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In this paper, we introduce Memory Nets, a knowledge representation targeted at Autonomous Intelligent
Agents (IAs) operating in real world. The main focus is on a knowledge base (KB) that on the one hand is
able to leverage the large body of openly available semantic information, and on the other hand allows to
incrementally accumulate additional knowledge from situated interaction. Such a KB can only rely on operable
semantics fully contained in the knowledge base itself, avoiding any type of hidden semantics in the KB
attributes, such as human-interpretable identifier. In addition, it has to provide means for tightly coupling the
internal representation to real-world events. We propose a KB structure and inference processes based on a
knowledge graph that has a small number of link types with operational semantics only, and where the main
information lies in the complex patterns and connectivity structures that can be build incrementally using these
links. We describe the basic domain independent features of Memory Nets and the relation to measurements
and actuator capabilities as available by autonomous entities, with the target of providing a KB framework for
researching how to create IAs that continuously expand their knowledge about the world.

1 INTRODUCTION

In the artificial intelligence domain, the term Intelli-
gent Agent (IA) is commonly used for autonomous
entities with sensors and actuators which act within
an environment in a purposeful way (Wikipedia, 2019;
Franklin and Graesser, 1996; Kasabov and Kozma,
1998). Albeit being very general, there are several as-
pects of this definition which directly point to the very
essence of the underlying scientific and technological
problems. First, the agent has some degrees of free-
dom which it can use to decide about its own behavior
in an independent way, pursuing its own goals. Sec-
ond, it is always embedded within an environment and
has to be considered as an integral part of it, and it op-
erates by interacting with the environment. And third,
it tries to achieve its goals by exploiting its own and
the environment’s limited resources (including time)
in an efficient manner (Kurzweil, 1999).

In essence, an IA combines three aspects: It in-
corporates new information about selected parts of its
environment by means of its sensors, connects and
combines it with already existent, previously known
information about the environment, and uses the com-
bined information to derive conclusions which help
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in achieving its goals and executing the actuators. In
any case, an internal Knowledge Base (KB) system is
involved. This system has two roles: On the one hand,
the system provides the KB itself which serves to store
and retrieve complex structured and unstructured in-
formation about the environment and the world. Its
content is updated by incorporating knowledge from
external sources as well as from the information fed by
the agents’ sensors. On the other hand, the KB system
provides a reasoning engine which allows to infer or
derive additional knowledge from available informa-
tion. This becomes necessary for the solution of tasks
in complex conditions as well as for the incremental
expansion of the KB by learning and exploration.

This paper introduces Memory Nets, a KB system
that enables autonomous IAs to leverage knowledge
during their interaction with the real world. Our belief
is that future IAs need an understanding of who, what
and where they are, what the important things are that
they have to care about, and how they use all this
understanding to pursue their goals in the best way.
The important properties of such IAs supported by the
KB system are:

1. Situatedness: They know about their current con-
text and task
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2. Operability: They use this knowledge to operate
in the world

3. Incrementality: They expand their knowledge
about the world via interaction

In addition, point 1) comprises several subitems,
most importantly 1.a) Grounding the IAs have to es-
tablish links to those real-world items (objects, sub-
jects) which are relevant for a targeted task, 1.b) Com-
mon sense they need a basic background knowledge
about world items and processes similar to humans
and 1.c) Self-reference they need to know about their
role(s), capabilities/limitations and own observations.

Hence, what are representational structures that
support a KB system with the indicated properties 1)-
3)? And what are processes/operations of an inference
engine that support the situatedness, operability and
incrementality, since a KB system implies such an
engine using the KB always?

In the remainder of the paper, we will approach
these questions by sketching some necessary princi-
ples of a KB system that supports the described IAs
properties. With this in mind, we first shortly review
the KB landscape (section 2), highlighting some of
the issues that to our knowledge fall short for their
implementation as IA’s knowledge base. In the fol-
lowing section 3 we explain the main principles of
the Memory Nets KB approach. Then we describe
implementation details of Memory Nets in sections 4,
and show an example in section 5.

2 RELATED WORK

2.1 Knowledge Representation in
General Domains

Understanding KB systems as a combination of knowl-
edge representation and reasoning capabilities, with
the advent of the internet and its huge amount of in-
terlinked documents, it was proposed that it could
be beneficial to provide a unified access to the cross-
website information stores. Therefore the Semantic
Web provides an augmentation of the internet by an
additional semantic layer which describes the “mean-
ing” of sites in a standardized, human-interpretable
way, and which can be used for search and inference in
a more effective way than by inspecting the document
data (Berners-Lee et al., 2001). For this purpose, spe-
cial markup languages based on the XML format have
been specified. The Resource Description Framework
(RDF) is a specification for a metadata model, as a way
to describe formally and conceptually the information
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that is contained in web resources, with basic capa-
bilities to define classes, subclasses and properties of
objects. The Web Ontology Language (OWL) builds
on top of the RDF and provides additional levels of se-
mantics to describe ontologies of concepts (Antoniou
et al., 2012; Knublauch et al., 2006). The underlying
triple structure of RDF relates two objects x,y via a
predicate P, which could be interpreted as a logical
formula P(x,y). On the other hand, it could be seen as
a directed graph with x being the subject and y being
the object of a statement, which is a Semantic Net
(Collins and Quillian, 1969; Simmons, 1973). One
famous example of a Semantic Net is WordNet (Miller,
1995).

Later on, the Linked Data (Wood et al., 2014)
development focused on interfacing as many RDF
databases as possible and using them as one huge
knowledge source. This organization of knowledge
changed the thinking from carefully built databases to
Knowledge Graphs that collect any kind of machine-
readable structured data. In principle, a Knowledge
Graph can be seen as any graph-based representation
of knowledge (Paulheim, 2017). In 2012, Google in-
troduced its “Google Knowledge Graph” that is an
accumulated information about the searches, query
sessions, and clicks that searchers perform on the Web
each day (Singhal, 2012). Other examples of Knowl-
edge Graphs are Freebase (Bollacker et al., 2008) or
WikiData (Vrandecic and Krotzsch, 2014) that are
edited by the crowd. DBPedia (Lehmann et al., 2015)
or Yago (Suchanek et al., 2007) extract their knowl-
edge from large-scale, semi-structured web bases such
as Wikipedia. The target of all previously mentioned
databases is to describe general facts as well as re-
lations of everyday facts, also called Commonsense
Knowledge, and make them globally accessible.

On the one hand, the Semantic Web facilitates the
creation of domain specific databases and shareable
ontologies (formal descriptions of knowledge). On
the other hand, there are attempts to describe domain
independent databases that support a semantic inter-
operability among the domain specific ones, so-called
Upper Ontologies (Degen and Herre, 2001). An Up-
per Ontology usually differentiates between universals
and individuals - which are instances of universals lo-
cated in space and time. Individuals, in turn, cannot
have instances. Upper Ontologies are philosophically
motivated and try to describe basic categories and re-
lations that are valid among ontologies. Some of the
most well-known Upper Ontologies are SUMO (Pease
et al.,, 2002), Cyc, DOLCE, PROTON and Sowa’s
ontology (Sowa, 2000).

The mentioned standardization and interfacing ef-
forts, together with the growing amount of available
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knowledge, suggest that a KB system for IAs is in-
creasingly getting into reach. In the ideal case, a large
amount of the knowledge that an IA needs would al-
ready be available, providing it a jump start when
exploiting it to tackle ambitious problems. However,
even if the available knowledge is machine readable,
its semantics are not yet fully understandable by IAs
operating in real world. Nearly all of the available
ontologies have been created with a human designer
in the loop, requiring human interpretation. This ap-
plies especially to the predicates/relationships (such as
e.g. “movingTo”, “peformedBy”, but also as complex
as “hasLastRegisteredMovementAt”) which contain
implicit semantics that are not directly accessible to
an IA, and difficult to connect to daily operation in
real world. In addition, even if inference frameworks
are able to operate upon the ontologies, again this is
used rather as analyzing tool for humans, and not for
an autonomous incremental ontology extension.

2.2 Knowledge Representation for
Autonomous Intelligent Agents

Nevertheless, for real-world operation, the robotics
community is trying to make use of the previously
mentioned knowledge databases and frameworks to
link conceptual information to the physical world. The
main focus here is to fill in missing information re-
quired by a robot for executing tasks and reaching
goals. Unfortunately, most of the knowledge bases in
the semantic web were created for understanding and
processing text. Hence, even Upper Ontologies like
Cyc or SUMO are not very useful from a robotics point
of view which has to connect symbols with sensations
and actions (Tenorth et al., 2011; Fischer et al., 2018).

A promising direction in bringing both worlds to-
gether is by describing objects by their affordances
(Horton et al., 2012) or linking capabilities of robots
and actions to symbols (Kunze et al., 2011). This re-
sulted in open robot ontologies built for executing spe-
cial tasks (Lemaignan et al., 2010; Beetz et al., 2018).
Other branches of research tackle the decomposition
of real-world objects into their conceptual components
to share situational knowledge on a more fundamen-
tal and prototypical level (Rebhan et al., 2009; Wyatt
et al., 2010; Rohrbein et al., 2009).

However, the gained knowledge representation
frameworks are rather domain-specific and constrained
in their generalization towards continuous real-world
operation. The dynamic extension of an IA’s knowl-
edge representation based on situation analysis and a
rich existing foundation of available knowledge is still
an unresolved problem. The same holds for the ability
of an IA to transfer knowledge to different and new

situations based on their conceptual description. To
tackle these problems, we argue that we likely need
KB systems with specific properties. Some of these
properties are explained in the following sections.

3 MEMORY NETS: MAIN
PRINCIPLES

In this section we outline the main guiding principles
which are the basis of Memory Nets representations
and processes that operate on it. There are two key
ideas which markedly differ from standard KB ap-
proaches. First, Memory Nets are targeted to be open
for intrinsic extension by the system itself, leading to
an open-ended creation of new concepts and problem
solving capabilities, and as such to a larger flexibility
to react dynamically and adapt to changing situations.
Second, as a consequence of the intrinsic extension,
the KB can be operated without the knowledge of an
external interpreter or designer that needs to make
sense of the data.

3.1 General Guiding Principles

e The elementary representational substrate for
Memory Nets are labeled property graphs, i.e.,
graphs with defined link types and with nodes and
links which can have key-value attributes. The rea-
son is the expressive power of graphs (e. g., an RDF
structure can be easily embedded into a graph), its
natural handling in terms of visually discernible
structures, and the point that much of the interest-
ing information in KBs lies in the structure of the
connectivity.

e Concepts are described in the graph by prototypi-
cal patterns. A pattern is a reoccurring structure
(in terms of graph similarity measures, i .e. arrange-
ment of nodes and links) with an identifiable inner
part (nodes and links) and further links which con-
nect to other patterns and which embed the concept
within a web of related concepts.

e Compositionality and inheritance are used for re-
dundancy reduction and minimum description
length principles. The idea is to identify common
structures which can be reused as common com-
ponents in different concepts, and to represent re-
peated occurrence of structures in a compact way.

e The graph representation should serve as a basis
for different inference paradigms on the same
data or on subsets of the data, e. g. first order logic
calculus, graph similarity finding, pattern match-
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ing, activity spread algorithms, and probabilistic
reasoning.

e Graph elements (especially links) have no hidden
identifier semantics. Identifier do not provide any
item-specific semantic meaning, so that concepts
of the KB have meaning without the need of a
human-interpretable identifier, and can be used
without the knowledge of the data designer. The
purpose of different types of links is only to pro-
vide operational semantics, i .e., setting constraints
on graph structures and specifying how we can
operate on them.

o Instead of using natural language identifier to con-
nect from outside (real world) to concepts within
the graph, we use measurement patterns, which
by inference (e. g. pattern matching) have to be
matched to the most likely concepts.

e Natural language labels (“utterances”) are stored
in the same way as all other measurable proper-
ties, contributing if desired to pattern matching and
pattern finding processes.

3.2 Requirements for Real-world
Operation

e The KB is based on open world assumptions, i. e.,
everything we do not know is undefined (Mazzoc-
chi, 2005), which is necessary for an open-ended
expandability during operation. In addition, the
KB should be able to incorporate information from
external sources, like semantic web databases and
services, which also rely on the open world as-
sumption.

e Within the KB, new concepts can be created by
the system itself during operation, either by in-
ference or by incorporation of new measurement
patterns. The KB should be capable of building
new concepts based on existing ones (straightfor-
ward examples are hierarchical or chaining com-
positionality); as well as building specialized or
modified concepts from more general ones. This is
in synchronization with the assumption of no item-
specific semantic information of graph element
identifiers.

e The properties of concepts stored in the KB es-
tablish a link to the real world. They should be
measurable, or derived from measurable proper-
ties, and information should be contained in the
KB on how the properties are measured (e .g. about
sensory devices). As a consequence, there would
be no completely isolated parts of the graph with
no relation to the real world.
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e The KB should be capable of operating in synchro-
nization with a highly dynamic real-world. This
implies the support of grounding processes that
allow the creation of short-lived instances of real-
world item representations, their life-time manage-
ment, keeping them in focus and updating them
over time, as well as the generation of short-lived
prediction, hypothesis generation and testing. It
also implies that time plays a special role both in
representational as well as in processing aspects.

4 MEMORY NETS:
IMPLEMENTATION

Here we provide a description of the main operational
principles of Memory Nets. They are based on the prin-
ciples of no hidden identifier semantics, measurable
properties, compositionality and compact representa-
tion. We start by identifying a minimal set of link types
which provide operational and inference semantics and
on which the more complex structures are build upon.
Then we explain the notion of concept patterns, spe-
cialization, inheritance and transformation chains, and
sets.

4.1 Link Types

In knowledge graphs, nodes and relationships in
form of (source)—[linktype]— (target) are often read
as semantic subject-predicate-object triples where the
link types play a special role, as e.g. in (“Bob”)-
[“knows”’]—(“John”) with the link type “knows” con-
necting “Bob” with “John”. This is also the basis for
triplestore databases and the atomic data entity for the
RDF data model. The link to the external world is
then given by the definition of the predicates and the
interpretation of their meaning by a human designer.
This rapidly turns into complex design decisions, as
we can see in expressions like “The car has the color
blue”, where “has-the-color” now works as a predicate
between “car” and “blue”.

In Memory Nets, there are no hidden semantics
stored in the link types. Therefore, we use a small
set of link types which rather provide operational se-
mantics which apply to all KB structures regardless
of their content. Differently to e. g. RDF triple predi-
cates, Memory Net link types do not encode directly
a possible relationship between a subject (represented
by the source node) and an object (represented by the
target node), but they encode what can be done with
the source and target nodes within the graph.

Table 1 shows the most important basic Memory
Net directed link types and their operational mean-
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Table 1: The Memory Net KB is based on a labeled property
graph structure with purely operational semantics. The mean-
ing of concepts is therefore given by the connectivity pattern,
and the link types have consequences for the interpretation
of the connectivity pattern and for inference processes. All
Memory Net operations and concepts are based on a small
set of link types. The labels of the link types do not, however,
convey any semantics related to the concepts stored in the
database, so that e. g. there are no special link types with
hidden semantics like “isMadeOf” or “createdBy”, which
would require an external interpretation. The table shows
the basic relationship types and their operational meaning.

Operational link Forward Abbr. Link
semantics link type type properties

Source/target roles

Specialization
Transformation

specializesTo  specTo transitive Parent/child
transformsTo  transTo transitive  Starting point/result

Properties hasProperty hasProp Property
holder/property

Composationality  hasPart hasPart transitive ~Whole / part

Set elements hasElement hasEl Set / element

Binary operator hasOperator ~ hasOp first / second argument

Order/sequentiality hasNext hasNex! transitive Preceeding / successor

ing. They provide the framework for the elementary
structures that can be built in the Memory Net KB.
Further explanations are given in the following sec-
tions 4.2, to 4.5. More complex content semantics
should then be created by exploiting the basic link
types. E. g., instead of introducing a “isMadeOf” link
(“Object”)—[“isMadeOf”’]—(“Material”’), we would
consider a separate concept “Material” which spe-
cializes to the concrete material “CMaterial” the ob-
ject is composed of and a corresponding relationship
(“Object”)—[“hasProperty”’]—(‘“CMaterial’). In par-
allel, we could think of separately representing the
process of making the object out of a certain material
by using links that indicate transformation. As can be
seen, the composition of semantic content usually hid-
den in complex, human interpretable predicates forces
a representation that is closer to the actual processes
and causal chains as they occur in the real world, and
this is exactly the target of Memory Nets.

From table 1, it can be seen that four link types
are transitive, i. e. that if (A)—[linktype]—(B) and (B)-
[linktype]—(C) then it follows (A)—[linktype]—(C).
This leads to a natural ordering of the involved nodes.
In Memory Net, we therefore have at least four dimen-
sions for ordered ontologies: The specialization dimen-
sion (which can be used to build class taxonomies),
the transformation dimension (for transformation and
causality chaining), the compositionality dimension
(for building partonomies) and the sequential ordering
dimension. All of these provide different semantic
views on concepts and coexist within the same KB by
crossing at common nodes.

4.2 Concepts as Patterns

Concept patterns are knowledge subgraphs with a num-
ber of features, represented by characteristic nodes and
links, that together describe an aspect of the world, i. e.,
a concept, relevant for the IA. The single nodes contain
describable, derivable resp. measurable components
and properties of the concept. Patterns are represented
by subgraphs which start from a central node to which
all other nodes are directly or indirectly attached. This
is the so-called hub node which is often taken as a
proxy for the whole concept. The meaning of a con-
cept name is given by its own nodes and links and by
its contextual embedding within the graph (how is it
related with other concepts) and not by a text identifier
of its hub node (in explanatory images text identifier
are included for illustrative purposes).

Q.
S £ 3
Q o <
§ 8 3
A c o,
Model: Length: Power:
"Honda CR/V" 4,6 m 184 HP

Figure 1: The simplest memory Net concept pattern rep-
resented by a hub node (“Car”) and attached properties
(“Model”, “Length”, “Power”) with values. The node iden-
tifier names (e. g. “Car”) are indicated here for illustrative
purposes only, since the semantics of the Memory Net is
purely given by the structure of the KB graph that contains
the concept. Representing properties as separate nodes rather
than attributes of a single node enables a better embedding
in the graph, e. g. by specializing properties or putting them
in relation with each other. See section 4.2 for more details.

A property pattern consists of a hub node with
“property nodes” attached via “hasProperty” links. An
example of such a pattern for the concept of “Car”
displays Fig. 1. A property node has a special value
attribute which contributes to a measurable quantity
and provides the link to the real world. Property nodes
are final, in the sense that they themselves cannot have
further properties (e. g., it would not be meaningful to
speak of a subproperty of “red”, however see later the
idea of property specialization).

Concept patterns are compositional, i. e. they can
be composed to form larger patterns. Inversely, a con-
cept pattern can have subpatterns, and subpatterns of
subpatterns. The subpatterns’ hub nodes are attached
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Program
overview

Figure 2: Example of non-physical partonomy and composi-
tion of patterns by subpatterns with “hasPart” relationships.
Subpatterns help in the repeated usage of common modules
in different patterns and enable a compact encoding.

to the higher level concept hub node by inverse “has-
Part” links, leading to a part-of hierarchy (partonomy).
The exact link designation as “hasPart” is somewhat ar-
bitrary and in natural language it suggests mainly phys-
ical composition, here however it is used for arbitrary
reusable subpatterns that contribute to the description
of the original pattern. An example of a non-physical
partonomy can be seen in Fig. 2.

In detail, a pattern is a tree-formed subgraph that
starts from a hub node and which has links of type
“hasProperty”, “hasPart” and “hasElement”, with the
“hasPart” links forming branches. Further, links be-
tween pattern nodes can be used to express additional
internal (intra-pattern) relations, and inter-pattern rela-
tions embed the concept in the KB. Fig. 3 shows two
concept patterns for “Robot” and “Navigation path”
with parts and properties as intra-pattern relations and
with other intra- and inter-pattern relations (dotted
lines). In this case, the dotted lines represent spatial
relations and ordering, expressing that in the path one
waypoint is followed by the other and that the spatial
position of the robot is close to one of the waypoints.

A concept pattern has definitory character, in the
sense that it should contain the important features that
make up a concept or that allow it to be separated
from other concepts. All other possible, not explicitly
represented features are assumed to be unknown. One
important task is to find the best match between new
/ unknown and existing concept patterns, e. g. when
analyzing sensory measurements.

120

Path pattern Robot pattern|

 Position |

<

aypoin
#1

| Position |

hasProp!
)

N
>y

Figure 3: Patterns with parts and exemplary inter- and intra-
pattern relationships. In larger networks, patterns form a
dense web of interconnected concepts. The meaning of each
concept is then given by its internal structure (all nodes of
the tree given by outgoing “hasProperty”, “hasPart” and
“hasElement” links from the hub node with all additional
intra-pattern relationships) and its semantic context, which
results from the connection with other patterns (indicated by
yet unspecified, dotted line relationships).

4.3 Specialization and Inheritance

Memory nets can represent similar concepts in a com-
pact way by specialization. This denotes the operation
that starts from a general pattern and derives from it
a more specialized pattern by addition of further fea-
tures. Concretely, it is allowed to specialize a concept
by incorporation of additional nodes attached by links
of “hasProperty”, “hasPart” and “hasElement” type
compatible with the pattern tree structure described
in section 4.2. This results in a more precise defini-
tory scope of the derived concept. As a consequence,
the concept will be applicable in more specific cases
only, or, the other way round, if a specialized concept
applies to a new pattern, then also does the original
concept it was derived from.

Pattern specialization is indicated by a “special-
izesTo” link from the general pattern hub node to the
specialized pattern hub node. For a compact represen-
tation, when specializing a concept we do not repeat
all the features of the original concept. Instead, we
assume all the parent features (given by further pat-
tern links) to be automatically inherited. The “special-
izesTo” link therefore indicates that the target node
should be read as a sort of proxy, as if it was the equiv-
alent to the source node. This applies to all links from
the source node with the exception of the outgoing
specialization link to the target node and incoming
pattern tree links of the known types “hasProperty”,
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Figure 4: Pattern extension by specialization and inheri-
tance. Patterns that are extensions of existing patterns (in the
sense that they have additional properties, parts or elements
resp. additional intrapattern relations) are represented via
“specializesTo” links. In this example, we have a general
pattern “Robot” that describes a specific robot model, and
a concrete robot “Robot #1”. By the “specializesTo” link,
the Memory Net infers that the “Robot #1” concept is a spe-
cialization of the concept of “Robot”, inheriting all of its
pattern features, indicated by the red nodes (these are virtual
replicas that do not exist in the network, however during
operation the KB treats them as if they would exist). In ad-
dition, more specific details can be added to the specialized
pattern (e. g. the name property “Johnny”).

“hasPart” and “hasElement”.

In this way, representations with short description
lengths can be gained and synergies can be exploited
when matching unknown patterns to available con-
cepts. Fig. 4 shows a general concept pattern and its
specialization, as well as an indication of the inher-
ited features of the specialized pattern (red nodes and
links).

The same principles apply to partial subpattern and
property inheritance. Partial subpattern inheritance
occurs when the inheritance of features of the spe-

cialized pattern applies to only some branches of the
original concept pattern. Property inheritance occurs
when the property value specializes, i.e., when the
property value of the specialized pattern is a subset
of the admissible value(s) of the original pattern. A
special case is given when the value of the original pat-
tern is undetermined, which we denote by “{}”, in this
case any value of the specialized property is a valid
specialization. Property inheritance lets you create
concepts which describe features that in principle can
/ should be measured and which might have a certain
value range, and the specialized property then having
a concrete property value. In this case we speak of
truly specialized pattern nodes, as opposed to inher-
ited ones. Fig. 5 shows such a pattern specialization
with the different specialization cases. The red nodes
and links indicate direct inheritance from the general
pattern which are not explicitly represented in the KB
but indicated here for explanation. To the contrary,
there are truly specialized parts and properties where
concrete values of the specialized pattern have been
filled, e. g. by sensory measurements.

Specialization in Memory Net can be used to con-
struct an ontology in terms of the classical notion of
parent and child classes and instances. However, we do
not distinguish classes vs. instances, since for purely
measurement-based concepts it is impossible to estab-
lish a class vs. instance boundary '. Just imagine the
concepts of “Dog”, “My dog” and “My dog yesterday
when I went for a walk with him”. Whether “My dog”
is an instance (of the class “Dog”) or “My dog yester-
day ...” is an instance (of a class “My dog”) depends on
the interpretation of the meaning of the concept “My
dog”. In standard definitions classes refer to abstract,
long-lived stable constructs vs. instances, which are
supposed to be concrete exemplars and rather short-
lived. Considering that Memory Net concepts ulti-
mately all potentially originate in real-world measure-
ments avoids this problem and the specialization on-
tologies do not require a class vs. instance decision.

A specialized concept can be derived (inherited
resp. specialized) from more than one concepts. This
allows for parallel ontologies addressing different spe-
cialization aspects. Just consider a KB about persons
in a company where there might be a specialization
ontology on the associates’ competences and another
one about their contribution to projects. The corre-
sponding specialization trees would then cross on the
specialized concept of a concrete person which then

!The deeper underlying reason is the contradiction that
arises in classical class / instance ontologies when class con-
cepts are interpreted as categorical prototypes and when they
are interpreted as the set of instances that together describe
a class.
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Figure 5: Pattern inheritance with property specialization. In
this case, pattern “Robot #1” is specialized from “Robot” in
3 different variants: First, it directly inherits some of “Robot”
features which remain valid without modification (red nodes
and links). Second, it specializes its concept further by
adding new features, in the case the name property with
value “Johnny”. And third, it provides concrete values to
the measurable properties “Battery status” and “Position”,
which from the graph are known to be part of the parent
concept “Robot”. The “specializesTo” links between the
parent and child properties indicate here that the values of
the properties have been specialized.

would simultaneously inherit some competences and
participate in some projects.

4.4 Transformation Chains

Over time, in a Memory Net containing items and
events registered from the current environment, new
measurements constantly flow into the system which
have to be interpreted in relation to the existing KB
structure. Many of them have a particular property:
They are updated measurements of the “same” concept
(e. g. describing a real-world object) already registered
previously in memory. Processes and structures that
support concept persistence are therefore important.
For this purpose the link type “transformsTo” is
used, which connects two properties or two concept
patterns. It expresses the fact that a stored concept
undergoes a change to another concept, and it can be
used to express concept persistence but also concept
transformation. Fig. 6 shows an example of the con-
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Figure 6: Transformation from one concept pattern to an-
other using the “transformsTo” type links. In this example,
concepts of the robot before and after charging are connected
bz “transformsTo” links which indicate that the pattern trans-
formation involves the change in its battery status from any
{}) to > 90%.

cept for the “Robot #1” measurement before and after
charging its battery. The “transformsTo” links indicate
that the pattern and with it some features (in this case
the battery status property) are being transformed.

Since the transformation usually only applies to a
few features of a pattern, the “transformsTo” link can
be used in combination with the previously introduced
“specializesTo” link to inherit most of the source pat-
tern features to avoid representation redundancy. In
addition, if certain transformations occur repeatedly
or should be explicitly represented, a transformation
pattern can be created. Fig. 7 shows such a trans-
formation pattern for the robot example. This can be
repeated to gain transformation chains and concate-
nated transformation patterns, and is an important step
towards representing actions and action sequences in
an Intelligent Agents’ Knowledge Base.

4.5 Sets of Patterns

A special structure in Memory Nets is that of a Set. A
Set is a group of objects with similar characteristics
or that belong together in some way. Now, when we
speak of certain categories or classes of objects, we
implicitly and ambiguously do refer not only to the
category, but also to the set of objects that make up the
category.

On the other hand, there are concepts which ex-
plicitly mention the set characteristics of a concept.
This is the case e. g. for “fleet”, which is a group of
ships that somehow sail together, engage in the same
activity, or are under the same ownership - i. e., they
are grouped to one thing, and it does not really matter
why.

To be able to represent sets, we use the “hasEle-
ment” links. Any node with patterns attached to it with
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Robot #1 charging pattern
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Figure 7: The two patterns from Fig. 6 linked by “transform-
sTo” relations combined into a prototypical transformation
pattern that represents the overall transformation in a way
that is accessible and reusable within the KB.

-~
Fleet pattern!

—————

Set of ships‘l

Figure 8: A set is a group of objects that somehow belog
together. Nodes with outgoing “hasElement” links acquire
the role of a set. In this example we represent the concept
of a fleet as a set of ships, with additional properties like its
owner.

outgoing “hasElement” links, has the characteristics
of a set, so that we can query set-related information
from it, like the number of elements in the set. Fig. 8
shows the example of a concept pattern for a concrete
“Commercial fleet”, with the owner and the single ships
as elements that add to the group of ships.

The interesting point is that whereas for the case
of a concrete fleet with concrete ships this works, it
is not yet sufficient for the definition of a concept of
an abstract fleet, where we do not know the concrete
ships yet. In this case there are no elements that de-
fine the set-based concept. However, it is important

that a fleet contains ships or vehicles, but not other
things like e. g. animals, so the rypes of elements are
characteristic for the set-based concept representation.
Conveniently, we can use the introduced specialization
and inheritance properties from Memory Nets (section
4.3) together with element prototypes for that purpose:
If we represent the ships in a compact way by spe-
cializing them from some common prototypes (there
can be several of them, without limitation), then the
prototypes are definitory parts of the fleet concept rep-
resentation. This is shown in Fig. 9, and we can easily
see how the “Commercial fleet” concept representa-
tion remains valid even if there are no ship elements
in the fleet at all.

Fleet paltern}

Element prolotypes}

Figure 9: The fleet concept, this time with a compact rep-
resentation using ship prototypes. The single ships in the
set do not define what a fleet is, but the prototypes do (it
is relevant that the elements of the fleet are ships and not,
say, animals). In this example we have one prototype but
there can be several in a set-based concept, and they can
even build specialization hierarchies.

5 EXAMPLE IMPLEMENTATION

As an exemplary application, and for future scalability
experiments, we implemented a Memory Net as a KB
with inference capabilities on top of a graph database
(Neo4j, (Neodj, 2019)). Whereas the graph database
provides raw access to nodes, links and attributes, the
Memory Net provides functions that operates at the
level of concept patterns as outlined in the last section
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4 and provides capabilities for dealing with specializa-
tion, inheritance and compositionality. In particular,
we developed interfaces for creating new patterns with
or without inheritance, finding and querying patterns
(e. g. by pattern match), inserting a new pattern and
resolving missing properties and parts from the parent
pattern, as well as rudimentary spatial reasoning.

The IAs in this case are several domestic robots on
wheels equipped with various sensors, speaker and an
arm with a gripper. In addition, there is an “intelligent
room”, also equipped with microphones, cameras and
loudspeaker.

Each IA is represented within the Memory Net
with its sensors and actuators to enable the interaction
with the real-world. In addition, each IA gets access to
the representation of the other agents, including their
current states and possible relations between the agents
(including humans as another interacting agent). It also
gets basic information of a static spatial representation
of its context and ways to operate (e. g. navigate) in
this context. The background is that we want to use
the Memory Net, to explore problem solving strate-
gies which require cooperative interactions between
the agents, therefore inter-agent inference of the corre-
sponding sensor and actuator capabilities.

Each sensor is linked to a description of the abstract
sensor measurement concept pattern with properties
and value ranges. The actuators are linked via capa-
bilities to executable actions in a similar way. These
entry and exit points from the real world to the Memory
Nets are specially tagged. Each time a new sensor mea-
surement event is registered, a concrete measurement
pattern is specialized and consistently linked to the
knowledge graph. Since each measurement is attached
to the sensor description of a particular agent, we can
then easily infer which aspects have been measured
by whom. Using the sensory information, the state
of the physical world can be measured and registered
at the right places in the Memory Net, whereas the
capabilities allow for executing actions which again
have an effect on the state of the world.

We equipped the Memory Net with the concepts
for waypoints, rooms, persons and entities (identical
to IA) that can have several measurable properties like
shape, utterance and position. Utterances are under-
stood as a property in form of a the natural language
description that could contain the name of an object or
a description attached by natural language processing.
Position and shape are general purpose properties that
allow for spatial reasoning. All those properties are
domain independent and each node has a time stamp
information.

A special role is given by a concept pattern which
describes a capability, and which can be assigned gen-
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erally to agents (persons or entities). Each capability
pattern has a node which provides a reference to an
executable function within the system, correspond-
ing to a sort of actuation primitive. For example the
“move* capability refers to a function that executes the
physical action of moving the robot to a certain place.
Fig. 10 depicts the specialization of an entity with its
capability. Other capabilities are currently “speak* or
“inform person*, which recognizes a certain person and
provides information to this person. A simple plan-
ning framework utilizes these capabilities by taking
the state of the world reflected in the KB into account.

Capability pattern! Entity pattern
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Figure 10: Simplified diagram of the concept patterns for
“Capability” and “Entity” within the Memory Net. For con-
crete entities resp. capabilities, the patterns are specialized.
As no shape information has been measured yet about the
entity, the specialized pattern still inherits it from its parent.
The “Actuator function” property of the abstract capability
pattern refers to a specific module that executes a physical
action.

The complete Memory Net graph including enti-
ties, persons and rooms is depicted in Fig. 11. To
illustrate information stored in the graph, we render re-
cent spatial pattern information into a map of our office
environment. Fig. 12 shows the positions of persons
(red dots) and robots (green triangle). To interact with
an IA, we implemented a simple dialog that allows to
ask in which spatial concept (e. g. a room) a pattern
with a certain utterance (e. g. a certain person) has been
seen last time. For example, if the system is asked:
“Where did you see Joerg Deigmoeller?”, it will an-
swer “Johnny has seen Joerg Deigmoeller in the lobby.*
, where Johnny is the utterance of the observing robot
and lobby is the utterance of the correponding room
found by spatial reasoning.

The long-term goal is to use this basic implemen-
tation as a starting point and let [As learn to interact in
our office environment. This requires a self-referenced
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Figure 11: Illustration of whole Memory Net graph with
pattern nodes (blue) and property nodes (yellow).

Figure 12: Office map that contains spatial information ex-
tracted from the graph about robots (green triangle icon) and
persons (red dot icons). The icons are interactive and show
the corresponding utterance by clicking on them.

view and situational awareness for a given task. Here,
the requirement for a KB is to break down the number
of hypothesis that contribute to executing tasks and
hence limit the search space for the later planning step.
If a goal has been reached, this could be reflected in
the KB and serve as individual experience of each IA
for future tasks. In other words, we provide IAs with
basic patterns that allow to act in the physical world
on a high level and leave the assessment of additional
own capabilities to the system, which acquires them
based on experience. This high level representation
leaves room for, on the one hand, enriching the KB
by external knowledge sources e.g. from Semantic
Web, and, on the other hand, allows for low level ma-
chine learning methods to project high dimensional
problems on a more abstract, interpretable level.

6 CONCLUSION

We proposed Memory Nets, a new knowledge repre-
sentation for [As that mainly encodes semantics in a
graph structure and less in natural language identifiers.
Memory Nets are defined by a minimal set of link
types embedded in patterns with their supporting prop-
erties. Such granularity leads to operational semantics
and a strong connectedness between nodes - which is
the great strength of graphs.

A key component of Memory Nets is the central
representation of an IA and its connection through dif-
ferent levels, starting from its own concept, through its
capabilities and measurements up to observed patterns
and properties. This representation allows for a con-
textual embedding of a situation an IA is currently in
and its operability. An additional important feature is
incrementality, that is enabled by possible abstraction
from observations or linking of external knowledge
sources. Encoding the knowledge in relations and in
the amount of connected information also allows for
machine learning methods on top of the representation.

Memory Nets facilitates for operations in multiple
dimensions like specialization of patterns for class
taxonomies, transformation patterns, compositionality
(for building partonomies) and sequential ordering.

The future direction of our research is on the one
hand using Memory Nets as central backend for mul-
tiple physical embodiments of IAs. Another focus is
the incrementality of the KB and usage of machine
learning approaches.
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