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Abstract: In recent years, the number of software vulnerabilities has been on the rise, and the harm of software 

vulnerabilities has become more and more serious. However, there are so many software vulnerabilities that 

simple manual analysis cannot meet the requirements. In view of the above problems, this paper introduces 

CRAX. CRAX is a new framework based on symbolic execution. And it is to act as a backend of 

static/dynamic program analyzers, bug finders, fuzzers, and crash report database. It can automatically, 

efficiently and quickly analyze software vulnerabilities and generate stable and efficient test cases. The 

paper analyzes CRAX's automatic analysis process of vulnerability program and the generation process of 

test cases in detail, and in chapter 3 and chapter 4, it emphatically introduces the constraint construction and 

reconstruction process in the process of CRAX's automatic analysis. 

1 INTRODUCTION 

Vulnerability is a defect in the specific 
implementation of hardware, software, protocol or 

system security policy, which enables an attacker to 

access or break the system without authorization 

(Yaquan, 2016). In recent years, the number of 
software vulnerabilities has been on the rise. The 

malicious Web attack events that software 

vulnerabilities should be launched violate citizens' 

rights and interests, spread a wide range of computer 
viruses, cause major economic losses, and 

implement advanced sustainable attacks to trigger 

national security incidents (McGraw, 2016). 

Therefore, software vulnerability analysis has 
become a problem that cannot be ignored in the 

computer field. 

When the program crashes, the traditional 

analysis is to manually analyze the availability of 
crash so that it can determine whether the crash is 

caused by internal logic errors or by external input. 

If it is caused by external input, then it is likely to be 

a very serious crash or even an exploitable 
vulnerability. However, due to the numerous 

software crashes, pure manual analysis has been 

unable to meet the requirements, so how to quickly 

and efficiently analyze the availability of crash has 

become one of the key issues in the field of 

vulnerability mining and analysis. 

2 CRAX 

At present, with the continuous development of 

automatic program analysis, especially the 

introduction of symbol execution, stain analysis and 
other technologies into the fields of software crash 

analysis and vulnerability mining, various software 

vulnerability utilization automatic construction 

technologies have been proposed (Liang and Purui, 
2016). At IEEE S&P conference in 2008, 

D.Brumley et al first proposed AEPG based on 

patch comparison (Brumley and Poosankam, 2008). 

At NDSS conference in 2011, T.Avgerinos et al first 
proposed AEG based on source code analysis 

(Avgerinos and Cha, 2011). On the basis of AEG 

technology, in 2012 IEEE conference, Huang 

Shikun et al proposed the automation framework 
CRAX based on AEG method improvement. 

Based on S2E (Chipounov and Kuznetsov, 2011) 

environment model, KLEE (Cadar and Dunbar, 

2008) symbol virtual machine and QEMU (Bellard, 
2005) processing simulator, this framework is a new 

platform for symbol execution. To generate control 

flow hijack attacks, CRAX focuses on symbolized 

EIP, registers, and Pointers. A systematic method is 
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proposed to search the maximum continuous symbol 

memory for payload injection. 

3 BUILD CONSTRAINT 

In the automatic analysis and utilization of the 
program, CRAX first determines the availability of 

the program. If the EIP of the program can be 

overwritten, the risk of the program is determined. If 

the determination program has available risks, 
CRAX transfer to the available constraint building 

and solving process. In the process of building a 

constraint, CRAX first looks for a large section of 

the continuous symbolic area, and then tries to 
construct an input which can cause overflow and 

hijack the control flow. Through input, CRAX can 

build shellcode constraints、nop constraints and eip 

constraints. After successful construction, CRAX 

combine shellcode constraints, eip constraints, nop 

constraints, and the path constraints, if the result is 

true, then it indicates that the constraint is 
constructed successfully, and the code distributes 

after the constraint is constructed successfully is 

shown in figure 1. The symbolic area grows from 

low address to high address, and shellcode is 
arranged at the bottom of the symbolized area: 
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Figure 1: The code distribution after a successful 
constraint building. 

1. Build shellcode constraint: Overlay a 
contiguous symbolic area with the specified 

shellcode that implements specific functions. 

2. Build nop constraint: Arrange a large section of 

nop in front of shellcode so that it doesn't affect 
shellcode's functionality, meanwhile it can 

increases the chances that the IP registers  jump 

to shellcode. 

3. Build eip constraint: Overwrite the value of the 
IP register as the specified value, so that EIP 

can jump directly to the nop area or to the start 

address of shellcode after the program flow 

hijacking is successful. When the vulnerability 
is triggered and the program flow is hijacked, 

the program can jump to the nop area and 

execute a long section of nop and then execute 

shellcode, or jump directly to the shellcode 
starting address to execute shellcode, thus 

completing the specified function of the attacker.  

4. Path constraint: The condition required for 

memory placement to be met when the 
specified location is overridden by the input to 

the specified code. 

Therefore, CRAX constructed shellcode 

constraint, nop constraint, and eip constraint on the 
shellcode area, nop area, and the affected IP register 

area, and respectively combined the three constraints 

with path constraint to form a harness code 

constraint named exploit constraint that directly 
overrides the return address-type vulnerability 

utilization with a fixed address. 

Only when there is a solution to the exploit 

constraint, the availability of the target program is 
considered to be true, and further constraint 

simplification and constraint solving are conducted 

to obtain the target program utilizing code. The 

specific construction process is shown in figure 2: 
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Figure 2: Constraints construct flow diagrams. 
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3.1 Shellcode Constraint 

The shellcode constraint is used to constrain the 

arrangement of shellcode in the symbolized area. In 
order to find an appropriate size memory area in the 

memory space, CRAX finds areas that can be 

affected by external input and records these 

continuous symbol memory areas by symbolizing 
the external input and by tracking the data flow. In 

these continuous symbolic memory areas, the 

contents of a specified memory area can be 

overwritten as long as a specific data stream is built 
as an external input. Then, in each continuous 

memory area, CRAX writes the shellcode of specific 

function into memory byte by byte and builds the 

shellcode constraint until it succeeds in a certain 
memory area. The ultimate result of constraint 

solving is to write the shellcode for specific 

functions in the specified symbol area through 

external input. 
Before constructing the shellcode constraint in 

the symbol memory area, the relationship between 

the size of the current symbol memory area and the 

length of the shellcode to be written is first 
compared. If the size of the current symbol memory 

area is less than the length of shellcode, it indicates 

that the current symbol memory area is too small to 

arrange the shellcode to be written. It means the 
shellcode constraint builds failed this time, and need 

to look for new symbol memory areas for the next 

constraint build attempt; If the current symbol 

memory area is greater than the length of shellcode, 
it indicates that the symbol memory area is large 

enough for shellcode to further try the shellcode 

constraint construction. 

When building shellcode constraint, CRAX 
places the shellcode at the end of the symbolic 

memory area. 

After determining the area used to arrange 

shellcode, the constraint is constructed word by 
word, forming a constraint to determine whether the 

value of the corresponding memory area used to 

store shellcode can be equal to the byte at the 

corresponding offset in shellcode. The specific 
shellcode constraint build process is shown in table 

1: 

 

 
 

 

 

 
 

Table 1: The process of building shellcode constraint. 

 

3.2 Nop Constraint 

The nop constraint is the constraint used to populate 

the nop instruction value between the shellcode 
starting address and the start address of the symbol 

memory area. Nop instructions are "empty 

instructions," meaning that the execution of an 

instruction does not change the register accessible to 
any program, the processor status flag, or main 

memory. The machine code is 0x90 under x86 

conditions. Therefore, nop instruction does not 

produce any actual execution effect except that it 
takes up some memory and requires little execution 

time. In the process of constructing the constraint, 

the main purpose of building the nop constraint is to 

increase the coverage of nop, so that the modified IP 
register can jump to the area domain with greater 

probability, and then to the shellcode area. 

The introduction of the nop constraint is mainly 

to make the value of the overriding return address 
not necessarily a fixed value of the shellcode start 

address, but any value between the start address of 

the nop area and the start address of the shellcode 

start address, so that the shellcode can eventually be 
executed. In this way, the flexibility of code 

utilization is improved, the value range of the 

returned address is improved, and the possibility of 

solving eip constraint is also improved. 
In order to maximize the range of data values 

used to cover the returned addresses, we need to 

start from the shellcode starting address, to the start 

address of the symbol memory area, and arrange the 
continuous nop area as much as possible. For this 

reason, CRAX tries to arrange the largest nop area 

using dichotomy before the shellcode start address, 

from the start address of the current symbol area to 
the start address of the shellcode. Then CRAX 

constructs the constraint byte by byte which 

determines whether the nop block can be equal to 

"\x90", and then combine to form the corresponding 
nop constraint. The nop constraint build process is 

shown in table 2: 
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Table 2: The process of building nop constraint. 

 

 

3.3 Eip Constraint 

The eip constraint is the constraint on the IP register 

value when the control flow hijacking occurs. Since 
the value of the IP register is the address of the next 

instruction to be executed by the CPU, a constraint 

needs to be built to form a constraint on the value 

stored in the IP register after the control flow 
hijacking, so that the value points to any address 

between the start address of the nop area and the 

start address of shellcode. After the program returns, 

the program flow will jump to the nop area or 
directly to the shellcode starting address for 

execution. 

The eip constraint build process is shown in table 

3: 

Table 3: The process of building eip constraint. 

 

lowerBound = nopAttempt 

upperBound = shellcode_Addr 

eipConstraint = AndExpr (UgeExpr 
( m_eipValue ,lowerBound), 

UleExpr(m_eipValue ,upperBound )); 

 

4 CONSTRAINT REBUILDING 

The exploitability constraints built on shellcode 

constraint、nop constraint and eip constraint may 

fail to combine with the path constraint due to bad 

characters or conflict with the path constraint. 
However the current constraint solving failure does 

not necessarily mean the automatic generation of 

utilizing code failure. The fact that no solution for 

the current constraint actually represents the kind of 
data layout corresponding to the current constraint is 

not feasible. It is usually caused by conflict with the 

current path constraint and other reasons. Therefore, 

it can maintain the original function and avoid 
conflict with the current path constraint by adjusting 

the arrangement of data, so as to obtain the final use 

code. 

In fact, CRAX expects to automatically get a 
utilization code that can jump directly to shellcode 

through the nop area and give the largest possible 

nop area in the final utilization code, that is, as many 

nop empty instruction values as possible before the 
shellcode without conflict with other constraints. 

Therefore, it is necessary to adjust the constraint 

after the construction of the constraint and judge the 

resolvability after the reconstruction. This process of 
adjusting and rebuilding constraints is called 

constraint rebuilding. 

4.1 Rebuild Shellcode Constraint 

For the shellcode constraint, after the construction of 

the constraint is completed, if the solution of the 

exploit constraint fails, since the initial shellcode is 

started at the end of the current symbol memory area, 
then consider adjusting the position of shellcode 

constraint when constructing the shellcode 

constraint. If the starting position of shellcode is not 

equal to the starting position of the current symbol 
area, move shellcode forward by a byte and rebuild 

the other constraint until the exploit constraint has a 

solution; If the shellcode start location has been 

aligned with the start address of the current symbol 
area, but is still unsolvable, the current symbol 

memory area is determined to be unavailable. Try to 

find a new symbol memory area and start 

constructing the constraint again until it is solvable 
and available code; If all symbol memory areas are 

tried and still unsolved, the current program is 

determined not to be automatically utilized 
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4.2 Rebuild Nop Constraint 

For the nop constraint, in order to make the nop area 

in the code as large as possible, CRAX uses 
dichotomy to gradually determine the nop area step 

by step between the start address of the symbolic 

memory area and the start address of shellcode. 

1. When the constraint is first constructed, try to 
arrange all the nop between the symbolic memory 

area and the shellcode starting address, that is, the 

initial before endpoint and after endpoint used in the 

record dichotomy are low= symbolicArea 
_startAddr, high= shellcodeaddress-1, and the nop 

area starting address is nopAttempt= symbolicArea 

_startAddr. 

2. Try to construct a constraint that sets all 
contents from nopAttempt to high as nop, and add 

nop constraint to  exploit constraint. After building 

exploit constraint, determining the solubility of the 

result with the combination of exploit constraint and 
path constraint. 

3. If the decision result is solvable, it indicates 

that under the current condition, all nop areas can be 

covered as nop. Try to use dichotomy to expand nop 
interval, so determine whether abs(high-low) <= 1. 

If not, the nop area still can expand. Make 

successPivot = nopAttempt, nopAttempt = 

(failedPivot + successPivot)/2, and then go to step 2. 
If true, the nop area cannot be expanded, then 

nop_constraint is returned.  

4. If the decision result is unsolved, in the 

current condition, the number of bytes in the nop 
area cannot be assigned to the nop, so try to narrow 

down the nop interval by using the dichotomy. 

Determine whether the condition abs(high - low)<=1 

is true. If not, make low=nopAttempt, 
nopAttempt=(low+ high)/2, and then go to step 2 to 

construct the nop constraint. If the condition is true, 

it returns nop_constrait 0. 

4.3 Rebuild Eip Constraint 

1. For eip constraint, if the nop constraint is not 

empty, try to make the value used to cover the ip 

register within the nop area, or point directly to the 
shellcode starting address, and construct the 

corresponding constraint accordingly. If the nop 

constraint is empty, try to directly builds constraints 

that make the ip register equal to the shellcode start 
address. 

2. If eip constraint is added to exploit constraint 

determine whether there is a solution to the exploit 

constraint. If yes, try to determine the maximum 

range that nop area can obtain by dichotomy, that is 
to advance the start address of nop area by 

dichotomy. Make high=nopAttempt, 

nopAttempt=(low+high)/2, and determine whether 

the end of dichotomy condition abs(high-low) <= 1 
is true. If it is true, then the exploit constraint is the 

final constraint and constraint building has solution; 

then simplifing the constraint and solving the 

constraint by the constraint solver, the final 
vulnerability exploit constraint code can be obtained. 

If the end condition of dichotomy is not true, try 

again to construct the nop constraint in 2 according 

to the new high, low and nopAttempt values. 
3. If the exploit constraint obtained in 2 is 

determined to be unsolved after solving, it means 

that the eip constraint cannot fall within the nop area 

or directly points to the shellcode starting address. 
Then, it is considered that whether the nop area 

space can be expanded by dichotomy to expand the 

feasible range of eip constraint. Then, the start 

address of nop area is brought forward to make 
high=nopAttempt, nopAttempt=(low+high)/2, and 

then judge whether the condition abs(high-low)<= 1 

is true. If it is not true, the nop constraint is 

reconstructed again according to the new high, low 
and nopAttempt values. If true, when reaching end 

but there is no feasible solution, go to step 1, move 

the shellcode start address one ahead, and rebuild 

the shellcode constraint. 

5 CONCLUSION 

CRAX is an automatic development and generation 
framework based on S2E. In order to generate 

control flow hijacking attacks, it focuses on 

symbolized EIP, registers, and pointers, and propose 

a systematic method for searching maximum 
contiguous symbolic memory for payload injection. 

Experiments on various vulnerable sample codes 

show that CRAX can handle different types of 

control flow hijacking vulnerabilities. At the same 
time, it analyzed and utilized the vulnerability faster 

and more efficiently than manual debugging. CRAX 

is also a viable and powerful development tool for 

real-world environments. 
But CRAX has limitations. First of all, it mainly 

focuses on the automated analysis of stack overflow 

vulnerability, while the automated analysis of heap 

overflow vulnerability remains to be studied. 
Secondly, it does not consider the influence of 

ASLR, DEP and other protection mechanisms on 

automatic analysis. 
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