
Analysis of the CRAX Vulnerability Automatic Utilization Process

Zhao Chao1, Pan Zulie1, Huang Zhao1 and Huang Hui1
1National University of Defense Technology, Anhui, China

Keywords: Symbolic execution, Automatic analysis, vulnerability.

Abstract: In recent years, the number of software vulnerabilities has been on the rise, and the harm of software

vulnerabilities has become more and more serious. However, there are so many software vulnerabilities that

simple manual analysis cannot meet the requirements. In view of the above problems, this paper introduces

CRAX. CRAX is a new framework based on symbolic execution. And it is to act as a backend of

static/dynamic program analyzers, bug finders, fuzzers, and crash report database. It can automatically,

efficiently and quickly analyze software vulnerabilities and generate stable and efficient test cases. The

paper analyzes CRAX's automatic analysis process of vulnerability program and the generation process of

test cases in detail, and in chapter 3 and chapter 4, it emphatically introduces the constraint construction and

reconstruction process in the process of CRAX's automatic analysis.

1 INTRODUCTION

Vulnerability is a defect in the specific
implementation of hardware, software, protocol or

system security policy, which enables an attacker to

access or break the system without authorization

(Yaquan, 2016). In recent years, the number of
software vulnerabilities has been on the rise. The

malicious Web attack events that software

vulnerabilities should be launched violate citizens'

rights and interests, spread a wide range of computer
viruses, cause major economic losses, and

implement advanced sustainable attacks to trigger

national security incidents (McGraw, 2016).

Therefore, software vulnerability analysis has
become a problem that cannot be ignored in the

computer field.

When the program crashes, the traditional

analysis is to manually analyze the availability of
crash so that it can determine whether the crash is

caused by internal logic errors or by external input.

If it is caused by external input, then it is likely to be

a very serious crash or even an exploitable
vulnerability. However, due to the numerous

software crashes, pure manual analysis has been

unable to meet the requirements, so how to quickly

and efficiently analyze the availability of crash has

become one of the key issues in the field of

vulnerability mining and analysis.

2 CRAX

At present, with the continuous development of

automatic program analysis, especially the

introduction of symbol execution, stain analysis and
other technologies into the fields of software crash

analysis and vulnerability mining, various software

vulnerability utilization automatic construction

technologies have been proposed (Liang and Purui,
2016). At IEEE S&P conference in 2008,

D.Brumley et al first proposed AEPG based on

patch comparison (Brumley and Poosankam, 2008).

At NDSS conference in 2011, T.Avgerinos et al first
proposed AEG based on source code analysis

(Avgerinos and Cha, 2011). On the basis of AEG

technology, in 2012 IEEE conference, Huang

Shikun et al proposed the automation framework
CRAX based on AEG method improvement.

Based on S2E (Chipounov and Kuznetsov, 2011)

environment model, KLEE (Cadar and Dunbar,

2008) symbol virtual machine and QEMU (Bellard,
2005) processing simulator, this framework is a new

platform for symbol execution. To generate control

flow hijack attacks, CRAX focuses on symbolized

EIP, registers, and Pointers. A systematic method is

32
Chao, Z., Zulie, P., Zhao, H. and Hui, H.
Analysis of the CRAX Vulnerability Automatic Utilization Process.
DOI: 10.5220/0008097100320037
In Proceedings of the International Conference on Advances in Computer Technology, Information Science and Communications (CTISC 2019), pages 32-37
ISBN: 978-989-758-357-5
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

proposed to search the maximum continuous symbol

memory for payload injection.

3 BUILD CONSTRAINT

In the automatic analysis and utilization of the
program, CRAX first determines the availability of

the program. If the EIP of the program can be

overwritten, the risk of the program is determined. If

the determination program has available risks,
CRAX transfer to the available constraint building

and solving process. In the process of building a

constraint, CRAX first looks for a large section of

the continuous symbolic area, and then tries to
construct an input which can cause overflow and

hijack the control flow. Through input, CRAX can

build shellcode constraints、nop constraints and eip

constraints. After successful construction, CRAX

combine shellcode constraints, eip constraints, nop

constraints, and the path constraints, if the result is

true, then it indicates that the constraint is
constructed successfully, and the code distributes

after the constraint is constructed successfully is

shown in figure 1. The symbolic area grows from

low address to high address, and shellcode is
arranged at the bottom of the symbolized area:

return address

...

nop

shellcode

...
...

Figure 1: The code distribution after a successful
constraint building.

1. Build shellcode constraint: Overlay a
contiguous symbolic area with the specified

shellcode that implements specific functions.

2. Build nop constraint: Arrange a large section of

nop in front of shellcode so that it doesn't affect
shellcode's functionality, meanwhile it can

increases the chances that the IP registers jump

to shellcode.

3. Build eip constraint: Overwrite the value of the
IP register as the specified value, so that EIP

can jump directly to the nop area or to the start

address of shellcode after the program flow

hijacking is successful. When the vulnerability
is triggered and the program flow is hijacked,

the program can jump to the nop area and

execute a long section of nop and then execute

shellcode, or jump directly to the shellcode
starting address to execute shellcode, thus

completing the specified function of the attacker.

4. Path constraint: The condition required for

memory placement to be met when the
specified location is overridden by the input to

the specified code.

Therefore, CRAX constructed shellcode

constraint, nop constraint, and eip constraint on the
shellcode area, nop area, and the affected IP register

area, and respectively combined the three constraints

with path constraint to form a harness code

constraint named exploit constraint that directly
overrides the return address-type vulnerability

utilization with a fixed address.

Only when there is a solution to the exploit

constraint, the availability of the target program is
considered to be true, and further constraint

simplification and constraint solving are conducted

to obtain the target program utilizing code. The

specific construction process is shown in figure 2:

Begin

All symbol regions are

traversed?

N

Select the current symbol area

and compare its space size to

shellcode length

The symbol area length

is greater than or equal to the

shellcode length?

N

Try to arrange the shellcode at

the end of the current symbol

area

Initialize nopAttempt and failedPivot as the star t address of

the symbol area, and successPivot as the star t address of

shellcode

Build shellcode constraint

Build eip constraint

Update and determine

 whether the exploit constraint

is solvable?

successPivot-

failedPivot<=1
successPivot=nopAttempt

Resolve the constraints and

solve the constraints, and get

the final exploit code.

Arrange shellcode ahead

The shellcode star t

address is equal to the sign

area star t?

failedPivot=nopAttempt

current star ting point cannot be

automatically utilized

Y

End

Y

Y

N

N

N

Y

nopAttempt=

(successPivot+failedPivot)/2

YsuccessPivot-

failedPivot<=1

N

Y

Build nop constraint between

nopAttempt and shellcode star t

address

Figure 2: Constraints construct flow diagrams.

Analysis of the CRAX Vulnerability Automatic Utilization Process

33

3.1 Shellcode Constraint

The shellcode constraint is used to constrain the

arrangement of shellcode in the symbolized area. In
order to find an appropriate size memory area in the

memory space, CRAX finds areas that can be

affected by external input and records these

continuous symbol memory areas by symbolizing
the external input and by tracking the data flow. In

these continuous symbolic memory areas, the

contents of a specified memory area can be

overwritten as long as a specific data stream is built
as an external input. Then, in each continuous

memory area, CRAX writes the shellcode of specific

function into memory byte by byte and builds the

shellcode constraint until it succeeds in a certain
memory area. The ultimate result of constraint

solving is to write the shellcode for specific

functions in the specified symbol area through

external input.
Before constructing the shellcode constraint in

the symbol memory area, the relationship between

the size of the current symbol memory area and the

length of the shellcode to be written is first
compared. If the size of the current symbol memory

area is less than the length of shellcode, it indicates

that the current symbol memory area is too small to

arrange the shellcode to be written. It means the
shellcode constraint builds failed this time, and need

to look for new symbol memory areas for the next

constraint build attempt; If the current symbol

memory area is greater than the length of shellcode,
it indicates that the symbol memory area is large

enough for shellcode to further try the shellcode

constraint construction.

When building shellcode constraint, CRAX
places the shellcode at the end of the symbolic

memory area.

After determining the area used to arrange

shellcode, the constraint is constructed word by
word, forming a constraint to determine whether the

value of the corresponding memory area used to

store shellcode can be equal to the byte at the

corresponding offset in shellcode. The specific
shellcode constraint build process is shown in table

1:

Table 1: The process of building shellcode constraint.

3.2 Nop Constraint

The nop constraint is the constraint used to populate

the nop instruction value between the shellcode
starting address and the start address of the symbol

memory area. Nop instructions are "empty

instructions," meaning that the execution of an

instruction does not change the register accessible to
any program, the processor status flag, or main

memory. The machine code is 0x90 under x86

conditions. Therefore, nop instruction does not

produce any actual execution effect except that it
takes up some memory and requires little execution

time. In the process of constructing the constraint,

the main purpose of building the nop constraint is to

increase the coverage of nop, so that the modified IP
register can jump to the area domain with greater

probability, and then to the shellcode area.

The introduction of the nop constraint is mainly

to make the value of the overriding return address
not necessarily a fixed value of the shellcode start

address, but any value between the start address of

the nop area and the start address of the shellcode

start address, so that the shellcode can eventually be
executed. In this way, the flexibility of code

utilization is improved, the value range of the

returned address is improved, and the possibility of

solving eip constraint is also improved.
In order to maximize the range of data values

used to cover the returned addresses, we need to

start from the shellcode starting address, to the start

address of the symbol memory area, and arrange the
continuous nop area as much as possible. For this

reason, CRAX tries to arrange the largest nop area

using dichotomy before the shellcode start address,

from the start address of the current symbol area to
the start address of the shellcode. Then CRAX

constructs the constraint byte by byte which

determines whether the nop block can be equal to

"\x90", and then combine to form the corresponding
nop constraint. The nop constraint build process is

shown in table 2:

CTISC 2019 - International Conference on Advances in Computer Technology, Information Science and Communications

34

Table 2: The process of building nop constraint.

3.3 Eip Constraint

The eip constraint is the constraint on the IP register

value when the control flow hijacking occurs. Since
the value of the IP register is the address of the next

instruction to be executed by the CPU, a constraint

needs to be built to form a constraint on the value

stored in the IP register after the control flow
hijacking, so that the value points to any address

between the start address of the nop area and the

start address of shellcode. After the program returns,

the program flow will jump to the nop area or
directly to the shellcode starting address for

execution.

The eip constraint build process is shown in table

3:

Table 3: The process of building eip constraint.

lowerBound = nopAttempt

upperBound = shellcode_Addr

eipConstraint = AndExpr (UgeExpr
(m_eipValue ,lowerBound),

UleExpr(m_eipValue ,upperBound));

4 CONSTRAINT REBUILDING

The exploitability constraints built on shellcode

constraint、nop constraint and eip constraint may

fail to combine with the path constraint due to bad

characters or conflict with the path constraint.
However the current constraint solving failure does

not necessarily mean the automatic generation of

utilizing code failure. The fact that no solution for

the current constraint actually represents the kind of
data layout corresponding to the current constraint is

not feasible. It is usually caused by conflict with the

current path constraint and other reasons. Therefore,

it can maintain the original function and avoid
conflict with the current path constraint by adjusting

the arrangement of data, so as to obtain the final use

code.

In fact, CRAX expects to automatically get a
utilization code that can jump directly to shellcode

through the nop area and give the largest possible

nop area in the final utilization code, that is, as many

nop empty instruction values as possible before the
shellcode without conflict with other constraints.

Therefore, it is necessary to adjust the constraint

after the construction of the constraint and judge the

resolvability after the reconstruction. This process of
adjusting and rebuilding constraints is called

constraint rebuilding.

4.1 Rebuild Shellcode Constraint

For the shellcode constraint, after the construction of

the constraint is completed, if the solution of the

exploit constraint fails, since the initial shellcode is

started at the end of the current symbol memory area,
then consider adjusting the position of shellcode

constraint when constructing the shellcode

constraint. If the starting position of shellcode is not

equal to the starting position of the current symbol
area, move shellcode forward by a byte and rebuild

the other constraint until the exploit constraint has a

solution; If the shellcode start location has been

aligned with the start address of the current symbol
area, but is still unsolvable, the current symbol

memory area is determined to be unavailable. Try to

find a new symbol memory area and start

constructing the constraint again until it is solvable
and available code; If all symbol memory areas are

tried and still unsolved, the current program is

determined not to be automatically utilized

Analysis of the CRAX Vulnerability Automatic Utilization Process

35

4.2 Rebuild Nop Constraint

For the nop constraint, in order to make the nop area

in the code as large as possible, CRAX uses
dichotomy to gradually determine the nop area step

by step between the start address of the symbolic

memory area and the start address of shellcode.

1. When the constraint is first constructed, try to
arrange all the nop between the symbolic memory

area and the shellcode starting address, that is, the

initial before endpoint and after endpoint used in the

record dichotomy are low= symbolicArea
_startAddr, high= shellcodeaddress-1, and the nop

area starting address is nopAttempt= symbolicArea

_startAddr.

2. Try to construct a constraint that sets all
contents from nopAttempt to high as nop, and add

nop constraint to exploit constraint. After building

exploit constraint, determining the solubility of the

result with the combination of exploit constraint and
path constraint.

3. If the decision result is solvable, it indicates

that under the current condition, all nop areas can be

covered as nop. Try to use dichotomy to expand nop
interval, so determine whether abs(high-low) <= 1.

If not, the nop area still can expand. Make

successPivot = nopAttempt, nopAttempt =

(failedPivot + successPivot)/2, and then go to step 2.
If true, the nop area cannot be expanded, then

nop_constraint is returned.

4. If the decision result is unsolved, in the

current condition, the number of bytes in the nop
area cannot be assigned to the nop, so try to narrow

down the nop interval by using the dichotomy.

Determine whether the condition abs(high - low)<=1

is true. If not, make low=nopAttempt,
nopAttempt=(low+ high)/2, and then go to step 2 to

construct the nop constraint. If the condition is true,

it returns nop_constrait 0.

4.3 Rebuild Eip Constraint

1. For eip constraint, if the nop constraint is not

empty, try to make the value used to cover the ip

register within the nop area, or point directly to the
shellcode starting address, and construct the

corresponding constraint accordingly. If the nop

constraint is empty, try to directly builds constraints

that make the ip register equal to the shellcode start
address.

2. If eip constraint is added to exploit constraint

determine whether there is a solution to the exploit

constraint. If yes, try to determine the maximum

range that nop area can obtain by dichotomy, that is
to advance the start address of nop area by

dichotomy. Make high=nopAttempt,

nopAttempt=(low+high)/2, and determine whether

the end of dichotomy condition abs(high-low) <= 1
is true. If it is true, then the exploit constraint is the

final constraint and constraint building has solution;

then simplifing the constraint and solving the

constraint by the constraint solver, the final
vulnerability exploit constraint code can be obtained.

If the end condition of dichotomy is not true, try

again to construct the nop constraint in 2 according

to the new high, low and nopAttempt values.
3. If the exploit constraint obtained in 2 is

determined to be unsolved after solving, it means

that the eip constraint cannot fall within the nop area

or directly points to the shellcode starting address.
Then, it is considered that whether the nop area

space can be expanded by dichotomy to expand the

feasible range of eip constraint. Then, the start

address of nop area is brought forward to make
high=nopAttempt, nopAttempt=(low+high)/2, and

then judge whether the condition abs(high-low)<= 1

is true. If it is not true, the nop constraint is

reconstructed again according to the new high, low
and nopAttempt values. If true, when reaching end

but there is no feasible solution, go to step 1, move

the shellcode start address one ahead, and rebuild

the shellcode constraint.

5 CONCLUSION

CRAX is an automatic development and generation
framework based on S2E. In order to generate

control flow hijacking attacks, it focuses on

symbolized EIP, registers, and pointers, and propose

a systematic method for searching maximum
contiguous symbolic memory for payload injection.

Experiments on various vulnerable sample codes

show that CRAX can handle different types of

control flow hijacking vulnerabilities. At the same
time, it analyzed and utilized the vulnerability faster

and more efficiently than manual debugging. CRAX

is also a viable and powerful development tool for

real-world environments.
But CRAX has limitations. First of all, it mainly

focuses on the automated analysis of stack overflow

vulnerability, while the automated analysis of heap

overflow vulnerability remains to be studied.
Secondly, it does not consider the influence of

ASLR, DEP and other protection mechanisms on

automatic analysis.

CTISC 2019 - International Conference on Advances in Computer Technology, Information Science and Communications

36

REFERENCES
Lin Yaquan. , 2016. War on Vulnerability. Beijing:

Electronic Industry Press.
McGraw, G. , 2016. Software security: Building Security

In. Boston, MA: Addtion-Wesley Professional.
Liang, H. , Purui, S. , 2016. Research Progress of

Software Vulnerability Automatic Utilization. China
Education Network.

Brumley, D. , Poosankam, P. , Song, D. X. , & Zheng, J. .
2008. Automatic Patch-Based Exploit Generation is
Possible: Techniques and Implications. IEEE
Symposium on Security & Privacy. IEEE.

Avgerinos, T. , Cha, S, K. , Tao, B, L, T. , Brumley, D. ,
2011. AEG:Automatic Exploit Generation. In
Proceedings of the Networkand Distributed System
Security Symposium (NDSS).

Chipounov, V. , Kuznetsov, V. , Candea, G. , 2011. “S2E:
a platformfor in-vivo multi-path analysis of software
systems,” in Proceedings of the 16th International
Conference on ArchitecturalSupport for Programming
Languages and Operating Systems(ASPLOS’11),
Newport Beach, CA, USA.

Cadar, C. , Dunbar, D. , Engler, D, R. 2008. “KLEE:
Unassistedand Automatic Generation of High-
Coverage Tests for Complex Systems Programs,” in
Proceedings of the 8th USENIXSymposium on
Operating Systems Design and
Implementation(OSDI’08), San Diego, California,
USA.

Bellard, F. , 2005. “QEMU, a fast and portable dynamic
translator,”in Proceedings of the FREENIX Track:
2005 USENIX AnnualTechnical Conference,
Anaheim, CA, USA.

Analysis of the CRAX Vulnerability Automatic Utilization Process

37

