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Abstract: For most algorithms, the problem of Tracking target performance degradation in the case of fast moving, 

illumination changes, target deformation, occlusion, out-of-plane rotation, low-resolution images, etc. This 

paper proposes a tracking verification algorithm based on channel reliability. The tracker part of the 

algorithm is tracked by the method of correlation filter based on channel reliability. By calculating the 

reliability weight of each feature channel of the input correlation filter, and multiplying the weight by the 

response of the corresponding channel to obtain the final response, so that the target positioning will be 

more accurate. The validator part uses the Siamese dual input network in the deep learning convolutional 

neural network. Every few frames, the verifier will verify the results of the tracker part of the algorithm. If 

the reliability is verified, the tracking result will not be modified. Otherwise, the validator will re-detect the 

target location and verify the reliability through the Siamese dual-input network. The tracker will regard this 

location as the new location of our target continues to be tracked, making target tracking more durable and 

robust. The experimental evaluation of the OTB13 video sequence proves that the proposed algorithm has 

good adaptability to target fast motion, illumination change, target deformation, occlusion, and out-of-plane 

rotation, and has good robustness.  

1 INTRODUCTION 

As one of the basic technologies of computer vision, 

target tracking technology is widely used in video 

surveillance, human-computer interaction, robot 

(Smeulders and Chu, 2014) and other fields. 
Although the target tracking technology has 

achieved a series of results in recent years, there are 

still many difficulties and challenges in object 

tracking, occlusion, rotation, illumination changes, 
and posture changes.  

Existing model-free visual tracking algorithms 

are often classified as Discriminating or generating. 

Discriminating algorithms can be learned by multi-
instance learning (MIL), compressed sensing, P-N 

learning, structured output SVM (Hare, Golodetz, 

Saffari, Vineet, Cheng, Hicks, and Torr, 2016), 

online enhancement, and the like. In contrast, the 
generated class tracker typically treats the tracking 

as the most similar area of the search to the target. 

To this end, various object appearance modeling 

methods have been proposed, such as incremental 
subspace learning and sparse representation (Fan 

and Xiang, 2017) Currently, one of the new trends in 

improving tracking accuracy is the use of deep 

learning tracking methods (Fan and Ling, 2017, Ma, 
Huang and Yang, 2015, Nam and Han, 2016) 

because they have strong discriminative power, as 

shown in (Nam and Han, 2016). However, the use of 

deep learning-based tracking algorithms is 
computationally intensive and less real-time. 

Since MOSSE algorithm was proposed, the 

correlation filter (CF) has been considered as a 

robust and efficient method for visual tracking 
problems (Bolme, Beveridge, Draper and Lui, 2010). 

Currently, the proposed improvements based on the 

MOSSE algorithm include the inclusion of kernel 

and HOG features, the addition of color name 
features or color histograms (Bertinetto, Valmadre, 

Golodetz, Miksik, and Torr, 2016), and sparse fusion 

tracking (Zhang, Bibi and Ghanem, 2016), adaptive 

scales, mitigation of boundary effects (Danelljan, 
Hager, Shahbaz Khan, and Felsberg, 2015), based on 

Context-Aware correlation filter (Mueller, Smith, 

Ghanem, 2017) and fusion of deep convolutional 

network functions (Ma, Huang and Yang, 2015) 
algorithm.  
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Although the speed or accuracy of the tracking 

algorithms mentioned above has improved, real-time 
high-quality tracking algorithms are still rare. So 

seeking trade-offs between speed and accuracy is a 

trend in future tracking (Mueller, Smith, Ghanem, 

2017, Ma, Yang, Zhang and M.H. Yang, 2015). 
Context-Aware Correlation Filter Tracking (Mueller, 

Smith, Ghanem, 2017) proposes a new correlation 

filter framework that can add more background 

information and incorporate global background 
information into the learned filters for processing. 

The algorithm adds background information to the 

Staple algorithm, and the robustness to large size 

changes, background clutter and partial occlusion is 
improved and the impact of speed is relatively small. 

However, the algorithm is relatively less robust in 

the target plane, out-of-plane rotation, dramatic 

illumination changes, and fast motion. Therefore, in 
order to better and more accurately track the target, a 

tracking algorithm that balances the advantages and 

disadvantages of both can be found between real-

time and high robustness. Therefore, this paper 
proposes a video target verification tracking 

algorithm based on channel reliability. 

The algorithm in this article consists of two parts: 

a tracker and a validator. The validator is 
implemented by the Siamese network in the deep 

learning convolutional neural network. These two 

parts are independent of each other and work in 

harmony. Advantages (1): The channel reliability 
method is used to make the target positioning more 

accurate. That is, each feature channel is added with 

a corresponding weight, and then summed. (2): 

Verify the result of the tracker every few frames. 
When the verification system finds that the result of 

tracking a certain frame is incorrect, it will re-target 

the target to find the target position information and 

put the target new. The position returns to the 
tracker as the target position of the error frame, 

causing the tracker to continue tracking from this 

position. 

2 THE TARGET VERIFICATION 

TRACKING ALGORITHM 

BASED ON CHANNEL 

RELIABILITY  

The algorithm in this paper consists of two parts: 
tracker T and verifier V. The tracker is implemented 

using a correlation filter method based on Context-

Aware to ensure real-time and location of the target. 

At the same time, the tracker sends a verification 

request to the validator with a fixed number of 

frames and responds to feedback from the validator 
by adjusting the tracking or updating model. The 

validator is implemented using the Siamese network 

in the deep learning convolutional neural network. 

After receiving a request from the tracker, the 
validator will first verify that the tracking results are 

correct and then provide feedback to the tracker. The 

overall block diagram is shown in Figure 1.  

 

Figure 1: Overall block diagram of video target 
verification tracking algorithm based on channel reliability.  

2.1 Channel Reliability Estimation 

Channel reliability is calculated by constraining the 

properties of least squares solutions during the filter 

design process. The channel reliability score is used 
to represent the weight of each channel filter 

response when positioned, as shown in Figure 2. 

 

 

Figure 2: Channel reliability weights calculated in the 
constraint optimization step of correlation filter learning 
reduce the noise of the weighted average filter response. 

The characteristic channel reliability of the target 

positioning phase is obtained by multiplying the 

learning channel reliability measurement value and 

the channel detection reliability measurement value. 

Assume that  is the total number of channels for a 

given correlation filter Hog feature. The 

corresponding set of  mutually independent 

channel features is    1:
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filter dw  whose output
d df w  is almost identical 

to the ideal response g. 
 On the other hand, the output response is noisy 

on feature channels with low discriminating power, 

and the global response error due to least squares 
will significantly reduce the peak of the maximum 

response. Therefore, the value of channel learning 

reliability is the maximum response of the learned 

filter. 
In the channel detection reliability measurement 

phase, the expressive power of the main mode in 

each channel response can indicate the detection 

reliability of each channel. In addition, Bolme et al 
also proposed a similar method to detect target loss. 

Our measure is based on the ratio between the 

second and first major mode in the response map, i.e. 

.  

Note  that this ratio penalizes cases when 
multiple similar objects appear in the target vicinity 

since these result in multiple equally expressed 

modes, even though the major mode accurately 
depict the target position. To prevent such 

penalizations, the ratio is clamped by 0.5. Therefore, 

the per-channel detection reliability is estimated as: 

 

              (1) 

2.2 Algorithm for Correlation Filter of 
Context-Aware Based on Channel 
Reliability 

The traditional correlation filter tracking algorithm 

uses ridge regression to classify.  is a circular 

matrix of all cyclically translated image blocks: 
 

               (2) 
Unlike traditional correlation filter frameworks, 

more background information is added to the 

framework of Context-Aware Correlation Filter. 

In each frame, we sample the k Context-Aware 

image blocks  around the target  

according to a uniform sampling strategy (k=4). The 

corresponding cyclic matrices are and 

.  

These Context-Aware image blocks contain 

global background information that causes various 
interference factors and different background forms, 

which can be considered as true negative samples. 

Intuitively, you need to learn a filter that has a high 

response to the target and a filter   that is close 

to zero response to the background image 

information patch block. The purpose is achieved by 
adding a Context-Aware image patch block as a 

normalization constraint to a standard formula (2). 

The result is as follows, the response regression of 

the target image block is the ideal response y, and 
the context image block is returned to zero by the 

parameter constraint . 

 

         (3)  

Where  corresponds to a cyclic matrix formed 

by all cyclic shifts of image block  based on 
contextual background information obtained around 

the target.  indicates the number of associated 

filter feature channels. 
Therefore, the final response of the algorithm is 

the product of the maximum response value obtained 

by formula (3) and the reliability estimation value 

of the feature channel detection, so that the 
position information of the target can be more 

accurately located. 

2.3 Siamese Verification Network 

This paper uses the Siamese network (Comaniciu, 

Ramesh and Meer, 2000) to design the verifier V. 

The network consists of two convolutional neural 
network (CNN) branches and processes two inputs 

separately. In this network, VGGNet (Perronnin, 

Sanchez and Mensink, 2010) was borrowed from the 

architecture of CNNS and an additional area pooling 
layer was added. In the detection process, since V 

needs to process a plurality of regions in the image, 

and select one candidate most similar to the target as 

an output result. Therefore, the region pooling layer 
can simultaneously process a group of regions in  

each frame of image, thereby significantly reducing 

the amount of computation. 

When the tracking result from T is input to the 
Siamese network, if its verification score is lower 

than the threshold  , V considers that the frame 

target tracking fails. In this case, V still uses the 
Siamese network to re-detect the target. Unlike the 

verification phase, the test needs to verify multiple 

image patches in a local area and find the target with 

the highest score.  

The square area of size  is centered on the 

position of the tracking result in the verification 

frame, which is the detection area. Where w and h 
are the width and height of the tracking target, and β 

is the target size factor. 
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The target candidate set generated by the sliding 

window is recorded as  , and the detection result 
is obtained by: 

             (4) 

 ,obj iv x c  represents the verification score 

between the tracking target 
objx  and the candidate 

target
ic . 

After obtaining the test results, we determine 
whether to use it as an alternative to the tracking 

result based on the verification score, as shown in 

Figure 3.  

If the test result is unreliable (the verification 

score of the test result is less than the threshold   ), 

then we do not change the tracking result of the 
tracker; and the algorithm reduce the verification 

interval V, and enlarge the size of the local area to 

search for the target, repeat the above process until 

the detection To a reliable result. Then restore the 
verification interval and the size of the search area. 

Return the results from the validator to the tracker T 

and continue tracking down from the revised target 

new location. In order to effectively reduce the 
calculator calculation time, the algorithm chooses to 

verify every ten frames. 

For our paper, the verification interval V is 

initially set to 10; the verification   and detection 

thresholds    are set to 1.0 and 1.6 respectively. 
The parameter β is initialized to 1.5 and can be 

adaptively adjusted based on the detection result. 

 

 

Figure 3: Tracking-Verification. 

3 EXPERIMENTAL 

VERIFICATION AND RESULTS 

ANALYSIS  

3.1 Experimental Configuration 

In order to evaluate the tracking performance and 

efficiency of the proposed algorithm, the 

experimental results in this paper are based on the 

Core i7, 3.6GHz CPU, Win10 system, through the 
Matlab R2016a software testing OTB13 dataset 

Obtained using the algorithm of this paper. The test 

dataset contains attributes such as lighting changes, 

occlusion, fast movement, scale changes, motion 
blur, and in-plane rotation. In the experiment, this 

paper selects 10 algorithms to compare the result 

(DAT, DCF_CA, DSST, SAMF, MEEM, KCF, LCT, 

Staple, STAPLE_CA and Our), and then “ Our ” 
represents the algorithm that we proposed.  

3.2 Quantitative Analysis 

Quantitative analysis is a commonly used standard 
for measuring algorithm tracking results. This 

section uses the average center position error (CLE) 

and overlap rate (OR) to evaluate the performance of 

the algorithm. CLE is the Euclidean distance 
between the target's true center position and the 

center position calibrated by the tracking algorithm. 

The overlap ratio of the tracking is the ratio of the 

area where the tracking succeeds to the real 
bounding box: 

Score =
𝐴𝑟𝑒𝑎(𝐵𝑇 ∩𝐵𝐺)

Area(𝐵𝑇 ∪𝐵𝐺)
 

Where BT represents the tracking target frame of 

each frame, and BG represents the real bounding box 
of the corresponding frame. 

Table 1 and Table 2 show the comparison results 

of the center position average error and the average 

value of the tracking bounding box overlap rate of 
the tracking results of different algorithms in each 

video sequence, respectively. 

Table 1: Center position average error. 
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Table 2: Average value of bounding box overlap. 

 
Note: The best and second best results are marked in 

bold and black italics, respectively 

 
In general, the smaller the average error and the 

larger the overlap rate, the more accurate the 

tracking result. According to the results of the 

average position error of the center position in Table 
1 and the average value of the overlap rate of the 

bounding box in Table 2, the average error of the 

center position of the target and the tracking frame 

overlap in the tracking process of the algorithm in 
this paper. The rate performance is better than the 

benchmark algorithm STAPLE_CA, especially in 

the case of the rotation of the target plane, the partial 

occlusion of the target, and the disorder of the target 
background, the robustness is improved. 

3.3 Qualitative Analysis 

This paper uses the OTB13 evaluation benchmark to 
perform three experiments on 51 video sequences: 

One-pass Evaluation (OPE), Temporal Robustness 

Evaluation (TRE), and Spatial Robustness 

Evaluation (SRE) Experiments. All these evaluation 
indicators represent the performance of the tracker in 

the form of an accuracy map and a success rate 

diagram, which means that the tracker can 

successfully track the percentage of the total number 
of frames in the video at different thresholds. 

By testing 51 video sequences, the experimental 

results of the accuracy score map (a) and the success 

score graph (b) of the obtained SRE are shown in 
Fig. 4. From the experimental results in Fig. 4, the 

legend illustrates the ranking scores for each tracker, 

and our algorithm ranks first on the top. From the 

legend can be analyzed that the performance of the 
proposed algorithm is improved compared with the 

other nine different types of algorithms. Compared 

with the benchmark algorithm STAPLE_CA, 

although the tracking speed is about half of the 
benchmark algorithm, the average accuracy score 

and the average AUC score performance are 

improved by more than 10%. 

 

 
   (a) accuracy score map      (b) success score map 

Figure 4: OTB13 video sequence algorithm evaluation 
results. The legend illustrates the ranking scores for each 
tracker, and our algorithm ranks first on the top(in SRE  
Evaluation Experiments). 

The 51 video sequences provided in OTB13 

contain 11 attributes: illumination changes, 
occlusion, fast motion, scale changes, motion blur, 

and in-plane rotation. Fig 5(a)-(e) represent test 

results for partial attribute success rates of a video 

sequence. 
Through the analysis of the OTB13 video 

sequence success rate evaluation graph of Fig. 5, it 

can be obtained that the algorithm which calculates 

the channel reliability for each feature channel in the 
input correlation filter, and adds the deep learning 

dual input Siamese network to the correlation filter, 

has attributes ranked first in condition of fast motion, 

deformation, illumination variation, occlusion, out 
of plane rotation. So compared with other algorithms, 

the algorithm has certain advantages, and the 

performance has been improved to some extent. 

Especially in the condition of tracking target fast 
movement, illumination change, target deformation, 

occlusion, and out-of-plane rotation, the algorithm is 

more advantageous. 

 

 
        （a）fast motion                （b）illumination variation 

 
（c）deformation                         （d）occlusion 
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  （e）out of plane rotation 

Figure 5: OTB13 video sequence success rate evaluation. 
The success plots of ten challenging attributes. The legend 
illustrates the ranking scores for each tracker. Our 
algorithm has attributes ranked first in condition of fast 
motion, deformation, illumination variation, occlusion, out 
of plane rotation. 

4 CONCLUSIONS 

In this paper, the channel reliability method is used 

to calculate the reliability weight of each feature 

channel and weighted to make the target location 
more accurate. The depth-learned dual-input 

Siamese network is used to verify and re-search the 

results of the correlation filter. 

Through the evaluation benchmark analysis of 
OTB video sequences, the experimental results show 

that the algorithm has a certain degree of 

performance for fast motion, illumination change, 

target deformation, occlusion, and target rotation 
outside the plane. 
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