analysing the morphemes in the domain name 

sequence (Weiwei, 2013). Mowbray analysed the 
character composition of the fixed domain name, and 

then used the machine learning model to detect AGDs 

(Mowbray, 2014). 

In terms of traffic characteristics, Antonakakis used 
non-existent domain name traffic data to monitor 

randomly generated domain names (Antonakakis, 

2012). Erquiaga used Markov model which is used to 

distinguish between normal traffic and DGA-based 
domain name traffic (Erquiaga, 2016). DNSRadar 

(X.ma, 2014) infers unknown malicious domains 

from the distribution of domain cache-footprints in 

the network. Wang et al. proposed BotMeter to assess 
the population distribution of DGA-based botnets by 

analyzing DNS query patterns (Wang, 2016). Wang 

et al. proposed a method DBod for assessing botnet 

traffic distribution through DNS query mode (Wang, 
2017). 

The current DGA detection methods can 

effectively detect existing AGDs, but they are not able 

to detect all the new emerging DGA. Two new DGAs 

are proposed by Yu Fu, one is based on Hidden 

Markov Model (HMM) and the other one is based on 

Probabilistic Context-Free Model (PCFG) (Yu Fu, 

2017). The experiments in their paper showed that 
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under the detection of commercial DGA detection 

systems BotDigger (H. Zhang, 2016) and Pleiades, 
these two DGAs had better anti-detection effects than 

the existing DGAs. 

This paper aims to detect one of the DGA which is 

based on the PCFG model. Using the neural network 
combined with the Multi-Head Attention mechanism, 

the model for detecting PCFG-based domain names is 

proposed. 

3 ANALYSIS OF PCFG-BASED 

DOMAINS’S FEATURES 

Yu Fu proposed a method for domain name 
generation using PCFG model. A context-free 

grammar (CFG) is a set of recursive production rules 

used to generate or recognize string patterns. It is 

represented as a tuple G = (N, Σ, R, S) where N is a 
set of nonterminal symbols, Σ represents a set of 

terminal symbols, S is a set of special starting 

symbols and R represents a set of production rules. A 

Probabilistic Context-Free Grammar (PCFG), uses a 
probability vector θ to assign a probability to each 

production rule in R. The grammar can be visualized 

with a parse tree, which is a finite tree regulated by 

grammar rules.  
Based on the above concepts, Yu Fu’s paper used 

PCFG model to generate domain names. The rules 

and the parsing tree used in the paper are shown in 

Figure 1. 

Figure 1: Grammar and parse tree of PCFG model. 

The terminators ‘a’ and ‘c’ are taken from the two 

disjoint sets A and C respectively. Yu Fu’s paper also 
gives several alternative sources of A and C in Figure 

2. 

 
 

 

 

 

 

Figure 2: Source of domain name composition of PCFG 
model. 

(1) pcfg_dict: A syllable list generated from an 

English dictionary using hyphenation. 

(2) pcfg_dict_num: The syllable list in pcfg_dict plus 

a number set; 

(3) pcfg_ipv4: A syllable list parsed from IPv4 

domain names; 

(4) pcfg_ipv4_num: The collection comes from 

pcfg_ipv4 plus a non-alphabetic list; 

The experiment results in Yu Fu’s paper showed 

that if “a” and “c” are selected from the 

‘pcfg_ipv4_num’ set, the generated domain names 

have the best anti-detection effect. Therefore, in this 

article we will focus on the detection of domain 

names which are composed of ‘pcfg_ipv4_num’. 

After study, PCFG-based domain names have the 

following features: 

1.Generated by legal domain name, the 

distribution of characters is very close to legal 

domain names. 

Some previous detecting methods use relative 

entropy for analysis. The relative entropy of one 

single character is calculated as follows: 

 
𝑯 =

𝑯

𝑯𝒎𝒂𝒙
=

−∑ 𝒑(𝒙𝒊)
𝒏
𝒊=𝟏 𝒍𝒐𝒈𝟐 𝒑(𝒙𝒊)

−𝒍𝒐𝒈𝟐
𝟏
𝒏

 
(1) 

  𝑝(𝑥𝑖) represents the probability of character 𝑥𝑖 

occurrence, and n is the total number of the character 

types. Table 1 shows a comparison of the relative 

entropy of character distribution between PCFG-

based domain names and other kinds of domain 

names: 

Table 1: Relative entropy of different DGAs. 

 1-gram 2-gram example 

legit 0.861 0.813 google; youtube 

PCFG-
based 

0.857 0.864 hrab321; 1245ickb 

corebot 0.999 0.952 
at367lsnux1n1vg 

kl3xe0gf3md 

kraken 0.995 0.938 xfdvisu; gopquidnxu 

locky 0.999 0.947 evwjnhxh; xwkkckka 

ramnit 0.999 0.926 Fhafkjiud; kxoggoma 

banjori 0.93 0.916 ptmstring; umpfstring 

 

As shown in Table 1, the PCFG-based domain 

names and legal domain names are very close in 
character distribution. This is because the PCFG-
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based domain names are derived from legal domain 

names. The domains composed of splitted legal 
domain names have the same character distribution 

feature with the legal domain name without doubt. 

2.Once the PCFG model is confirmed, what 

domain names will be generated only relate to the 

selection of source sets and the probability of every 

rule. It also means that one PCFG model can 

generate multiple types of domain names. 

The domain name generated by the 
‘pcfg_ipv4_num’ is composed of part of the legal 

domain name and numbers and the PCFG model for 

generating these domain names defines three rules. 

We find that the generated domain name can be 
described as “letter + number” finally. We can also 

try to generate other types of domain names by 

constructing other PCFG models (See Appendix): 

Table 2: Domains generated by different PCFG models. 

Model 
Source 

collection 
examples 

Model1 pcfg_ipv4_num hrabei7123; face01  

Model2 pcfg_ipv4_num china568; glove782  

Model3 pcfg_ipv4_num grass56; milk45 

Model4 pcfg_ipv4_num 
herb98beer; tariy890 

76ricky78 

 

As shown in Table 2, how the domain names are 

generated depends on the rules defined by the 

model and the probability distribution. If the rules 

are complex enough and the probability 

distribution is uniform, one PCFG model can 

generate multiple types of domain names. From the 

other side, we can see that the DGA based on the 

PCFG model is very scalable, which challenges us 

in finding the domain name by identifying features. 

4 DETECTION MODEL 

4.1 Multihead-Deep Detection Model 

︷
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Figure 3: MultiHead-Deep model structure. 

With the above analysis, it is extremely difficult to 

detect PCFG-based names by manually extracting 

features. The neural network provides us convenience 

that the output of the network layer can be considered 

as another expression of data, which can be 

considered as the feature extracted by neural network 

(Woodbridge J, 2016). Therefore, we adopted neural 

network in the construction of detection model. 

In order to capture features better, the model uses 

the Multi-Head Attention mechanism (Ashish 

Vaswani, 2017). Multi-Head Attention is a leading 

technique in the field of natural language processing. 

Its usage scenarios include reading comprehension, 

abstractive summarization, textual entailment, etc. 

Multi-Head Attention uses the Self-Attention 

mechanism. Sometimes called intra-attention, it has 

the advantage of calculating the attention of current 

position and all the other positions, which can be used 

to compute a representation of the sequence.  

Based on the above ideas, the structure of the entire 

model is shown in Figure 3. The Embedding layer is 

followed by the neural network layer, then is followed 

by the Multi-head Attention layer. After extracting 

the features from the first two layers, the output is sent 

to the subsequent BRNN layer, which combines the 

state of the last two units in the forward and backward 

directions respectively. Finally, this input will be 

passed to the closely followed SoftMax layer to get 

the final probability distribution after a linear 

transformation. 

4.2 Multihead-Deep Detection Method 

4.2.1 Pre-Processing 

Before the detection, the domain sequence needs to be 

encoded in the Embedding layer. The input of neural 
network layer should be the word vector matrix of 

domain names, so we need to pre-process the domain 

name first in the Embedding layer. Pre-processing is 

divided into two steps: 

(1) Dictionary Construction 

Firstly, an index dictionary for each character is 

generated, in the form of (character: subscript). A 

mapping of characters to ids is constructed. 
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(2) Vector Coding 

Each character is encoded as a vector which has the 

number of hidden units of the Multi-Head Attention 

Layer dimension. Then, a word vector matrix with 

dimensions [Sequence length, Number of hidden 

dims of Multi-Head Attention Layer] will be obtained, 

which will be trained along with the network. The 

word vector corresponding to each character can be 

found by the index of the previous step. 

4.2.2 Network Processing 

Neural Network Layer. After the processing of 

Embedding layer, we input the vector sequence into 

the neural network layer for preliminary extraction of 

features. At this layer, we construct FNN, CNN, and 

RNN as the main part of the neural network layer 

(Zhixing Tan, 2018). 

(1) FFN（feedforward neural network） 

Feedforward neural network, also known as 

multilayer perceptron (MLP). It is the simplest neural 

network in which neurons are arranged hierarchically. 

Each neuron is only connected to the neurons of the 

previous layer. It receives the output of the previous 

layer and passes it to the next layer. There is no 

feedback between the layers. 

If we adopt the FFN, the formula for this layer is: 

𝑭𝑭𝑵(𝑿) = 𝑹𝒆𝑳𝑼(𝑿𝑾𝟏)𝑾𝟐        (2) 

(2) CNN（Convolutional neural network） 

Generally, the basic structure of CNN includes two 

layers, one is feature extraction layer. The input of 
each neuron is connected to the part of the previous 

layer, then the features of that part are extracted. The 

second layer is the feature mapping layer, each 

computing layer of the network is composed of 
multiple feature mappings, and each feature mapping 

is a plane. All neurons in the plane have equal weights. 

Each convolutional layer in the CNN is followed by a 

computational layer for local averaging and quadratic 
extraction. This unique two-feature extraction 

structure reduces feature resolution. 

If we adopt CNN, our formula will be: 

𝑆(𝒊, 𝒋) = (𝑿 ∗ 𝑾)(𝒊, 𝒋) + 𝒃          (3) 

(3) RNN（Recurrent neural network） 

Bi-LSTM is adopted in this experiment. It is 

composed of a forward LSTM and a backward LSTM. 

The LSTM unit controls, discards or adds 

information through a "gate" to enable forgetting or 
memorizing. A "gate" is a structure that selectively 

passes information. It consists of a sigmoid function 

and an element-level multiplication operation. An 

LSTM unit has three such gates: a forget gate, an 
input gate, and an output gate. Such a unit design 

allows the neural network to store access states over 

long sequences, thereby mitigating gradient 

disappearance issues. 
Bi-LSTM is used to capturing bidirectional 

semantic dependence and we adopt the following 

formula: 

 �⃗⃗� 𝒕 = 𝑳𝑺𝑻𝑴(𝑬𝒕, �⃗⃗� 𝒕−𝟏) (4) 

 �⃗⃗⃖�𝒕 = 𝑳𝑺𝑻𝑴(𝑬𝒕, �⃗⃗⃖�𝒕−𝟏) (5) 

 𝒚𝒕 = �⃗⃗� 𝒕 + �⃗⃗⃖�𝒕 (6) 

𝐸𝑡 represents the encoded vector. 

Multi-Head Attention Layer. The Multi-Head 

Attention layer is responsible for receiving the output 

of the previous neural network layer. This layer 

obtains the feature information of each position 

through the calculation of Multi-Head Attention. 

 

 

 

 

 

 

 

Figure 4: Structure of Multi-Head Attention. 

The basic structure of Multi-Head Attention is 

shown in Figure 4. The Scaled Dot-Product Attention 

at the center is a variant of the general Attention, 

given the matrix Q ∈ 𝑅𝑛∗𝑑，K ∈ 𝑅𝑛∗𝑑，V ∈ 𝑅𝑛∗𝑑， 

Scaled Dot-Product Attention can be used to calculate 

the Attention score by the following formula: 

 𝑨𝒕𝒕𝒆𝒏𝒕𝒊𝒐𝒏(𝑸,𝑲,𝑽) = 𝒔𝒐𝒇𝒕𝒎𝒂𝒙(
𝑸𝑲𝑻

√𝒅
)𝑽 (7) 

“d” represents the number of neural network hidden 

units. 

In the MultiHead-Deep model, Multi-Head 
Attention first needs to linearly transform the input 

vectors of Q, K, and V, then calculate them. “Multi-

Head” means the calculation in the Scaled Dot-

Product Attention section needs to be performed 
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multiple times. The "head" number means the number 

of calculations, but the linear projection of Q, K, and 
V is different for each head’s calculation. Take the i-

th head as an example: 

 𝑸′ = 𝑸∗ 𝑾𝒊
𝑸  (8) 

 𝑲′ = 𝑲 ∗ 𝑾𝒊
𝑲  (9) 

 𝑽′ = 𝑽 ∗ 𝑾𝒊
𝑽  (10)  

Since this layer receives the output of the neural 

network, therefore: 

 𝑸 = 𝑲 = 𝑽 = 𝒚𝒕 (11) 

Finally, the result of this head is: 

 𝑴𝒊 = 𝒔𝒐𝒇𝒕𝒎𝒂𝒙(
𝑸′𝑲′𝑻

√𝒅
)𝑽′ (12) 

After h operations, we splice these 𝑀𝑖: 

 𝑴 = 𝑪𝒐𝒏𝒄𝒂𝒕(𝑴𝟏,𝑴𝟐 ,… ,𝑴𝒉) (13) 

MultiHead-Deep does not directly transform the 
stitched result in this layer, but it sends the output of 

this layer to the next layer for subsequent processing. 

BRNN Layer. The processing of this layer is simple. 
After receiving the output of the Multi-Head 

Attention layer, the model will combine the state of 

the last two units in the forward and backward 
directions, As follows: 

 𝑺𝒕 = ∈⃗⃗ 𝒕 + ∈⃗⃗⃖𝒕 (14) 

Soft Max Layer. The output of the BRNN Layer 
will be linear transformed, then the result will be 

processed by the SoftMax layer to obtain the final 

probability distribution. We define the loss function 

as the cross-entropy loss function: 

 𝑬 = −∑𝒚𝒊

𝑻

𝒋=𝟏

𝒍𝒐𝒈𝑷𝒋 (15) 

5 EXPERIMENT 

5.1 Experiment Design 

This experiment intends to use the data set to find a 

better network model through comparison 
experiments and test the accuracy of the MultiHead-

Deep model for PCFG-based malicious domain 

names. For this purpose, we have prepared two sets of 

comparative experiments: 
(1) Using different neural network models (RNN, 

CNN and FFN) to detect the detection effect of 

MultiHead-Deep against PCFG-based malicious 

domain names under different models; 

(2) Using a conventional DGA detection algorithm to 

detect PCFG-based malicious domain names, and 

comparing the results with the MultiHead-Deep 

model; 

5.2 Experiment Procedure 

5.2.1 Data Set Preparation 

In this paper, the data set is prepared in the way given 

in Yu Fu’s paper. Considering the actual situation, 
the domain names generated by the PCFG model are 

second-level domain names. 

The experiment crawl top 100,000 legal domain 

names from Alexa, and the domain names are used to 
regenerate PCFG-based domains according to the 

algorithm given in the Yu Fu’s paper. 

60% of the domain name collection (a mixture of 

legal domain names and PCFG-based domain names) 
will be used as a training set, 20% as a test set and the 

left 20% as a verification set. 

5.2.2 Parameter Settings 

The parameters that need to be determined when the 

model is initialized. 

Table 3 Initialization parameters of MultiHead-Deep model. 

Parameter index value 

Number of Multi-Head Attention 
hidden Units 

288 

Heads of Multi-Head Attention 8 

Learning rate 0.001 

Gradient 5.0 

Dropout rate 0.5 

Epoch number 10 

 

5.3 Experiment Result 

Experiment one: Compare MultiHead-Deep’s 

detection of PCFG-based domain names using 

different neural network models. 

Table 4: Results of MultiHead-Deep’s detection using 
different network models detecting Model 1. 

Model1 Recall/% Precision/% F1/% 

MultiHead-CNN 96.13 89.78 92.85 

MultiHead-FFN 86.48 84.25 85.35 

MultiHead-LSTM 92.48 91.25 91.86 
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Table 5: Results of MultiHead-Deep’s detection using 
different network models detecting Model 2. 

Model2 Recall/% Precision/% F1/% 

MultiHead-CNN 96.29 91.27 93.71 

MultiHead-FFN 87.26 87.74 88.99 

MultiHead-LSTM 91.73 93.86 92.70 

Table 6: Results of MultiHead-Deep’s detection using 
different network models detecting Model 3. 

Model3 Recall/% Precision/% F1/% 

MultiHead-CNN 95.78 89.67 92.62 

MultiHead-FFN 85.37 84.91 85.13 

MultiHead-LSTM 90.41 90.93 90.67 

Table 7: Results of MultiHead-Deep’s detection using 
different network models detecting Model 4. 

Model4 Recall% Precision/% F1/% 

MultiHead-CNN 95.14 91.13 93.09 

MultiHead-FFN 87.29 87.01 87.14 

MultiHead-LSTM 91.79 91.99 91.62 

 

The results show that when detecting the same 

PCFG model, we can get the conclusion that 

MultiHead-CNN > MultiHead-LSTM > MultiHead-

FFN. It can be seen that in the experimental 

environment, CNN is a network model that is more 

suitable for detecting PCFG-based malicious domain 

names. Although the overall performance of 

MultiHead-CNN is more excellent, the difference 

between MultiHead-CNN and MultiHead-LSTM is 

very small. The disparity is no more than 2.1%. 

Experiment two: Compare detection methods for 

different PCFG-based domain names. 

Table 8: Results of different methods detecting Model 1. 

Model1 Recall/% Precision/% F1/% 

KL  22.70 22.20 22.35 

ED 43.50 42.70 43.09 

JI 51.90 51.15 51.52 

MultiHead-CNN 96.13 89.78 92.85 

Table 9: Results of different methods detecting Model 2. 

Model2 Recall/% Precision/% F1/% 

KL  22.70 22.20 22.35 

ED 43.50 42.70 43.09 

JI 51.90 51.15 51.52 

MultiHead-CNN 96.29 91.27 93.71 

 

Table 10: Results of different methods detecting Model 3. 

Model3 Recall/% Precision/% F1/% 

KL  22.70 22.20 22.35 

ED 43.50 42.70 43.09 

JI 51.90 51.15 51.52 

MultiHead-CNN 95.78 89.67 92.62 

Table 11: Results of different methods detecting Model 4. 

Model4 Recall/% Precision/% F1/% 

KL  22.70 22.20 22.35 

ED 43.50 42.70 43.09 

JI 51.90 51.15 51.52 

MultiHead-CNN 95.14 91.13 93.09 

 

 In this experiment, MultiHead-Deep uses CNN as 

a network model for detection. When these four 

methods detect the same PCFG model, we can get the 

conclusion that MultiHead-CNN > Jaccard Index > 
Edit Distance > KL Divergence. It can be seen that 

the detection effect of the MultiHead-CNN model on 

the PCFG-based domain name is indeed better than 

the traditional method. From the perspective of the 
model and in the case of “detected” rate, we have 

model 2 > model 4 > model 1 > model 3. It can be 

seen that the detection effect of MultiHead-CNN is 

also affected by different PCFG models. 

6 EXPERIMENT ANALYSIS 

6.1 Feature Extraction Analysis 

Traditional methods focus mainly on the random 

distribution of characters. Such as Zeus, Kraken and 
other DGA, the distribution characteristics of 

characters and the legal domain name are very 

different. Therefore, we can use KL divergence, 
Editing Distance and Jaccard Index to get better 

results. However, the PCFG-based domain names are 

assembled with the character part and the digital part 

from the legal domain names, supplemented by some 
hyphens. In terms of construction, it is exactly the 

same as the legal domain name. Even if the ‘source 

collection’ is large enough, it is possible to generate a 

domain name that is identical to the legal domain 
name. In the process of manually generating PCFG-

based domain names, we found that with the 

increasing complexity of the PCFG model, domain 

names can be iteratively nested, and they show a 
certain partial regularity. However, using character 

features to distinguish between legitimate domain 

names and PCFG-based domain names is still very 

difficult, because the same feature is difficult to 
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completely "measure" different types of domain 

names generated by the same model. 
The results of the above experiments show that the 

detection effect of CNN and Bi-LSTM network is 

more prominent, while the effect of FFN is relatively 

poor. Comparing the Bi-LSTM network with the FFN, 
the Bi-LSTM can synthesize the forward and 

backward information, and it solves the long-distance 

dependence problem in the ordinary RNN network 

and can memorize historical information. The FFN 
cannot learn the surrounding "context" because the 

data fed to the FFN is not related to the previous data, 

and it cannot remember the previous context 

information. Therefore, the features captured by the 
LSTM network are more detailed. 

The effect of CNN is even better. After the domain 

name is vectorized, a domain name can be regarded 

as a vector matrix, which is very similar to the image 
processing of CNN. Every time in convolution, 

CNN processes the data in whole line. It's like an 

n-gram model. If you process every two rows, it will 

be a 2-gram model. At the same time, since multiple 
convolution kernels can be set in the model to capture 

different features, it has stronger feature extraction 

capability than FFN. 

The results prove that the effect of using CNN on 
PCFG-based domain name detection is slightly better 

than that of LSTM. In the short-sentence task, CNN 

has an overall ability to summarize the overall 

structure of the sentence because of its convolution 
function; but in the long-sentence task, CNN can only 

process the information in its window. The 

information of adjacent windows can only be 

supported by the latter convolutional layer, which 
depends heavily on the parameters of the convolution 

window and the length of the movement. The domain 

name of this mission is not particularly long, so using 

the CNN model is a suitable solution. 

6.2 Multi-Head Attention Layer Analysis 

The MultiHead-Deep model not only uses the neural 

network as a way of feature extraction, but also adopts 
Multi-Head Attention layer, which is also the key to 

improving the detection effect. Multi-Head Attention 

employs self-attention mechanism. Its advantage is 

that it can capture the global connection in one step 
and completely solve the long-distance dependence 

problem. In addition, Multi-Head computing can be 

considered as learning in a number of different 

subspaces, integrating information in different 
subspaces to capture the features of each location as 

much as possible. 

Figure 5 shows the accuracy curve of the 

MultiHead-CNN model. Under different PCFG 
models, the accuracy convergence value of 

MultiHead-CNN is different. This is because that the 

detection complexity of domain names generated by 

different models is different. 
Figure 5 also shows that the MultiHead-CNN 

model converges faster, and MultiHead-CNN 

converges before the fifth iteration in different models. 

It is proved that the model extraction feature is 
excellent from the other side. 

 

 

7 CONCLUSIONS 

This paper proposes a model for detecting PCFG-

based domain names using neural networks and 

Multi-Head Attention mechanism. Experiments show 
that the MultiHead-Deep model is better than 

traditional detection methods in detecting such DGA 

domain names. This model takes advantage of the 

neural network that does not require manual capture 
of features and the intrinsic link of domain names. It 

uses the Multi-Head Attention mechanism to capture 

the overall features more deeply. Different PCFG 

models have different detection rates, which also 
indicates that the PCFG mode can be extended 

according to the rules established by the user. In the 

experiment, MultiHead-Deep has shown decent 

results on different PCFG models, which proves the 
effectiveness of the model in PCFG-based domain 

name detection 
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APPENDIX: 

Different PCFG Models:

Model 1： 

Terminals a, c 

Non-terminals S, B 

Productions 

S -> BB 

B -> a B c (p = 0.25) 

B -> Ø (p = 0.75) 

 
Model 2： 

Terminals a, c 

Non-terminals S, B 

Productions 

S -> BB 

B-> a B c (p = 0.5) 

B -> Ø (p = 0.5) 

 
Model 3： 

Terminals a, c 

Non-terminals S, B 

Productions 

S -> BB 

B-> a c (p = 0.25) 

B -> Ø (p = 0.75) 

 
 
 
 
 
 

Model 4： 

Terminals a, c 

Non-terminals S, A, B, C 

Productions 

S -> A B C 

A -> a 

B -> c 

C -> a (p = 0.5) 

C -> Ø (p = 0.5) 
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