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Abstract: Recently, Generative Adversarial Networks (GANs) gradually applied to the generation of 3D objects and 

has achieved remarkable success, but at the same time, it also faces some problems, such as the training 

instability, low-quality samples and mode collapse. We propose a novel framework, namely 3D Bounding 

Box Generative Adversarial Network (3D-BBGAN), which can reduce the probability space of generation 

by adding conditional information. According this way, we can get 3D objects with more detailed 

geometries. 

1 INTRODUCTION 

The Generative Adversarial Network (GAN) 

(Goodfellow, 2014) have achieved a great success in 

generation of pictures. The some flaws in GAN’s 

initial stage are generally remedied by the variations 
of GAN. To solve the out-sync problem of generator 

and discriminator network, (Arjovsky, 2017) 

proposes Wasserstein GAN (WGAN) of clipping the 

weights of the critic to restrict within a fixed interval 
[-c, c]. Furthermore, (Gulrajani, 2017) provide the 

WGAN with gradient penalty (WGAN-GP) to avoid 

the possible pathological behavior of WGAN. 

Otherwise, the initial GAN have no any prior 
information, which leads that we couldn’t constrain 

the generated results. The Conditional Generative 

Adversarial Net (CGAN) (Mirza, 2014) creatively 

adds the prior information into network by adding 
conditions to both the generator and discriminator 

network. 

Recently, the appearance of 3D-GAN (Wu, 2016) 

indicates that GAN begins to apply to the generation 
of 3D objects. Compared with the 2D field, the 

feature information of high-dimensional object is 

more complex. It is easy to fall into the curse of 

dimensionality. And it is a bit challenging for the 
network structure and hardware performance to 

learn more accurately the characteristic information 

of high-dimensional objects. At present, the 

accuracy of improving the 3D model is mainly to 
improve the complexity of network architecture and 

reduce the distribution space of 3D objects. (Smith, 

2017) (3D-IWGAN) reduces the data space of the 

original 3D-GAN from 64*64*64 to 32*32*32, at 

the same time introduce into the WGAN-GP to 

improve the stability of training.  
Base on the methods known as 3D-IWGAN and 

CGAN, here we propose a new idea to capture these 

wider and more complicated distributions, which 

attempt to introduce the prior information into the 
network architecture. Unlike the CGAN directly 

feeding same extra information into the both the 

discriminator and generator as additional input layer, 

while feeding the generator network the bounding 
box information of 3D samples which can be 

represented as double three-dimensional coordinates, 

we are also feeding the discriminator the mask 

information corresponding to bounding box. We call 
our resulting shape model the 3D Bounding Box 

Generative Adversarial Network (3DBBGAN).  

We can demonstrate that our 3D-BBGAN have 

following advantages: 

– Compared with 3D-IWGAN, we can get a 

more stable and faster procedure of convergence 

testing on ModelNet10 Dataset (Wu, 2015) 

– By adjusting the input coordinate information, 

we can guide the size of generated object to some 
extent. 
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2 RELATED WORKS 

2.1    Modelling and Synthesizing 3D 
Shapes 

 

 
 

 

 

Figure 1: The architecture of 3D-BBGAN. 

The generation and synthesizing of 3D object 

models is a hot spot in computer graphics and vision 

community. In the past few decades, the method of 

3D object modeling and synthesis mainly realized by 

the combination of primitives or simpler geometric 

shapes, which exist in CAD model libraries 

(Wu,2015),(Chang,2015), there is a lot of the 

relevant literature (Tangelder,2004), 

(Chaudhuri,2011),(Carison,1982) or through the way 

of point cloud reconstruction(Alexa,2003) The 

synthesized objects using these methods look 

realistic, but it is time-consuming and high-cost. As 

3D-GAN (Wu, 2016) is applied to the reconstruction 

and generation of 3D objects, some researchers have 

realized the potential of GAN in 3D filed. 3D-

IWGAN combines the 3D-GAN and WGAN-GP to 

improve the stability of training and the effect of 

synthesized object, (Wang,2017) named as 3d-ED-

GAN combines a 3D Encoder-Decoder GAN and a 

Long-term Recurrent Convolutional Network 

(Donahue,2015)(LRCN) to construction from 

broken models result in complete and high-

resolution 3D objects, and (Yang,2017) proposes 

3D-RecGAN approach to realize the construction 

from a single 2.5D depth view in a complete 3D 

objects. Get inspiration from CGAN, our 3D-

BBGAN introduces the prior knowledge into the 

3D-GAN. We will testify that our model could 

improve the efficiency of training. 

 

3 PROPOSED MODELS 

In this section we introduce our 3D-BBGAN 

architecture for 3D objection generation. We first 
get an introduction toward CGAN and WGAN-GP. 

Then we display our model and explain how we 

achieve control over the generated objects. 

3.1 Conditional Adversarial Nets(CGAN)  

Based the (Goodfellow, 2014) CGAN creatively 

attempt to condition both the generator and 

discriminator through same extra information y. The 

information may be meaningless to humans, but the 

generator and discriminator will learn automatically 

the meaning of y. To generate verisimilar results, the 

generator will build a mapping function from real 

samples, at the same time the discriminator try to 

distinguish the fake results, as if they are playing the 

two-player min-max game with value function V (G, 

D): 

min
𝐺

max
𝐷

𝑉(𝐷, 𝐺) = 𝐸𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥)[log 𝐷(𝑥|𝑦)] 

                            + 𝐸𝑧~𝑃𝑧(𝑧)[log(1 − 𝐷(𝐺(𝑧|𝑦)))]    (1) 

The generator model G wants to captures the 

data distribution, and the discriminative model D 

tries to estimates the probability that a sample came 
from the training data. Where z represents a prior 

noise distribution. 
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3.2 WGAN with Gradient Penalty 
(WGAN-GP) 

(Arjovsky, 2017) (WGAN) argues that cross 
entropy is not appropriate to measure the distance 
of distributions with disjoint parts. Instead, the 
wassertein distance is proposed to measure the 

distance between the generated data and real data 
distribution, theoretically solving the problem of 
the training. In order to satisfy the lipschitz 
continuity that wassertein distance needs, WGAN 
clips the weights of the critic to lie within a fixed 
interval  

Figure 2: Objects generated by the 3D-BBGAN system trained on the ModelNet10 chair class in 12 orientations. Each row 
of images come from a same generated object. 

[c,c]. Determining the size of c is a tricky business. 
If too large, it may cause gradient explosion. On the 
contrary, it may cause gradient to 
disappear.(Gulrajani,2017) proposes a more 
appropriate method to enforcing the Lipschitz 
constraint. It directly constrains the gradient norm of 
the critic’s output with respect to its input to realize 
a soft version of constraint with a penalty on the 
gradient norm for random samples 𝑥̂~𝑃𝑥 , where 
randomly sampled from generator Pg and real data 
distribution Pr. This results in the following loss 
function: 

𝐿 = [𝐷(𝑥̃)]𝑥~𝑃𝑔

  𝐸    − [𝐷(𝑥)]𝑥~𝑃𝑟

𝐸    

                   + 𝜆 [(‖▽𝑥̂ 𝐷(𝑥̂)‖2 − 1)2]𝑥̂~𝑃𝑥̂

𝐸                   (2) 

3.3 Our 3D Bounding Box Generative 

Adversarial Net (3D-BBGAN) 

Inspired by (Mirza, 2014), our 3D-BBGAN 
architecture introduces the prior information into 
original network architecture of 3D-IWGAN (Smith, 
2017). As shown in 1, every real input is a 
32×32×32 voxel space, but the sample could be 
encircled at a more small area called Bounding Box. 
The Bounding Box could be represented by double 
coordinates (Min, Max) in a 3D space, which is 
inputted into the generator G as additional 
information y. Meanwhile, the every Bounding Box 
corresponds to a single Mask, inside of the 
Bounding Box are 1.0 and outside are 0.0, which is 
fed into the discriminator D as additional input layer. 
As for network structure, the generator G maps a 
206-dimensional latent vector (z, y), randomly 
sampled from a probability latent space, to a 
32×32×32 cube, representing an object in 3D voxel 

space. The discriminator D is fed the samples and 
the corresponding mask information, outputing a 
confidence value of whether an object model is real 
or generated. 

Following (Gulrajani, 2017), the loss function is 
as follows: 

𝐿 = [𝐷(𝐺(𝑧, 𝑦)|𝑀𝑎𝑠𝑘(𝑦))]𝐺(𝑧,𝑦)~𝑃𝑔

  𝐸         

− [𝐷(𝑥|𝑀𝑎𝑠𝑘(𝑦))]𝑥~𝑃𝑟

𝐸   + 

            𝜆 [(‖▽𝑥 𝐷(𝑥̂|𝑀𝑎𝑠𝑘(𝑦))‖2 − 1)2]𝑥~𝑃𝑥̂

𝐸           (3) 

where the Mask maps y. The 𝑃𝑥 is the mixed 
distribution of mixing randomly interpolation of 

generator distribution 𝑃𝑔 and data distribution 𝑃𝑟. 

4    EXPERIMENT 

In this section, we evaluate our framework on 
ModelNet10 Dataset (Wu, 2015). We first list 3D-

GAN, 3D-IWGAN and our generated results 

separately. Then we introduce our training details. 

Finally we show the frame how to control the size of 
generate object. 

4.1   3D Object Generation 

For this experiment, we first train our 3D-BBGAN 
for the highest complexity of chair and table class of 
ModelNET10 dataset. Then on the all classes of 
ModlNET10. We trained all experiments on 1080Ti 
GPU. For generation, we get generated object from 
the last tanh activation function of generator network, 
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and render the voxel of which the value exceed the 
threshold 0.3. 

Figure2 are generated by chair class of 

ModelNet10, which shows that our 3DBBGAN 
system has ability to generalize the object model of 

high quality from the complex sample space. Figure 

3 shows separately the generated samples of 

3DGAN,3D-IWGAN and our 3D-BBGAN. These 
samples are uniformly sampled and selected intact 

results. The source code we tested was from the 

github provided by (Gulrajani, 2017). Figure 4 are 
generated by training on the entire class of 

ModelNet10 dataset, which has bathtub, chair, bed, 

desk, dresser, monitor, table, toilet, nightstand and 

sofa class. Because our mask information 
successfully limited  

Figure 3: Objects generated by the 3D-GAN ,3D-IWGAN and our 3D-BBGAN models, trained separately on the single 

chair or table class of ModelNet10 dataset. For comparison, the results are uniformly sampled to represent the 

generalization ability of the model as much as possible. 

the space of data distribution, the model 
convergence speed was obviously improved. 

 

Figure 4: Objects generated by our 3D-BBGAN model, 
trained on the all ModelNet10 dataset. Each shape above 
is derived from a different class as order: monitor, bed, 
sofa, toilet, chair, table, dresser, nightstand, bathtub, desk. 
The orientations have been altered for optimal viewing. 

During the experiment, we found that the 3D-
GAN have come across the problem of mode 

collapse. It’s generated types are more less than 

others and always incomplete. 

While comparing the synthesized objects of 3D-
IWGAN and 3D-BBGAN generated by same latent 

vector z, our results can get more detailed 

geometries and more complete styles. But we have 

to admitted that there is no effective quantifiable 

indicators to measure the effect of synthesized 

objects. 

4.2   Mask Information 

Here we will show the effect of our model 

controlling the size of 3D object. We provide the 

generator with the length information of three sides 

of the bounding box to guiding the generation of 3D 
object. The length information can be converted into 

two coordinates. As Figure 5 shows, the 3D object 

will be generated in the corresponding bounding box. 

In fact, the specific generation effect of 3D object is 
not always good. According our research, the 

generation effect under bounding box. 

Training samples should contain as many 3D 

object models of various sizes as possible. 

– While the mask information provided exist in the 

training samples, the generated effect tends to be 
better. 

– Under extreme conditions like very short side 
length, the mask information will lose its guiding 

effect. 

In a word, our 3D-BBGAN model has ability to 

guide the size of the generate object by limiting the 
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generated area of the object through two three-

dimensional coordinates information. 

5   CONCLUSIONS 

In this work, we proposed 3D-BBGAN for 3D 
object generation. We demonstrated that our models 
are able to generate novel 3D objects with more 
detailed geometries. Through the addition of the 
conditional information to the generator and the 
discriminator in the training process, we have 
realized the effective limitation of the probability 
space of the generated object. We effectively limit 
the probability space of generation object to shorten 
the training time and improve the generation effect 
of 3D objects. And by adjusting the information we 
add to the generator, we can direct the size of the 
generated object. Next, we will try to add the 
appropriate conditional information to guide the type 
of the generated object. 

Figure 5: Objects generated by the 3D-BBGAN system 

trained on the ModelNet10 chair class. Here we list the 

generate results of the three bounding box information. 

The graph on the left of each column represents the 

generated 3D Object, the right of each column shows the 

render result with the correspond bounding box 

information. 
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