
Validation and Recommendation Engine
from Service Architecture and Ontology

Daniel Mercier1 a and Anthony Ruto2

1Autodesk Research, 661 University Ave, Toronto, ON, Canada
2Autodesk Research, 17 Broadwick St., Soho, London, U.K.

Keywords: Validation, Recommendation, Service Architecture, Ontology, Object-oriented, Domain Engineering.

Abstract: The Cloud has emerged as a common platform for data convergence. Structured data, unstructured, serialized,
or even chunks of data in various formats are now being transferred, processed, and exchanged by a multitude
of services. New applications, service-oriented, rely heavily on the managing of these flows of data. The
situation is such, that the perspective is changing, placing data at the center. In this context, end-users must
rely on new derivative services to validate these flows of information; and expect from these services accurate
feedback and some degree of intelligent recommendations. In this article, we introduce a new validation and
recommendation engine encapsulated in a service, backed by ontology and a knowledge structure based on
reusable components for fast integration and increased resilience.

1 INTRODUCTION

The transition from desktop applications to cloud-
based applications is changing the way we approach
software engineering. Applications which were his-
torically designed to contain all the necessary func-
tional requirements, from display to data handling
and processing, now deployed on the cloud are be-
ing transformed into assemblies of functions encapsu-
lated into easily deployable services sometimes called
micro-services due to their small size. With the
reduced load on the applications, access moved to
lightweight or web-based front-end applications con-
nected to a processing back-end. This transition from
a monolithic architecture to a cloud back-end of in-
terconnected services placed an emphasis on commu-
nications and drove the industry to transform its ap-
proach to data. We are reaching a point where data is
now driving executions. This data integration (Hohpe
and Woolf, 2004) requires strong data consistency
and good control over flows between services (Kim
et al., 2010). Naturally, validation is central to main-
taining consistency. Validation is applied for secu-
rity reasons such as in firewalls when the data crosses
trust boundaries (Aljawarneh et al., 2010); or sim-
ply to check whether the data fulfills the requirements
placed by a target application. In this ever-changing

a https://orcid.org/0000-0003-1239-9728

and highly distributed environment, applications built
from service-oriented architecture (SOA) relies on
new derivative services or agents to account for all
non-core functions. Data validation naturally falls un-
der this category. During our study of the research
field, we identified that while in the last few years,
there are consistent efforts towards validating service
architecture and service workflow (Faiez et al., 2017),
we also found a somewhat limited presence in the seg-
ment of generic content validation. This observation
became more noticeable when looking for combina-
tion of semantic web technologies to the validation of
data.

1.1 Validation

This work focuses on the architecture of a service for
the validation of data. Validation for statistical pur-
poses as stated by the European Union (ESS hand-
book, 2018) differentiates validation methods by the
chosen principals that are used to separate validation
rules. It introduces validation levels as derived from
a business perspective pertaining to a domain where
each validation level is verified by a set of rules ap-
plied to the given data. The present work is structured
to embody these considerations.

266
Mercier, D. and Ruto, A.
Validation and Recommendation Engine from Service Architecture and Ontology.
DOI: 10.5220/0008070602660273
In Proceedings of the 11th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2019), pages 266-273
ISBN: 978-989-758-382-7
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



1.2 Environment

The proposed validation service is typically located
between a front-end application and a computing
Cloud back-end composed from an aggregation of
independent and potentially interconnected services.
The primary purpose of the service is to verify the
data sent by the front-end to the back-end to pre-
vent failed back-end executions that could be costly
to the end-user. For example, simulation solvers
and graphic rendering engines require complex back-
end processing that can run for hours, days or even
months. An objective of the service is also to pro-
vide a fluid experience. The service does so by run-
ning validation and verification over the received data
while it is being generated. For this reason, validation
as expressed in this work embodies the two concepts
of validation and verification. The service response
is a validation report and a set of recommendations
to improve the quality of the data towards more sta-
ble and optimized back-end executions. The service
core knowledge structure is a combination of domain
engineering and Semantic Web technologies.

1.3 Domain Engineering

Domain engineering was introduced in software en-
gineering to promote the identification of domains for
the reuse of software assets. The necessity for a con-
cept of domains is essential for validation in a service-
oriented architecture (Zdun and Dustdar, 2006) where
each service has a dedicated purpose and set of con-
tent required to operate. As an example, a service may
transform computer aided designs into meshes, an-
other may process material data from their raw form
to their process specific equivalent. Each of these
services acts as an independent and reusable domain
with independent validations. Feature modeling, a do-
main engineering technique (Kim, 2006), adds an ad-
ditional layer of granularity by introducing the con-
cept of domain feature. When properly implemented,
the combination of domain engineering and feature
modeling lowers content creation time by leveraging
commonalities and increases resilience through the
reuse of domain and feature assets. This work uses
domain engineering for segmenting and structuring
the validation knowledge.

1.4 Ontology and Semantic Web

This work uses ontology for the storage of the vali-
dation knowledge. An ontology is a well-structured
and rigorous organization of knowledge with tree of
classes, class inheritance, and class relationships. It

is a natural construct to store domains and domain
features. The technology was historically tied to
the Semantic Web, an extension of the World Wide
Web, and equally designed to allow data to be shared
and reused across application, enterprise, and com-
munity boundaries. Several approaches proved the
value of design patterns to generate reusable domain
ontologies (Musen, 2004) and the implementation
of these domain ontologies to determine problem-
solving strategies (Gil and Melz, 1996). When
combined with model-driven design (Strmečki et al.,
2016) or feature modeling (Wang et al., 2007), the on-
tology adds the benefits of formal semantic and rea-
soning capabilities over its structure. The integration
of an ontology in software development is sometimes
seen as a challenge (Baset and Stoffel, 2018). De-
spite the initial low adoption, the technology gained
traction in specific industries such as in bio-medical
and benefited from the recent interest in artificial in-
telligence and machine learning. Semantic Web tech-
nologies is also often used for the validation of sys-
tem models (Shanks et al., 2003; Kezadri and Pantel,
2010) and workflow (Khouri and Digiampietri, 2018).

1.5 Objectives

The merit in this work’s approach lies in the com-
bining of technologies. The validation knowledge is
structured using domain engineering to facilitate the
reuse of domain features, while the storage is done
through ontology. The proposed validation service of-
fers from the combining of ontology and Cloud com-
puting, a wide range of validation mechanisms.

The service is expected to:

• Validate the data received from the front-end ap-
plication either in a partial or complete form,

• Generate the necessary information to guide the
user to find and correct invalid entries,

• Provide recommendations on how to improve the
data,

• Form predetermined flow of validations using de-
pendencies between domain features,

Section 2 covers the composition of the knowl-
edge structure and the validation mechanisms. Sec-
tion 3 addresses the various aspects of the service
workflow. Section 4 covers an overview of related
works. Finally, in section 5, we discuss future explo-
rations before the conclusions.

Validation and Recommendation Engine from Service Architecture and Ontology

267



2 ARCHITECTURE

The proposed service is designed as a stateless service
for cloud deployment. Its knowledge base is stored re-
motely and synchronized locally to allow scalability.
It has a user interface for knowledge acquisition, user-
access control to segment operations, and exposes a
REST interface for communications with the front-
end application.

2.1 User Roles

The service has four user roles. The first role is the
user. It refers to the front-end application that sends
data within a given scope and receives in return a
validation report with recommendations. The sec-
ond role is the subject-matter expert who is in charge
of creating the material required to validate the data.
The third role is the administrator who controls the
deployment and stable operations of the application.
The administrator has extended access to the knowl-
edge base and service activities. The administrator
manages the user base and the deployment of service
plugins. The last role is the execution-engine expert
who creates for the service, the necessary plugin(s)
to compose and execute validation rules from code
logic.

2.2 Communications and Data Format

The proposed service has a Representational State
Transfer(REST) interface (Fielding, 2000). A typi-
cal request to a REST interface is formulated with
a payload formatted in either HTML, XML, JSON,
or some other format, and elicits a response with a
similarly formatted payload. The service implements
the JavaScript Object Notation or JSON, a lightweight
semi-structured data-interchange format. The format
is popular in system communications, in the config-
uration of systems and applications, as well as for
the storage of structured objects. The format offers a
conveniently short list of data types for single values
with null, boolean, number, and string; and two types
of complex constructs with arrays, and objects. The
JSON format has an associated schema format to de-
scribe and validate the structure of JSON documents.
For example, the service uses JSON schema to vali-
date the types of the received data. The service also
uses JSON schema during knowledge acquisition to
map the expected JSON values to feature attributes.

2.3 Knowledge Base

The structure of the knowledge base is a combina-
tion of two constructs. One for domains to contain
the reusable assets, and one to contain application
specifics and connect to the reusable assets.

2.3.1 Domains

Domains are stored as independent ontologies with
unique namespaces. The domain features are repre-
sented by ontology classes. As an example of do-
main segmentation, a structural simulation solver re-
quires a geometry, one of its domains. The geometry
has a mesh composed of nodes and elements. While
the geometry is the domain, the mesh, nodes and ele-
ments can be considered as domain features. As fea-
ture classes, they each have a series of individual at-
tributes. For example, axial coordinates are attributes
of a node. From the feature attributes, the subject-
matter expert can create the validation rules. An ex-
ample of simple validation rule for a node could be the
checking of whether its coordinates are beyond a par-
ticular location. Another part of knowledge acquisi-
tion is the mapping of feature attributes to the specific
JSON values expected in the data sent by the front-
end application as illustrated by fig 1. This mapping
process is manual. Once the knowledge acquisition is
complete and during validation, the mapping between
schema and attributes is used to inject the received
data into instances of feature classes and the valida-
tion rules are then executed for each feature class over
the instance of that class.

Figure 1: JSON and knowledge structure.

2.3.2 Application Model

The second type of construct is the application model.
It is also stored in an independent ontology but con-
tains all the necessary validation material to validate
the data coming from a specific application. The ap-
plication model combines reusable domain assets and
application specific features. The application model
contains two distinct types of feature classes in addi-
tional to the domain features. The first type is the pri-
mary application class that serves as a root and con-
nects all other features. The primary application class

KEOD 2019 - 11th International Conference on Knowledge Engineering and Ontology Development

268



is automatically created upon the creation of an appli-
cation model. The second type is the list class to rep-
resent JSON arrays. The presence of arrays inside the
JSON content influences the matching between JSON
values and feature attributes. If a feature attribute is
matched to a value inside an array, another attribute
from the same feature class can only be matched to a
value inside the same array or a value underneath that
array in the schema tree. For this reason, every time
an attribute is selected for a feature class from within
an array, a list class is automatically associated as a
parent to the feature class. This presence of list class
has the advantage of grouping feature classes within
the application model.

2.3.3 Feature Dependencies

The knowledge structure allows dependency between
feature classes towards a sequential activation. This
system of dependencies creates a natural flow of fea-
ture validations. Features may be dependent between
each other within the same domain such as a mesh
is dependent on its nodes and elements, but depen-
dencies may also go beyond domains, in which case
the information is stored inside the application model.
There are two methods to create dependencies. One
through the isDependentOn relationship, the other is
by using data as a trigger on feature attributes. Be-
cause the activation of child classes may be condi-
tional on values generated by parent classes, the ser-
vice offers the possible enrichment of the original data
with newly processed values. By doing so, the avail-
able data naturally grows with the flow of validations.

2.4 Validation Mechanisms

An essential part of our approach is the combina-
tion of two complementary types of validation mech-
anisms:
• Descriptive Logic(DL). A DL rule is embedded as

class axiom directly inside an ontology and com-
plement the ontology tree of classes and relation-
ships to determine its coherence and consistence
using a reasoner.

• Code Logic(CL). A CL rule is a script, or a piece
of code written in a procedural language. The lan-
guage provides the necessary functions to process
class attributes and return an outcome to the vali-
dation.
Each technique approaches validation differently.

While the Descriptive Logic follows an Open-World
Assumption (OWA) where lack of knowledge of a fact
does not immediately imply knowledge of the nega-
tion of a fact, Code Logic follows a Closed-World

Assumption (CWA) where every attribute is assumed
to be known or the rule cannot be validated. As each
validation rule act independently, the combination of
the two approaches constitutes a powerful and unique
validation ecosystem.

2.4.1 Descriptive Logic

Descriptive logic is a family of knowledge representa-
tion languages for authoring ontologies. An efficient
and scalable reasoners such as the Pellet or the Her-
miT (Motik et al., 2009) reasoners for the Ontology
Web Language(OWL) (W3C, 2004) are natural com-
plements to this formal framework to infer logical co-
herence and content consistency. The service offers
two layers of descriptive logic. The first layer is at the
domain-level and the second at the application-level.
If the DL rule is bound to the domain namespace, the
rule is embedded within the associated domain. If
the DL rule connects multiple namespaces, the rule is
embedded instead within the application model. One
challenge with Descriptive Logic stands in the rich-
ness of the ontology. We observed that given freedom
over the creation of relationships. The taxonomy can
quickly grow and lead to the emergence of duplicates
with distinct semantic names. The presence of these
duplicates both dilutes the capability for feature reuse
and generates confusion during content creation. For
this reason, we decided to restrict the list of common
relationships. This approach made rule creation from
descriptive logic much simpler.

2.4.2 Code Logic

Validation rules created from Code Logic are small
fragments of procedural code that consume feature at-
tributes as inputs and return the validation outcome
as output. The implementation of Code Logic inside
the service provides a versatile environment to trans-
form attributes. The challenge with Code Logic is to
offer a rich language and an extended library of pro-
cessing functions. This is where the service takes full
advantage of cloud computing and service-meshes to
execute code. Fig 2 illustrates the final relationships
between entities of the knowledge structure after the
introduction of functions.

2.5 Execution-engine Plugin

When it comes to executing validation rules from
code logic, the service uses a plugin model to expand
its capabilities. The plugin(s) controls the edition
and execution of validation rules from Code Logic.
The plugin implementation is the responsibility of the

Validation and Recommendation Engine from Service Architecture and Ontology

269



Figure 2: Overall knowledge structure.

execution-engine expert. The objective of the plu-
gin(s) is to provide a controlled environment, flexi-
bility over the procedural language, scope of avail-
able functions as well as the execution platform. Due
to their extreme versatility, our approach focused on
leveraging service-mesh managers.

2.5.1 Service-mesh

The growth of cloud technologies has seen a rise
in efficient tools to support service-oriented archi-
tectures. Container technologies such as Docker

TM
,

or the lightweight headless technology such as AWS
Lambda

TM
, introduced a new and effective environ-

ment for fast development and encapsulation of small-
sized services or micro-services. A whole ecosys-
tem was quickly developed to complement these tech-
nologies with complex platforms for application de-
ployment, scaling, and management of fleets of ser-
vices. The most recent efforts are pushing towards
the emergence of service mesh managers where a ser-
vice mesh is a predefined workflow of service exe-
cutions. These service mesh managers offer easily
configurable, low latency, and high volume layers
of network-based inter-processes based on applica-
tion programming interfaces (APIs). They ensure co-
ordinated, fast, reliable, and secure communications
between services. Service-mesh managers consume
existing platform technologies for service discovery,
load balancing, encryption, observability, traceability,
authentication and authorization, and the support of
circuit breaker patterns.

2.5.2 Plugin Features

A standard plugin must expose a rich language with a
set of logical, conditional, and loop operators along
with a list of advanced processing functions. To
be effective, the plugin must also be able to assist
with the composition of procedural code and vali-
date the generated code. For these reasons, plugin
specifications were design to be simple but still allow

rule execution-engine experts freedom over the plugin
composition. A plugin must:

• Run on the same instance as the service,

• Use gRPC or Google Remote Procedural Call to
communicate,

• Expose a common set of four gRPC interfaces,

• Implement in its procedural language, three stan-
dard functions.

The service consumes four common gRPC inter-
face from the plugin. The first three functions are con-
sumed during knowledge acquisition. The last one is
consumed during validation.

• The first interface provides standard information
about the plugin such as the name, version, date
of creation, and description.

• The second interface returns the registry of ad-
vanced functions for data processing. The infor-
mation serves as a reference on functions and is
displayed in a dedicated window inside the user-
interface during knowledge acquisition.

• The third interface validates the code during rule
edition, acts as an auto-complete feature, and re-
turns schema information describing the enrich-
ment of the original application data.

• The last interface executes the Code Logic for the
given attribute values. It executes the rule and re-
turns the outcome. The response contains the out-
come of the execution, recommendations, and the
values to enrich the original application data.

The plugin specifications also include three func-
tion signatures, common to all plugins that should be
made available during code edition:

• The first one is the return function. This func-
tion call marks the ending(s) of a rule execution.
The function signature includes the returned state
and the message associated with the return state,
if any.

• The second one is the insert function. The com-
puted values passed by this function will be added
to the original application data upon successful
validation of the feature class.

• The third one is the log function. This function
signature has a message and a number to define
its importance. The message is considered by the
service as a recommendation and returned as such
along with the location of generation.

Finally, the plugin specifications emphasize that
the service only recognizes JSON types. When the
service sends data to the plugin interfaces, the values

KEOD 2019 - 11th International Conference on Knowledge Engineering and Ontology Development

270



Figure 3: Test-driven workflow.

are always sent in a JSON format and as such encap-
sulated as string. The plugin must manage types and
type conversions.

3 SERVICE WORKFLOW

The proposed service validates from the knowledge
structure:

• Application model by running a reasoner over its
structure and embedded axioms,

• Feature attributes using standard properties (*),

• Feature rules composed from code logic.

(*) During the creation of feature class attributes,
the subject-matter expert has the choice to activate
standard properties, such as default values and simple
checks. These properties are type dependent. For
example, minimum and maximum are standard
properties for numbers, regular expressions for
strings, list of values for enumerations, and average
and standard deviation for sets of values.

The recommendations cover:

• Identification of gaps within the list of feature
class attributes preventing activation of validation,

• Whenever a default was used to fill a gap,

• Any message sent by rules composed from Code
Logic.

3.1 Knowledge Acquisition Workflow

The knowledge acquisition workflow takes its inspira-
tion from the concept of Test-Driven Design (TDD) in
software engineering. The method relies on test cases
to assist the subject-matter expert with the creation of
validation knowledge. The test cases are loaded be-
fore knowledge acquisition in the central repository
and associated to the target application model. These
test cases serve as a baseline over the behavior of the
front-end application and are used to validate an ap-
plication validation knowledge. The TDD workflow
as applied to this service is illustrated by fig 3.

3.2 Validation Cycle

The validation cycle starts by a front-end application
sending a request to the service. The service expects
both a context and the data to validate as payload.
Once received, the service loads the necessary appli-
cation model. Feature class instances are added to the
application model from either the received data or by
using default values, if any, for the missing attributes.
The service then starts an iterative cycle of valida-
tions over feature class instances. The reasoner is first
run to checks coherence and consistence of the ontol-
ogy from Descriptive Logic. The service then goes
through the list of feature classes and checks the de-
pendency rules that control the activation of class val-
idation. If all the dependencies are fulfilled, the ser-
vice triggers the validation of the feature class. Once
all the validation rules have completed or gone be-
yond a timeout, the service collects and aggregates
the results for the feature class. At the end of an itera-
tion, the system checks for generated content, updates
the original application data and launches a new iter-
ation. The cycle continues until there is no more class
activation; at which points the service generates and
returns the final validation report assembled from the
report of individual feature classes.

4 RELATED WORKS

There are several interesting works on validation.
Their approaches to validation takes many differ-
ent forms from simple comparison, to domain-
independent, to ontology-based validation such as the
present work.

One very early work with a lot of similarities, is
from Tu et al. (Tu et al., 1995) from the university
of Stanford and the original founders of the modern
and popular tool called Protege. One of their early
research projects was the development of an archi-
tecture to tackle problem-solving using small-grained
reusable components structured by ontology. The ar-
chitecture was splitting the problem-solving into three
layers of ontologies: a domain ontology, an applica-

Validation and Recommendation Engine from Service Architecture and Ontology

271



tion ontology, and a method ontology. The authors
emphasized the importance of representing domain
knowledge in formal domain ontologies to make the
active content reusable and shareable; and the impor-
tance of facilitating the edition and maintenance of
knowledge content. To this end, they developed a user
interface called MAITRE.

Aljawarneh et al. (Aljawarneh et al., 2010) devel-
oped a validation solution specifically designed sup-
plement standard firewall technologies to addresses
web vulnerabilities at the application level. The ser-
vice architecture takes advantages of RDFa annota-
tions embedded in XHTML web pages and extracts
the annotations to create an ontology in order to val-
idate the subsequent interactions between client and
servers using the created ontology. The service is
qualified as survivable as it stands, as the present
work, as a middle-ware service.

Da Cruz et al. (da Cruz and Faria, 2008) used an
ontology to generate a user interface. With the data
collected from the user-interface, the system instan-
tiates classes within the ontology and performs rea-
soning to validate the data. The approach is aligned
to this work as it derives an application model from a
general domain ontology.

Tanida et al. (Tanida et al., 2011) built a solution
to validate the trace of user interactions with a web-
applications built on AJAX, using a temporal logic
model.

Finally, the work of Gatti et al. (Gatti et al., 2012)
has also many similarities to the present work. It in-
troduces the concept of Data Analysis as a Service
(DAaaS) and describes the architecture of a scalable
service. The content is received in JSON, converted
to XML and processed. The validation involves exist-
ing grammar and rule-based schema languages. The
set of constraints is domain-independent. The vali-
dation process goes through a number of steps such
as checking syntax with XSD schema, and validating
semantic using the Schematron language. Upon com-
pletion, the service reports on the validation by list-
ing failed assertions along with the necessary infor-
mation to track and correct the failures. The architec-
ture emphasizes the service capabilities for data as-
sistance in a somewhat similar fashion as the present
work recommendations and providing information on
attributes to assist the user-interface.

5 DISCUSSION

A lot of effort has gone into the designing of the
user interface for knowledge acquisition. Some of
the initial observations were used to segment and sim-

plify the creation of the various entities composing the
knowledge structure. One feature that was central to
this effort was the auto-complete feature for the edi-
tion of validation rules, either from Descriptive Logic
or Code Logic.

On performance, the service is naturally depen-
dent on the complexity of the application model. One
of the future challenges will to assemble an efficient
assessment and prediction engine over response times
to promote fluid interactions between the front-end
application and the service.

Finally, we identified that the proposed service ar-
chitecture could be modulated to tackle different sit-
uations. The service while focused on data validation
is inherently a validated entry-point to Cloud compute
back-end services and could directly drive executions.
The same service architecture has also the potential
to be shrunk and dispersed into a wider, fine grained,
scalable framework for data quality assessment.

6 CONCLUSIONS

The present work proposed a service architecture for
the purpose of validation and recommendation with a
coherent workflow, a well-defined knowledge struc-
ture and a comprehensive range of validation mecha-
nisms. The novelty of the approach takes its root in re-
cent advances in Cloud technologies, service-oriented
architecture, domain engineering and a knowledge
structure backed by ontology. The proposed service is
critically positioned within modern cloud infrastruc-
tures; and proves to be a practical example of how
ontology can benefit service-oriented architecture.

REFERENCES

Aljawarneh, S., Alkhateeb, F., and Al Maghayreh, E.
(2010). A semantic data validation service for web
applications. Journal of Theoretical and Applied Elec-
tronic Commerce Research, 5(1):39–55.

Baset, S. and Stoffel, K. (2018). Object-oriented model-
ing with ontologies around: A survey of existing ap-
proaches. International Journal of Software Engineer-
ing and Knowledge Engineering, 28(12):1775–1795.

da Cruz, A. M. R. and Faria, J. P. (2008). Automatic gener-
ation of interactive prototypes for domain model vali-
dation. In Third International Conference on Software
and Data Technologies, volume 2, pages 206–213. IN-
STICC, SciTePress.

ESS handbook (2018). Methodology for data validation.
Technical Report 2.0, European Statistical System.

Faiez, Z., Challita, S., and Merle, P. (2017). A model-
driven tool chain for occi. In 35th International Con-

KEOD 2019 - 11th International Conference on Knowledge Engineering and Ontology Development

272



ference on Cooperative Information Systems, pages 7–
26, Rhodes, Greece. Springer.

Fielding, R. T. (2000). Architectural Styles and the Design
of Network-based Software Architectures. PhD thesis,
University of California, Irvine.

Gatti, M., Herrmann, R., Loewenstern, D., Pinel, F., and
Shwartz, L. (2012). Domain-independent data valida-
tion and content assistance as a service. In 19th Inter-
national Conference on Web Services, pages 407–414.
IEEE.

Gil, Y. and Melz, E. (1996). Explicit representations of
problem-solving strategies to support knowledge ac-
quisition. In 13th National Conference on Artificial
Intelligence, pages 469–476, Portland, Oregon, USA.

Hohpe, G. and Woolf, B. (2004). Enterprise Integration
Patterns: Designing, Building, and Deploying Mes-
saging Solutions. The Addison-Wesley Signature Se-
ries. Prentice Hall.

Kezadri, M. and Pantel, M. (2010). First steps toward a
verification and validation ontology. In International
Conference on Knowledge Engineering and Ontology
Development, volume 1, pages 440–444. INSTICC,
SciTePress.

Khouri, A. L. and Digiampietri, L. (2018). Combining arti-
ficial intelligence, ontology, and frequency-based ap-
proaches to recommend activities in scientific work-
flows. Revista de Informática Teórica e Aplicada,
25(1):39–47.

Kim, C. H. P. (2006). On the relationship between feature
models and ontologies. Master’s thesis, University of
Waterloo, Waterloo, ON, Canada.

Kim, J., Gil, Y., and Spraragen, M. (2010). Principles for
interactive acquisition and validation of workflows.
Journal of Experimental & Theoretical Artificial In-
telligence, 22(2):103–134.

Motik, B., Shearer, R., and Horrocks, I. (2009). Hyper-
tableau reasoning for description logics. Journal of
Artificial Intelligence Research, 36(1):165–228.

Musen, M. A. (2004). Ontology-oriented design and pro-
gramming. In Knowledge Engineering and Agent
Technology, pages 3–16. IOS Press.

Shanks, G., Tansley, E., and Weber, R. (2003). Using ontol-
ogy to validate conceptual models. Communications
of the ACM, 46(10):85–89.

Strmečki, D., Magdalenić, I., and Kermek, D. (2016). An
overview on the use of ontologies in software engi-
neering. Journal of Computer Science, 12(12):597–
610.

Tanida, H., Fujita, M., Prasad, M., and Rajan, S. P.
(2011). Client-tier validation of dynamic web appli-
cations. In 6th International Conference on Software
and Database Technologies, volume 2, pages 86–95.
INSTICC, SciTePress.

Tu, S. W., Eriksson, H., Gennari, J., Shahar, Y., and
Musen, M. A. (1995). Ontology-based configura-
tion of problem-solving methods and generation of
knowledge-acquisition tools: Application of protege-
ii to protocol-based decision support. Artificial Intel-
ligence in Medicine, 7:257–289.

W3C (2004). Owl, web ontology language. www.w3.org/
TR/owl-features/. Last access 20th April 2019.

Wang, H. H., Li, Y. F., Sun, J., Zhang, H., and Pan, J.
(2007). Verifying feature models using owl. Journal
of Web Semantics, 5(2):117–129.

Zdun, U. and Dustdar, S. (2006). Model-driven and pattern-
based integration of process-driven soa models. Inter-
national Journal of Business Process Integration and
Management, 2:109–119.

Validation and Recommendation Engine from Service Architecture and Ontology

273


