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Abstract: Electronic Health Records (EHR) containing large amounts of patient data present both opportunities and 

challenges to industry, policy makers, and researchers. These data, when extracted and analyzed effectively, 

can reveal critical factors that can improve clinical practices and decisions. However, the inherently complex, 

heterogeneous and rapidly evolving nature of these data make them extremely difficult to analyze effectively. 

In addition, Protected Health Information (PHI) containing sensitive yet valuable information for clinical 

research must first be anonymized. In this paper we identify current challenges with obtaining and pre-

processing information from EHR. We then present a comprehensive, efficient “pipeline” for extracting, de-

identifying, and standardizing EHR data. We demonstrate the use of this pipeline, based on software from 

EPIC Systems, in analysing chronic kidney disease, prostate cancer, and cardiovascular disease. We also 

address challenges associated with temporal laboratory time series data and natural text data and develop a 

novel approach for clustering irregular Multivariate Time Series (MTS). The pipeline organizes data into a 

structured, machine-readable format which can be effectively applied in clinical research studies to optimize 

processes, personalize care, and improve quality, and outcomes.

1 INTRODUCTION 

Electronic health record (EHR) plays an important 

role in advancing clinical and operational processes.  

Although early clinical medical records first appeared 

in 1600 BC, it was not until 1900 that it was put into 

regular use (Gillum, 2013). The launch of the 10-

year-effort to create a national electronic medical 

record system by the United State government in 

2004 helped fuel its rapid adoption and medical 

advance (Gunter and Terry, 2005). As of 2015, 80 

percent of U.S. hospitals had adopted a basic 

electronic health record keeping system (Henry et al., 

2016). The value of EHR data is increasingly 

recognized by health care organizations and 

government. Its utilizations significantly changed the 

patient-clinic interaction process (Asan et al., 2015). 

Data-driven healthcare has the potential to 

revolutionize care delivery while reducing costs.  

However, for policymakers, practitioners, and 

researchers to take full advantage, several challenges 

must be addressed: 1) Extraction and coding methods 

for EHR data must be strategically designed 

considering issues related to data quantity, quality, 

interoperability, and patient confidentiality; 2) 

Standardization of clinical terminologies is essential 

in facilitating interoperability among EHR systems 

and allows for multi-site comparative effectiveness 

studies; 3) Effective methods for mining longitudinal 

health data common in EHR are critical for revealing 

disease progression, treatment patterns, and patient 

similarities, all of which play important roles in 

clinical decision support and treatment improvement; 

4) Advanced machine learning techniques are 

necessary for early detection and prognosis of disease 

and identifying critical factors that impact patient 

outcome; 5) Practical intervention strategies must be 

developed to address healthcare disparities in rural 

and remote areas with lack of resources and access. 

In this study, we focus on tackling the first three 

challenges by 1) developing a framework for 

identifying and extracting key clinical features from 

structured and unstructured data, 2) developing a 

concept standardization procedure among the 

multitude of available clinical terminologies, and 3) 
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implementing unsupervised learning algorithms for 

characterizing patient treatment outcomes based on 

longitudinal data. These critical data pre-processing 

steps allow us to better understand patient 

characteristics and treatment patterns. We can 

subsequently build outcome predictive models to 

identify critical features that contribute to variance in 

treatment outcomes. Best practices can be developed 

based on these factors and can help hospitals to 

redesign and implement evidence-based treatment 

plans to achieve better outcome (Lee et al., 2016). 

2 LITERATURE REVIEW 

It is challenging to establish an efficient data 

extraction schema for EHR due to the complexity of 

data and lack of data standards. A common task in 

EHR is case detection – identifying a cohort of 

patients with a certain condition or symptom. Coded 

data such as International Classification of Disease 

(ICD) codes are often not sufficient or accurate 

(Birman-Deych et al., 2005). Informatics approaches 

combining structured EHR data with narrative text 

data achieve better performance (Li et al., 2008). Key 

clinical items can be extracted from narrative texts 

with simple methods such as pattern matching using 

regular expression (Long, 2005, Turchin et al., 2006), 

full or partial parsing based on morpho-semantems 

(Baud et al., 1998), and syntactic and semantic 

analysis (Jain and Friedman, 1997). Recently, more 

complex statistical and rule-based machine learning 

approaches (Bashyam and Taira, 2005) have been 

developed to tackle this challenge. Biomedical 

Named Entity Recognition (NER) – the “task of 

identifying words and phrases in free text that belong 

to certain classes of interest” (Settles, 2004), allows 

users to identify key clinical concepts such as 

physician visits, referrals, dietary management, and 

suspected problems normally not present in 

structured data tables. 

Negation detection, which identifies the negative 

sense of a concept, is another essential task 

accompanying NER, since the presence of negations 

can yield false-positive detections because medical 

personnel are trained to include pertinent negatives in 

their reports (Mutalik et al., 2001). It has been 

achieved through rule-based / syntactic parsing 

(Chapman et al., 2001, Gindl et al., 2008, Elkin et al., 

2005) and machine learning (De Bruijn et al., 2011, 

Díaz et al., 2012, Goldin and Chapman, 2003) 

approaches. 

Once patient information is extracted, data 

security and confidentiality must be ensured through 

de-identification steps. According to Health 

Insurance Portability and Accountability Act 

(HIPAA), patients’ Protected Health Information 

(PHI) must be de-identified or anonymized for 

commercial and research interest. PHI exists in both 

structured and unstructured clinical records 

(Zikopoulos and Eaton, 2011). This includes patient 

names, addresses, phone numbers, etc. Manual and 

rule-based or lexicon-based methods have been used 

to achieve PHI de-identification (Sweeney, 1996, 

Ruch et al., 2000, Taira et al., 2002), but they are 

extremely time-consuming and can be inaccurate. 

Machine learning approaches have also been 

developed (Sibanda and Uzuner, 2006, Wellner et al., 

2007). However, due to the complexity of data 

schemas and the heterogeneity of data structures, it is 

very challenging to detect PHI with high sensitivity. 
Because EHR data include various types of 

records for patients, it is extremely difficult to analyze 
all these data without data standardization. In 
addition, since these data are recorded by different 
hospital staff members at various provider sites, data 
heterogeneity becomes a major issue due to the 
significant practice variation in style of reporting, use 
of terminologies, and descriptive content. 

Tackling the problem of data heterogeneity is 
essential for conducting predictive analytics using 
artificial intelligence. Many clinical records in the 
EHR adhere to different terminology systems and can 
cause problems such as data redundancy and 
inconsistency, hindering the performance of 
automated machine learning models. To establish 
interoperability among various naming systems, 
standardization of data is necessary. In our previous 
work, (Lee et al., 2016), clinical concepts were 
standardized by a concept mapping system which 
links concepts describing diagnosis, laboratory, and 
medications to the standardized SNOMED-CT 
terminologies. 

Standardization of terminologies not only 
facilitates the analysis of EHR data but can also 
increase the efficiency of operations and information 
sharing, thereby facilitating knowledge transfer and 
reducing practice variance among health care 
organizations. 

Analyzing longitudinal clinical data recorded 
during care delivery is challenging due to their 
incompleteness and non-uniformness. Identification 
of subgroups of patients who experience symptoms 
with greater or lesser severity (Miaskowski et al., 
2006) or respond to treatment procedures differently 
may reveal critical risk or treatment factors that 
impact patient outcome. Laboratory and vitals 
measurements before, during, and after treatment 
may act as markers of disease severity (Wells et al., 
2013) and characterize recovery process. Uncovering 
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patient clusters also have prognostic significance – by 
constructing cluster-based clinical event predictive 
models, one can achieve superior performance when 
compared to treating all patient episodes as a single 
group (Marlin et al., 2012). However, laboratory and 
vitals in the form of time series often exhibit different 
length and frequency due to different syndromes and 
schedules for different patients. Thus, conventional 
clustering algorithms aiming to identify patient 
subgroups cannot be applied directly. Pre-processing 
methods such as interpolation (Lee et al., 2000, 
Kreindler and Lumsden, 2016) and resampling 
(Carlstein, 1992) can normalize time series data. 
Alternatively, clustering algorithms have been 
customized for variable-length time series. They 
utilize a variety of similarity (distance) measures such 
as Dynamic Time Warping (DTW) (Sakoe, 1971), 
Soft-DTW (Cuturi and Blondel, 2017), Global 
Alignment Kernel (GAK) (Cuturi et al., 2007), and 
Time-Warp Edit Distance (TWED) (Marteau, 2009). 

While some disease severity can be characterized 
by a single type of laboratory measurement — for 
example — serum cholesterol levels can be used to 
characterize conditions of patients with 
hyperlipidemia (Wells et al., 2013), others can be 
better defined by multiple laboratory measurement 
time series. For instance, systolic blood pressure and 
diastolic blood pressure should both be considered for 
patients with hypertension. Clustering approaches for 
such Multivariate Time Series (MTS) (Brockwell et 
al., 2002) are limited. Existing PCA-based (Singhal 
and Seborg, 2005), Hidden Markov Model (HMM)-
based , partition-based (Liao, 2007), and model-based 
approaches (Košmelj and Batagelj, 1990, Ramoni et 
al., 2002) have been applied to a variety of fields 
including chemistry and manufacturing, but have not 
been utilized in clinical settings. This is likely due to 
the irregularity of clinical time series. As far as we are 
concerned, clustering approaches have not been 
developed for MTS with irregular intervals and 
unequal lengths. We will refer to these MTS as 
“irregular MTS” throughout this paper. 

3 METHODS 

3.1 Data Extraction Methods from 
EPIC EHR Database 

Kaiser Permanente (KP) uses the Clarity module to 

transform data from EPIC’s operational database into 

a relational form for reporting. Clarity database from 

the KP’s HealthConnect EHR system stores patient 

data in over 7,000 tables with over 60,000 columns 

and update daily (Waitman et al., 2011). The EPIC 

Clarity database has recently been imported to Oracle 

Exadata for performance improvement. Structured 

Query Language (SQL) written in Oracle SQL 

Developer is the primary programming language used 

to access the database. 

3.1.1 Extract Patient Cohort Characterized 
by Disease or Symptoms 

To extract patient data with certain disease or 

symptoms, we first utilize the ICD-9 / ICD-10 

diagnosis codes. A Patient ID is selected from the 

problem list table if its corresponding record contains 

the target diagnosis code(s). In many cases, however, 

diagnosis codes are not well-maintained, so it is 

necessary to utilize billing information, laboratory 

data or narratives in clinical notes for more accurate 

case detection. This can be done using semantic 

matching of key terms describing medical conditions. 

The extracted patient IDs are then used to link to the 

other data tables to extract the relevant information. 

Table 1 lists the types and coverages of information 

extracted. Although most demographics, 

medications, billing, procedures, and co-existing 

conditions can be found directly from structured data 

tables, encounter-level data containing physician 

visits and referrals, dietary management, and 

suspected problems must be extracted from the 

clinical notes table. 

Table 1: Data coverage by source tables. 

Coverage Source database tables 

Encounter-level data 
Encounter / Clinical notes 

tables 

Medications data Medications table 

Billing information Billing table 

Procedures Billing / Clinical notes tables 

Clinical notes Clinical notes table 

Problem list (co-

existing conditions) 

Billing / Problem list / Clinical 

notes tables 

Laboratory 
Order table / Clinical notes 

table 

3.1.2 Extract Patient Cohort Characterized 
by Treatment Features 

To extract patient data with certain treatment features 

(i.e. procedures, prescriptions, laboratory 

measurements), we must first identify all the possible 

vocabularies that represent the treatment features. 

These vocabularies are compiled into a list and are 

used to index the billing / laboratory / medication 

tables to select the target patient IDs. Alternatively, 

regular expressions can be used to represent groups 

of vocabularies to create more succinct queries. 
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3.1.3 Table Partitioning and Temporary 
Views 

In many data extraction tasks, the targeted patient 

cohort contains millions of patient records amounting 

to terabytes of data. In such cases, table partitions are 

created to retrieve data by chunks and reduce local 

storage loads. Temporary views are used to reduce 

server loads. 

3.1.4 PHI Encryption for Structured Data 
and Narrative Texts 

The SHA-256 Cryptographic Hash Algorithm is used 

to encrypt Patient IDs contained in every data record. 

For unstructured free-text data, we apply the 

transition-based parsing model implemented in the 

Python spaCy package (Honnibal and Johnson, 2015) 

to detect and de-identify PHI in clinical notes. We 

identify and replace the following types of entities: 

PERSON, NORP, ORG, and GPE. These entities 

cover patient names, nationalities, organizations, and 

addresses. In addition, we include a regular 

expression-based filter to replace Telephone numbers 

as well. 

3.1.5 Information Extraction from 
Narrative Clinical Texts 

We develop an end-to-end “pipeline” (software from 

EPIC Systems coded to process data into a more 

usable form) for extracting key clinical features from 

narrative documents. These features are then filtered 

by negation detection and remaining features are 

mapped to standardized SNOMED-CT terminology. 

Figure 1 shows the feature extraction pipeline from 

clinical text. We implement the content 

summarization module based on the TextRank 

algorithm (Mihalcea and Tarau, 2004). We apply the 

CLiNER concept recognition model (Boag et al., 

2018) to extract key clinical features including 

problems, procedures, and tests. An improved Negex 

(Chapman et al., 2001) algorithm is then used to filter 

features within a negated context. We then proceed in 

one of two directions: 1) utilize MetaMap to map the 

consolidated features to the SNOMED-CT 

terminology system and filter out features that are not 

mapped. The hierarchical structure of SNOMED-CT 

and MetaMap are utilized to remove general concepts 

(e.g. “Body structure”, “Clinical finding”, 

“Biological agent”) that are situated at the top two 

levels in the SNOMED-CT concept tree; 2) utilize the 

terminology mapping system developed in Section 

3.2 to directly map these concepts to SNOMED-CT. 

These standardized concepts can be consolidated into 

input features that could be directly input into 

machine learning algorithms for knowledge 

discovery. 

3.2 Data Interoperability with Medical 
Terminology Mapping 

We apply the concept mapping system described in 

(Lee et al., 2016) to standardize all labs and 

medications data. For data related to procedures, we 

design a similar approach. Instead of mapping the top 

scoring UMLS Metathesaurus concepts to either 

RxNorm or LOINC terms separately, we attempt to 

map the UMLS concepts to both RxNorm and 

LOINC because procedures can contain both 

medication and lab-related information (Figure 2). 

We then select the mapping with the higher matching 

score of the two. This process removes redundancies 

in the data and produces a condensed feature list 

which can be used for machine learning tasks. 

 

Figure 1: Treatment feature extraction from clinical texts. 
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Figure 2: Mapping procedure for CPT/HCPT/HCPCS codes and free-text procedure phrases. 

3.3 Characterizing Patient Treatment 
Outcomes based on Longitudinal 
Laboratory Measurements 

In order to characterize patient conditions using 

multiple laboratory measurements in the form of 

MTS, we develop a novel clustering approach for 

irregular MTS based on existing distance metrics for 

variable-length time series. DTW, soft-DTW, and 

GAK are used to calculate the pairwise distances 

between variable-length univariate time series. An 

aggregation function is then applied to the distance 

between all pairs of corresponding univariate time 

series composing the MTS. This produces a pairwise 

distance matrix representing the similarity between 

each pair of patients. 

Clustering based on a pairwise matrix can be done 

using hierarchical or medoid-based clustering 

algorithms, because it is difficult to determine the 

length of the cluster centers when using partition-

based clustering algorithms such as K-means (Liao, 

2007). In this study, we apply the K-medoids (Park 

and Jun, 2009) clustering algorithm to the distance 

matrices. 

Here, we describe the entire clustering process 

using the Global Alignment Kernel (GAK) metrics 

(Cuturi et al., 2007) as an example. GAK can be used 

to quantify the similarity between two time series of 

varying lengths. It is positive definite, rapidly 

computed, and operates on the whole spectrum of 

costs of alignments and thus contains a richer 

statistics than DTW, which considers only the 

minimum of the set of costs (Cuturi et al., 2007). 

GAK distance is equal to the sum of the 

exponentiated and sign changed similarities of every 

alignment pairs: 

𝑘(𝑥, 𝑦) =  ∑ ∏ 𝜅

|𝜋|

𝑖=1𝜋𝜖𝐴(𝑛,𝑚)

(𝑥𝜋1(𝑖), 𝑦𝜋2(𝑖)), (1) 

where 𝐴(𝑛, 𝑚) is the set of all possible alignments 

between two series of length n and m, and any 

alignment pair (𝜋1, 𝜋2)  satisfies the warping 

restriction (
𝜋1(𝑖+1)−𝜋1(𝑖)

𝜋2(𝑖+1)−𝜋2(𝑖)
) 𝜖 (

0

1
) , (

1

0
) , (

1

1
) (Cuturi et 

al., 2007). Here, 𝜅  is a positive definite kernel 

function, and the Gaussian Kernel is used. Distance 

between each pair of MTS is calculated by applying 

an aggregation function on the GAK distance 

between each pair of corresponding univariate time 

series. Here, we aggregate the distances using the 

weighted average function. Specifically, given two 

patients Px and Py, each characterized by m laboratory 

time series 𝑃1
x𝑃2

x … 𝑃𝑚
x , 𝑃1

y
𝑃2

y
… 𝑃𝑚

y
, and non-negative 

weights w1,w2,…,wm associated with each laboratory 

time series, the aggregated distance is expressed as  

∑ 𝑤𝑚
𝑚
1 𝐺𝐴𝐾(𝑃𝑚

𝑥𝑃𝑚
𝑦

)

∑ 𝑤𝑚𝑚
 (2) 

Weights are assigned to each laboratory time series 

depending on their importance in characterizing 

patient conditions. Alternatively, mean, median, or 

the sum function could be used as the aggregation 

function. The aggregated distance represents an 

alignment score over each pair of univariate time 

series and provides a holistic similarity measure for 

the pair of MTS. In this study, we compare the 

performance of GAK metrics to that of DTW and 

soft-DTW when used in MTS clustering. 
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4 CASE STUDIES 

We demonstrate the use of our EHR information 

extraction and pre-processing pipeline for three 

different types of disease cases: prostate cancer, 

chronic kidney diseases, and cardiovascular diseases. 

4.1 Patients with Prostate Cancer 

Prostate cancer is the most frequently diagnosed 

cancer in 105 countries and the fifth leading cause of 

cancer death in men (Bray et al., 2018).  It is estimated 

that there will be 174,650 new cases of prostate 

cancer in the U.S. in 2019 with an associated 31,620 

deaths (Siegel et al., 2019). Early prostate cancer 

detection has been achieved through prostate‐
specific antigen (PSA) test and biopsy of tissue 

removed during prostatectomy or at autopsy (Bray et 

al., 2018). Through mathematical modelling, (Etzioni 

et al., 2008) concluded that under the assumption that 

stage shift implies survival shift–which motivates 

early detection of cancer, PSA screening likely 

explains half or more of the mortality reduction 

observed in the U.S. since the early 1990s. EHR 

provides long-term tracking of patient PSA test 

results. These longitudinal data can be extracted using 

the lab component IDs or names of the test procedure. 

The rate of increase in PSA level, often represented 

using PSA doubling time or PSA velocity, has been 

widely used in the management of prostate cancer 

(Ng et al., 2009). 

4.1.1 Information Extraction from EPIC 
EHR Database 

The extracted dataset covers 98,806 patients with the 

ICD-9 code 790.93 or ICD-10 code 97.20, “elevated 

prostate specific antigen (PSA)”. This dataset spans 

the years 1997-2018 and is composed of patient-level 

data (70Mb), problem lists (384Mb), medications 

(7.3Gb), billing (167Mb), laboratory orders (10Gb), 

and clinical notes (46.1Gb), totalling 64.02 

Gigabytes. Patient IDs were successfully encrypted 

using SHA-256 encryption. PHI including patient 

names, addresses, institutions, age, phone numbers, 

and email addresses were detected and encrypted into 

dummy tokens. 

We applied the clinical concept extraction system 

on a subset of patients treated with radioactive seed 

implants. An additional 2,194 standardized clinical 

features were extracted from their clinical notes, 

including “Chronic pain syndrome”, “Placement of 

stent”, “Nerve conduction testing”, “Vascular 

Calcification”, “Overweight”, “Obstructive sleep 

apnea syndrome”, “Neoplasm, metastatic”, and 

“Lithotripsy”, etc. 

Patient PSA laboratory test results were used as 

indicators of disease severity. PSA records were 

retrieved by the following method: 1) component IDs 

for lab records matching the query string “%PSA%” 

were retrieved; 2) PSA-irrelevant lab components 

were discarded, leaving 10 unique component IDs 

corresponding to “PSA-screening”, “PSA-

monitoring”, “PSA”, “PSA FREE”, “PSA % FREE”, 

“PSA, external result”, “PSA, MHS”, “PSA with 

reflex FPSA, external result”, “PSA, screening”, and 

“PSA, cancer monitoring”; 3) “PSA FREE” and 

“PSA % FREE” were removed from the list of 

candidate components since free PSA is reported as a 

percentage of the total that is not protein bound, i.e., 

free. The higher the free PSA, the lower the likelihood 

of cancer; 4) PSA lab records were then retrieved by 

patient IDs and the filtered component IDs; 5) 

Missing, erroneous, and duplicated records were 

removed, and the remaining records were sorted by 

date and transformed into time series format for each 

patient. 

4.1.2 Data Standardization to SNOMED-CT 

Using SNOMED-CT ontology as the mapping 

standard, we successfully mapped 22,842 out of the 

39,570 unique clinical concepts. These 22,842 

concepts were mapped to 4,673 unique SNOMED- 

CT concepts. Table 2 shows the number of unique 

concepts before mapping, with available mapping, 

and the number of SNOMED-CT concepts mapped 

to. Through this process, we significantly reduced the 

feature dimension, removed data redundancy and 

inconsistency, and lowered the likelihood of data 

collinearity. 

Table 2: Mapping results for labs, medications, and 

procedures data. 

 Lab Procedure Medication 

Total unique 
concepts (39,570) 

3662 2760 33148 

Number of unique 

concepts with direct 

mapping 

1267 696 952 

Number of unique 

concepts with 

indirect mapping 

1588 1284 17055 

Number of unique 
SNOMED-CT 

concepts mapped to 

1100 1170 2403 
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4.2 Patients with Chronic Kidney 
Disease (CKD) 

Kidney is an important organ of human body – 

filtering blood, removing waste, balancing fluid, and 

controlling the level of electrolytes. Chronic Kidney 

Disease (CKD) is becoming more prevalent at a rapid 

speed around the world. 

CKD can be divided into 5 stages based on 

estimated glomerular filtration rate (eGFR) 

measurement. Early diagnosis of CKD prevents 

patients from regressing into late-stage CKD which 

causes serious complications. Late-stage CKD can 

lead to end-stage renal disease (ESRD) and 

cardiovascular disease (CVD), which steeply increase 

patient pain and economic burden. However, the 

gradual loss of kidney function is difficult to diagnose 

due to the absence of direct evidence from clinical 

trials (Moyer, 2012). Hence frequent and regular 

measure of serum creatinine—used to calculate 

eGFR—is essential for evaluating changes in renal 

functions. Identifying trends in eGFR is more 

important than one-off readings, as suggested by the 

Renal Association, “a progressive fall in eGFR across 

serial measurements is more concerning than stable 

readings which don’t change over time” (2019).  

EHR provides a possibility for health care 

organization to monitor and identify early-stage 

CKD. Lenart et al. developed clustering techniques to 

detect progression of CKD (Lenart et al., 2016). K-

medoids clustering was applied on patients’ routine 

measurements and lab tests such as blood pressure, 

body mass index, Hemoglobin A1c (HbAlc), 

triglycerides and high-density lipid cholesterol 

(Lenart et al., 2016). The Cluster Progression Score 

(CPS) was designed to measure patients’ relative 

health status (Lenart et al., 2016). This clustering 

process can help health care organization detect early 

stage CKD by monitoring the recorded lab 

measurements. 

4.2.1 Information Extraction from EPIC 
EHR Database 

The extracted dataset covers 33,303 patients with the 

ICD-9 code starting with “585” or ICD-10 code 

starting with “N18”, both referring to “Chronic 

Kidney Disease”. This dataset spans the years 1997-

2018 and is composed of patient-level data (24Mb), 

problem lists (288Mb), medications (6.74Gb), billing 

(1.90Gb), laboratory orders (8.66Gb), and clinical 

notes (18.55 Gb), totalling 36.16 Gigabytes. Patient 

IDs were successfully encrypted using SHA-256 

encryption. PHI including patient names, addresses, 

institutions, age, phone numbers, and email addresses 

were detected and encrypted into dummy tokens. 

Patient eGFR laboratory test results were used as 

indications of disease progression. eGFR records 

were retrieved by the following method: 1) 

component IDs for lab records matching the query 

string “%eGFR%” or “%GLOMERULAR 

FILTRATION RATE%” were retrieved; 2) Irrelevant 

lab components were discarded, leaving 16 unique 

component IDs. We then examined eGFR records 

matching these component IDs and found that only 

records corresponding to two component IDs 

“12122727” and “12122728” were well-maintained. 

3) eGFR lab records are then retrieved by patient IDs 

and these two component IDs. 4) Missing, erroneous, 

and duplicated records were removed, and the 

remaining records were sorted by date and 

transformed into time series format for each patient. 

4.3 Patients with Cardiovascular 
Disease (CVD) 

The CCI-health database (Lee et al., 2016) contains 

37,742 patients with CVD from 737 clinical sites. 

Processing through the pipeline, each patient is 

finally characterized by 11 raw features including 

demographics, treatment duration, and co-existing 

conditions, and 1,757 standardized features in 

SNOMED-CT terminology including laboratory 

tests, diagnosed problems, and medications. For each 

patient, treatment duration is determined by 

calculating the elapsed time between diagnosis 

(indicated by the first prescription of a medication) 

and the last recorded activity (i.e. procedure, lab, 

etc.). Measurements of lipids and lipoproteins are 

processed into time series, since these are closely 

related to cardiovascular conditions and can 

potentially be used to characterize the severity of 

CVD. Lack of high-density lipoproteins (HDL) is 

significantly associated with the development of 

coronary heart disease (Gordon et al., 1977). In 

contrast, low-density lipoprotein increases the risk of 

heart disease and is considered a “bad” cholesterol 

(Gordon et al., 1977). Triglyceride is also associated 

with incidence of heart disease but has a less 

significant effect (Gordon et al., 1977). 

4.3.1 Multivariate Time Series Clustering to 
Characterize CVD Treatment 
Outcome 

In the analysis, we use HDL and LDL measurements 

to form an MTS containing two time series for each 

patient for clustering. Each of these time series were 
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resampled to quarterly frequency (one measurement 

every three months). Gaps in the data were filled by 

propagating the non-NaN values forward first, and 

then backward along a series. For each of the three 

types of laboratory measurements, we removed 

patients with less than 6 raw measurements or less 

than 8 resampled measurements. This produces a data 

set containing 3,155 remaining patients. The distance 

between each pair of corresponding time series was 

calculated using GAK, DTW, and soft-DTW 

distances in three separate experiments. Distances 

between each pair of MTS was then obtained by 

aggregating the two distances between each pair of 

corresponding univariate time series using weighted 

average, where the weight of LDL measurements was 

0.7 and the weight of HDL measurements was 0.3. A 

higher weight was assigned to LDL measurements 

because LDL is generally considered a stronger risk 

factor for CVD than HDL (Badimon and Vilahur, 

2012). K-medoids clustering was performed on the 

final distance matrix, partitioning the patients into K 

groups. Here, we set K=2 and K=3 for each set of 

experiments. When K>3, the clusters are over-

partitioned. The quality of clusters is evaluated both 

visually and quantitatively. Visually, trends of 

laboratory measurements are shown with boxplots of 

each patient’s measurement taken at each time point. 

Quantitatively, the following statistics are calculated 

for each cluster: 1) median of first measured value; 2) 

median of the last measured value; 3) difference 

between the two medians. Since the goal is to 

segregate patients with different treatment outcomes, 

ideal clusters of patients should exhibit different 

trends of lab measurements. 

Figures 3-4 show the boxplots of aggregated 

laboratory measurements by clusters. Tables 3-4 list 

the per-cluster statistics. Results are shown for K=2 

and K=3, and for all distance metrics used. Ideally, 

clusters of patients showing 1) high HDL 

measurements, 2) low LDL measurements, 3) an 

upward trend in HDL progression, and 4) a downward 

trend in LDL progression should be characterized as 

having satisfactory treatment outcome. By comparing 

the trend of laboratory progressions and the summary 

statistics, we found that when using the GAK distance 

metric and setting K=2, we obtain the clusters that 

best characterize two patient groups with distinct 

outcomes. Cluster 1 satisfies all four characteristics 

of good outcome listed above, whereas patients in 

Cluster 2 show opposite characteristics except also a 

downward trend in LDL progression, with the end 

median value slightly above that of Cluster 1. When 

using other metrics and K, clusters are not as well-

partitioned (i.e. soft-DTW, K=2), or patients within 

the same cluster exhibit trends in HDL and LDL 

progression that define opposite qualities of treatment 

outcomes (i.e. DTW, K=3). 

 

Figure 3a: Boxplot-aggregated HDL and LDL 

measurements using GAK distance and K=2. 

 

 

Figure 3b: Boxplot-aggregated HDL and LDL 

measurements using DTW distance and K=2. 
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Figure 3c:  Boxplot-aggregated HDL and LDL 

measurements using soft-DTW distance and K=2. 

 

 

Figure 4a: Boxplot-aggregated HDL and LDL measurements 

using GAK distance and K=3. 

 

 

Figure 4b: Boxplot-aggregated HDL measurements using 

DTW distance and K=3. 

 

 

Figure 4c: Boxplot-aggregated HDL and LDL 

measurements using soft-DTW distance and K = 3. 

Table 3: Summary statistics by clusters for K=2. 

  GAK DTW Soft-DTW 
 Median of HDL LDL HDL LDL HDL LDL 

C
lu

st
er

 1
 First Value 44.1 99.3 43.1 130 43 131 

Last Value 45 84 42 108 41 108. 

Difference 0.9 -15.3 -1.1 -22 -2 -23 
        

C
lu

st
er

 2
 

First Value 38 111 38 93 38 93 

Last Value 32.8 87 31.3 76 31.9 76 

Difference -5.2 -24 -6.7 -17 -6.1 -17 

Table 4: Summary statistics by clusters for K=3. 

  GAK DTW Soft-DTW 
 Median of HDL LDL HDL LDL HDL LDL 

C
lu

st
er

1
 First Value 38 98 34 89.5 35 108 

Last Value 34 80 31 73 27.0 84 

Difference -4 -18 -3 -16.5 -7.1 -24 
        

C
lu

st
er

 2
 First Value 38 117 37 123 45 141 

Last Value 31.2 103 28 98 43 124 

Difference -6.8 -14 -9 -25 -2 -17 

        

C
lu

st
er

 3
 First Value 54 121 50 119 47 86 

Last Value 55.1 94 52 97 47 71.2 

Difference 1.1 -27 2 -22 0 -14.8 

Complete clustering analysis are presented in Lee 

et al. (2019). Furthermore, machine learning results 

confirm that this clustering approach produces 

promising partitions. Specifically, the groups are 

classified with unbiased10-fold cross validation 

accuracy of 85-91%, and 83-93% blind prediction 

accuracy on independent sets of patients. We will 

continue to investigate more robust approaches to 

adapt to the different types of diseases and patterns. 
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5 CONCLUSIONS 

In this paper, we designed a comprehensive 

information extraction and pre-processing pipeline 

for EPIC-based EHR system. This pipeline consists 

of information extraction, de-identification and 

encryption, standardization, and time series 

processing and clustering. We applied this pipeline to 

three cohorts of patients – those with prostate cancer, 

chronic kidney diseases, and cardiovascular diseases, 

and prepared tabularized data files with standardized 

terminologies and reduced feature dimensions. These 

data files can be input into machine learning 

algorithms for further knowledge discovery. 

Using longitudinal laboratory records measured 

during care delivery, we have also uncovered patient 

subgroups with different outcomes. We introduced an 

approach to cluster irregular MTS by aggregating 

distances between univariate time series. This allows 

us to utilize multiple types of laboratory records for 

each patient to characterize treatment outcome. 

Among the distance metrics used, GAK produced the 

best clusters. 

The computational pipeline can be adapted to 

similar large EHR systems and datasets and for other 

patient cohorts. These modifications include: 1) 

redesigning SQL queries by modifying diagnosis 

codes when extracting patient ID list to accommodate 

different target cohorts; 2) modifying SQL queries to 

extract additional data from target disease-specific 

tables; 3) reidentifying new motifs through expert 

recommendation and/or manual exploration of free-

text data and redesigning new regular expressions for 

pattern-based feature extraction. 

Through the design and implementation of this 

pipeline, we have tackled some major big data 

challenges including volume, variety, veracity, and 

especially value. This results in a highly robust, 

efficient, and customizable pipeline that can be easily 

applied to current EHR databases to fulfil their 

potential in both academic and clinical research. 

Future works remains in the search of more robust 

and systematic methods for evaluating the quality of 

time series clusters. Given the complexity of irregular 

MTS and the difficulty involved in labelling clusters, 

it is necessary to combine effective visualization 

techniques with quantitative measures to achieve this 

task. Machine learning analysis can help to quantify 

the separation performance of the clustering results. 

Beyond the EHR data, there is also an opportunity to 

combine the EHR data with other types of OMICs 

data obtained from outside laboratory tests which are 

currently not recorded within the EHR systems.  
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