
Towards Integrated Failure Recovery for Web Service Composition

Paul Diac and Emanuel Onica
Faculty of Computer Science, Alexandru Ioan Cuza University of Iaşi, Romania

Keywords: Web Service Composition, Fault Tolerant Systems, Failover Mechanism, Reconstruction Algorithms.

Abstract: Web Service Composition (WSC) aims at facilitating the use of multiple Web Services for solving a given
task. Automatic WSC is particularly focused on automating the composition process following specifications
of involved actors. There are many initiatives developed in this direction, but most of them stop at describing
the process of building the composition, while some also study the coordination of the execution. However,
research of specific solutions in cases of failure of services is typically not integrated with composition
algorithms and mostly relies on costly additional measures. Fault tolerance is important for developers relying
on the compositions, since their applications are rarely for transient usage, requiring high availability over
time. Naively re-computing the compositions from scratch can be a waste of resources for the composition
engine. In this paper, we propose addressing web service faults by preparing backup compositions as part of a
fallback mechanism, which efficiently integrates with the base composition algorithm.

1 INTRODUCTION
In the popular Service Oriented Architecture (SOA),
web services are the building blocks on top of which
most distributed applications are built. Although
already a well-established paradigm, SOA importance
is still on the rise with the exploration of new aspects,
like IoT, micro-services, and semantic services. A
web service is an atomic component, which provides
a specific functionality declared in its definition. This
definition can be strictly syntactic, or enhanced with
semantic descriptors or other types of meta-data in-
formation, for example, Quality of Service metrics.
In general, one single web service has a relatively
simple functionality, bound to a specific application
domain, providing some output value(s) for some
input parameters (e.g., providing an output result
following a particular input query on a database).

Web Service Composition (WSC) permits aggre-
gating the use of multiple services into more complex
applications. Whenever the desired output informa-
tion cannot be obtained by means of a single service,
a composition algorithm can be executed, connecting
multiple web services by using intermediate outputs
as inputs for other services, until the result is found.
Multiple techniques have been proposed for creating
such compositions focusing typically on performance
aspects. Not many of these take into account fault
tolerance. This is generally regarded as an orthogonal
problem that is solved by other means independent of
the composition technique. Web service failure is a

real issue with multiple causes, some of which, like
failures of infrastructure or failures in communication
(MoreThanCoding.com, 2012), completely disable
the use of a service. Most failover mechanisms either
consider only the case of execution malfunctioning
where the service can be restarted or rolled back to
a previous state, or focus strictly on the integration
of redundancy measures in case of complete fail-
ures. There is, however, less focus on how to obtain
such needed redundancy, which can serve for a re-
composition. The approach we propose takes into
account the possibility of complete service failures,
integrating the needed redundancy for efficient recov-
ery from the initial composition stage.

In Section 2 we present the composition model.
We describe the solution for failure recovery in Sec-
tion 3. In Section 4 we empirically evaluate our
proposed algorithms on a synthetic, automatically
generated repository. In Section 5 we discuss related
work on providing fault tolerance for Web Service
Composition. Finally, Section 6 concludes our contri-
bution and proposes several future work possibilities.

2 COMPOSITION MODEL
Applications using Web Service Composition typ-
ically consider three types of actors: the service
providers, the users requesting the compositions for
some functionality, and the composition generator.
Very often the composition generation is represented

Diac, P. and Onica, E.
Towards Integrated Failure Recovery for Web Service Composition.
DOI: 10.5220/0007979605770584
In Proceedings of the 14th International Conference on Software Technologies (ICSOFT 2019), pages 577-584
ISBN: 978-989-758-379-7
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

577

by a static method applied only once, which generates
the composition and returns it to the user. Neverthe-
less, we expect that most often the user would need
that functionality for a continuous period of time,
over which the composition should remain available.
Our design setting considers a composition engine as
an application that can dynamically respond to users
requests for new compositions, or handling services
downtime, which is the focus of our paper.

An early effective composition model was pro-
vided in the first Web Services Challenge (Blake et al.,
2005). The challenge required solving specific user
queries by implementing an automatic computation
of a web services composition. The repository of
services consisted of WSDL (Christensen et al., 2001)
files with service definitions. Solutions had to output
valid compositions and were evaluated by their run-
times over a batch of tests. Another important eval-
uation metric is the composition length. If multiple
valid compositions exist, the shorter is preferred.
This length optimization has both performance and
fault-tolerance implications (i.e., fewer services in a
composition makes it less prone to failure). Gener-
ally, finding the shortest composition is an NP-Hard
problem, as proven in (Ţucăr and Diac, 2018). (Diac,
2017) proved to be significantly faster than other
proposed algorithms in the Web Services Challenge
2005 benchmark. The composition model in this
solution serves as the basis for our current work.

We formally summarize in the following the el-
ements of the model and present its basic mode of
operation.

Parameters. Let P be the set of all parameters, iden-
tified by names, that appear in any service definition
or in the user request. P is not restricted in any way,
and it can include any string.

Web Services. A service is identified by a name and
contains two sets of parameters, input and output:
wsi = 〈name, In,Out〉, where In,Out ⊆ P.

Service Repository. The service repository, written
as R, is the set of all services, R=

⋃
∀i

wsi.

Composition Query. A user request for a compo-
sition or a composition query can be thought of as a
service that does not exist yet, but the user has interest
in. It is defined over a set of input parameters that the
user initially knows and a set of requested (output)
parameters that the user needs. All active queries
qx = 〈name, In,Out〉; In,Out ⊆ P make the set Q.

Valid Composition. For query qx, a valid
service composition, is a sequence of services
〈ws1,ws2, ...wsk〉, where: each service input set must

be included in the set of all previously called services
outputs, or in the user initially known parameters,
and the final user query output must be covered by
services outputs.

wsi.In⊆

(
qx.In∪

(i−1⋃
j=1

ws j.Out
))

, ∀ i = 1..k

and qx.Out ⊆

(
k⋃

i=1

wsi.Out

)
Mode of Operation. The composition construction
gradually builds a sequence of services structured as
a directed acyclic graph. Each service depends on
some of the previously selected services, meaning its
input parameters are bound to the output parameters
of previous services. These parameters are matched
simply by name: an output of some service can
be used as input of another service if their names
coincide. Simple typing can slightly extend this
model. Hierarchical types, i.e., concepts arranged in
a taxonomy - defined the first step towards semantic
composition in (Weise et al., 2008). As the focus of
this paper is on the failover mechanism we consider
the model limited to name equality that can be ex-
tended.

When selecting a service in the composition, there
can be multiple options that generate one particular
needed parameter, so there can be a choice of what
service to use. A service that is fit but is not chosen
can serve as a backup starting point, for the case of an
eventual failure of the initially selected service. The
composition algorithm can prepare for this backup
ahead of time, improving the overall performance
perceived by the user. In Section 3 we present in
detail our algorithms providing backup, enhancing
the model for use-cases where faults appear at the
execution phase of the composition.

3 FAILURE RECOVERY

The algorithm we propose integrates with a failover
mechanism, and it is based on a traversal over the
set of reachable parameters, where services are used
to find new parameters for building the composition.
A heuristic score is assigned to services that is used
when multiple services can be chosen.

Our approach also handles dynamic removal of a
service at the provider’s request, which has similar
implications with complete service failures at execu-
tion time.

ICSOFT 2019 - 14th International Conference on Software Technologies

578

3.1 Overview
The composition algorithm is built upon an adjusted
breadth-first search traversal over the set of param-
eters. This starts from the user known parameters,
aiming to obtain the user required parameters. A
loop tries to select the next services to call if any is
available. Learned output parameters are marked as
such in a set, and for each service, all unknown input
parameters are kept in a map. When one such map
becomes empty, the corresponding service becomes
available to call. The loop stops when all user
required parameters are learned. If multiple services
become available at the same time, the one with
the best score is selected. This score approximates
the usefulness of the service and is the length of
the shortest possible distance from the service to
any of the final user required parameters (distance is
calculated in the number of services). When selecting
a service, there is no guarantee that the service will
be useful in the final composition. Therefore, as a
final step, we also execute a composition shortening
algorithm. This shortening algorithm navigates the
services in the reverse order of the composition and
deletes all services that do not output used parameters.

The design of the solution is to return the compo-
sition as soon as constructed to the user in order to
provide a fast response time. To provide the failover
mechanism, the algorithm pre-computes alternative
compositions for each user query. These alternative
compositions are searched in a background thread.
Each backup is stored internally at the time it com-
pletes. If a service fails, the backup is provided to the
user as the new active composition, and immediately
takes an active role instead of the disrupted compo-
sition. Then, similarly, in the background, a new
backup to the new active composition is re-computed,
and the old one is deleted. It is expected that these
backup compositions are computed initially before
any service failure. However, in the other, unlikely
and worst case situation, it is easy to detect that the
composition is broken without having a backup ready
for replacement. If this happens, the composition is
re-built from scratch as for a new query, and the user
will just notice a longer response time.

To compute the alternative backup compositions,
the algorithm prepares for cases in which each (but
only one) service goes down. If more services break
at the same time, the recovery can take longer, as the
solution is to process failed services sequentially.

3.2 Failover Mechanism Details

The response composition for a query is represented
as a simple ordered sequence of services. The order
defines chronological execution of services and is
determined according to how parameters matched
between services. If one of the services fails, it might
be replaceable by other services in the repository. To
find a solution equivalent to the failed service, we
search for a new backup composition. This search is
similar to solving a new user query, and we use again
the same composition search algorithm. However,
we need to prepare new appropriate parameter sets.
This is depicted in Figure 1, where wsp breaks. All
the services that are situated before the failed service
provide a set of {known} parameters, which includes
the user’s initially known parameters. These will be
the input parameters of the new query. We prepare
the output parameters targeting to keep in the new
composition the still valid services from the old suffix,
after the failed service. All new required (output)
parameters are collected in the {required} \ {known}
\ {gen} set, where \ is the set difference operator.
The {required} set contains all input parameters of
any service on the right of wsp and any initially user
required parameter. It is obvious that we can remove
the {known} parameters out of this new query output
set. Parameters in {gen} are inputs of subsequent
services that are also ”generated” as outputs of other
(previous) services on the right. If we consider the
old suffix after wsp still valid and try to keep it, {gen}
parameters are not actually necessary. We can also
remove them from the new required set. The reason
for building the sets in this manner is that the more
parameters are added to the known and the less are
required, the shorter the composition will be.

If no composition is found for the new ({known}
→ {required} \ {known} \ {gen}) query, it does not
necessarily mean that no solution exists. There might
be the case that services succeeding wsp use some
parameters that are no longer accessible. In such a
situation, all the composition’s suffix, i.e., services on
the right of wsp must be reconstructed. This, again,
can be done by a new composition query: ({known}
→ {user requested} \ {known}), displayed as the
suffix query in Figure 1.

If this does not succeed either, the user query is no
longer solvable, because only keeping the services on
the left of wsp can be at most useless, but not wrong.

Regardless of how the composition was re-
constructed, the algorithm does not maintain the
backups for the ”partial” compositions themselves
(i.e., the ones replacing just wsp or the suffix of the
initial composition). Backup solutions are built for

Towards Integrated Failure Recovery for Web Service Composition

579

user
input

user
requestedws1In

O
ut ws2In

O
ut

wspIn

O
ut wskIn

O
ut.

{known}

{required}
service \{gen}

\{known}

suffix query

composition query

Figure 1: Service wsp≤k, part of composition 〈ws1,ws2, ...,wsk〉 fails. wsp could be replaced by a new composition that uses
all parameters learned from outputs of any previous service (on the left), and that generates all parameters that are at input on
the right. If it is not found, we can drop the services on the right of wsp and try an alternative composition replacing all the
”suffix” that can potentially be affected by the failed service.

the whole new composition. The reduction algorithm
is run on the new composition, eliminating useless or
duplicate services that can appear.

Another action taken when a service fails is to
rebuild all backup compositions that use it. These are
backups for solutions of other user queries that are
still working, i.e., that do not contain the failed service
in the main composition but only in their backups.

3.3 Data Structures used in Algorithms

We summarize in the following the data structures
used in our proposed failover algorithms. We refer
here only to the main global structures that keep high-
level information like the services, the user queries
and the solutions with their backups:
→ Set〈Service〉 repository: set R of all services;
→ Map〈Parameter, Set〈Service〉〉 inputFor: all ser-
vices that have a specific parameter as input;
→ Set〈Query〉 requests: set Q of user queries;
→ Query objects contain: .In and .Out : user known
and requested parameters;
→Map〈Query, Solution〉 compositions: solutions;
→ Solution objects contain: Query .query, the
resolved query; Array〈Service〉 .main, services in
solution; Map〈Service, Solution〉 .backup, backup
solution for each used service and Solution .parent,
the composition it is backup to if .main is a backup;
→ Map〈Service, Set〈Solution〉〉 usages: main or
backup compositions using some service.

3.4 Failover Algorithms

Our first algorithm functions presented in Algorithm
1 create a composition for a user query. This inte-
grates with computing the needed backups for failure
situations described in Algorithm 2. The functions
of the algorithms use a series of temporary structures
instantiated per query: known, required, score, and
ready.

Algorithm 1: Find composition and learning.

1: Set〈Parameter〉 known; // known parameters
2: Map〈Service, Set〈Parameter〉〉 required; // input

parameters of each service that are not yet known
3: Map〈Service, Int〉 score; // heuristic service score
4: Set〈Service〉 ready; // services with empty re-

quired.get(), so callable; ordered by scores.
5:
6: function FINDCOMPOSITON(query)
7: solution← new Solution();
8: solution.query← query; known, ready← /0;
9: score← COMPUTESERVICESCORES(query);

10: for all service ∈ repository do
11: required.put(service, service.In);
12: LEARNPARAMETERS(query.In);
13: while (¬ ready.empty() ∧ query.Out * known) do
14: nextService← ready.first(); // best scoring
15: solution.main.add(nextService);
16: LEARNPARAMETERS(nextService.Out);
17: if (query.Out * known) then
18: return NULL; // query is unsolvable
19: else
20: REMOVEUSELESSSERVICES(solution, query);
21: for all (service ∈ solution.main) do
22: usages.get(service).add(solution);
23: return solution;
24:
25: function LEARNPARAMS(Set〈Parameter〉 pars)
26: for all (service ∈ (repository \ ready)) do
27: required.get(service).removeAll(pars);
28: if (required.get(service).isEmpty()) then
29: ready.add(service); // just became callable
30: known← known ∪ pars;

Their exact role is explained at the beginning of
the listings. The FINDCOMPOSITION() function is
used to find the main, first solution for any compo-
sition query. This makes use of LEARNPARAMS()
helper function, which has the role to maintain the

ICSOFT 2019 - 14th International Conference on Software Technologies

580

known parameters set up-to-date during the algo-
rithm’s execution. The function FINDBACKUP()
is responsible with computing the backup for one
component service in a composition. The functions
are wrapped in BACKUPCOMPOSITION(), which is
essentially the function that the user should call for
executing a composition with failover support.

Algorithm 2: Finding backup alternatives.

1: function BACKUPCOMPOSITION(query)
2: solution← FINDCOMPOSITION(query);
3: for all (service ∈ solution.main) do
4: bkp← FINDBACKUP(solution, service);
5: solution.backup.put(service, bkp);
6:
7: function FINDBACKUP(sol, service)
8: p← sol.main.indexOf(service);
9: knownbkp ← sol.query.In;

10: for (i← 0 to p - 1) do
11: knownbkp ← knownbkp ∪ sol.main.get(i).Out;
12: reqbkp ← sol.query.Out;
13: for (i← sol.main.length down-to p + 1) do
14: reqbkp ← reqbkp \ sol.main.get(i).Out;
15: // remove {gen} from Figure 1
16: reqbkp ← reqbkp ∪ sol.main.get(i).In;
17: s← FINDCOMPOSITION((knownbkp, reqbkp));
18: if (s == NULL) then
19: query← (knownbkp,sol.query.Out\knownbkp);
20: s← FINDCOMPOSITION(query);
21: // second type or ”suffix-query” backup
22: if (s 6= NULL) then s.parent← sol;
23: return s;

For simplicity, we omitted the listing of some
helper functions. COMPUTESERVICESCORES() com-
putes scores indicating how good services are to
be part of the composition. The function performs
a reversed order traversal of all services, starting
from services that output any of the user’s required
parameters. These get the best score which is 1.
Following, services that output any input of services
with score 1 get a score of 2, and so on. Later on
line 14 of Algorithm 1, the service with the best,
lowest value score, is chosen out of all services
currently available and added to the composition.
The REMOVEUSELESSSERVICES() is another helper
function. This is referenced in Section 3.1 as the
shortening algorithm and is used for cleaning the
composition of any services that are not mandatory.

Several optimizations can be applied to our
algorithm construction. It is easy to observe that the
calls to FINDBACKUP() for finding backups to each
of the services in the composition can be executed in

parallel. Otherwise, an improvement can also be
obtained by building {knownbkp} and {requiredbkp}
sets only once instead of for each FINDBACKUP()
call.

In Algorithm 3 we describe the delete service
method. This is called when a service provider specif-
ically deletes a service or when a service fails. Both
cases are treated similarly triggering replacement
with a backup and a new backup re-computation.

Algorithm 3: Remove service method.

1: function DELETESERVICE(ws)
2: repository.remove(ws);
3: for all (param ∈ ws.In) do
4: inputFor.get(param).remove(ws);
5: for all (sol ∈ usages.get(ws)) do
6: if (sol.parent == NULL) then // main solution
7: bkpSol← sol.backup.get(ws);
8: sol.backup.clear(); // also update usages
9: compositions.put(sol.query, bkpSol); // swap

10: if (bkpSol 6= NULL) then
11: for all serv ∈ bkpSol.main do
12: newBkp← FINDBACKUP(bkpSol, serv);
13: bkpSol.backup.put(serv, newBkp);
14: // else sol.query becomes unsolvable
15: else // sol was a backup, try to find another
16: newBkp← FINDBACKUP(sol.parent, ws);
17: sol.parent.backup.put(ws, newBkp);
18: usages.get(ws).clear();

4 EVALUATION

We evaluated our algorithms on synthetic generated
data. We implemented a specific tests generator.

First, several queries are generated, each from two
disjoint sets of random parameters: input and output,
i.e., initially known and requested parameters.

For each of these queries, we build the resolving
composition as a sequence of services modified to
have each input chosen randomly from the outputs
of previous services or from the query’s input pa-
rameters. To create backup possibilities, we build
an alternative solution for a randomly chosen service
of the main solution. The alternative solution can
either replace just the chosen service - the first type
of backup or also all it’s successive services - the
second type of backup. In Figure 2, gray edges
show how parameters pass through a composition
example X = 〈wsx1 ,wsx2 ,wsx3 wsx4 ,wsx5〉. Edges are
displayed only between consecutive services of the
composition, but parameters can actually be chosen

Towards Integrated Failure Recovery for Web Service Composition

581

wsx1In

Out

queryin

wsx2In

Out

wsx3In

Out

wsx4In

Out

wsx5In

Out

wsy1In

Out

wsy2In
Out

queryout queryout

wsz3In

Out

wsz2In

Out

wsz1In

Out

wsx5
OutIn

wsx4In

Out

wsx3In

Out

wsx2In

Out

queryin

wsx1In

Out

Figure 2: The two types of backups generated: replacing only one service on the left; and replacing all successive services or
the ”suffix”, on the right.

randomly from all outputs of previous services. Blue
edges track parameters passing through sequence
Y = 〈wsy1 ,wsy2〉 that can replace wsx3 in X - the first
type of backup. Orange edges follow sequence Z =
〈wsz1 ,wsz2 ,wsz3〉 that can replace 〈wsx3 ,wsx4 wsx5〉 in
X - the second type or ”suffix” backup. If wsx3
fails, either Y or Z could replace it. In Algorithm 2,
inside FINDBACKUP() function the first backup type
is obtained at line 17, and the second type at line 20.
In the solution we prioritize for finding the first type
of backup since it is more likely to have a shorter
length, therefore being more efficient. The generator
creates multiple of both of these backup types: first
building paths of services and then assigning parame-
ters accordingly.

Table 1 presents our evaluation metrics. First
columns define the experiment instance size: the total
number of distinct parameters, the total number of
services in the initial repository and the total number
of user queries. The following column specifies the
total number of services used in all solutions found
initially, for all queries. Out of these, we count how
many have at least one possible backup: of the first
or the second type. The last two columns include
the running time consumed for solving all user re-
quests and respectively for searching backups for each
service used in compositions. Execution times are
obtained for a Java implementation running on an
Intel(R) Core(TM) i5 CPU @2.40 GHz machine
with 8 GB RAM.

For each query, one service is deleted, simulating
its failure. This service can be either part of the
initial composition found by the algorithm or of the

backup built by the generator. Our test setting ensures
that the deletions are not limited to backup services,
therefore covering all possible cases: either replacing
a composition service with a backup (the branch at
line 6 in Algorithm 3) or just computing a new backup
if a previous backup service fails (the branch at line 15
in Algorithm 3).

Finally, we also measured the naive re-
construction of all the compositions after deletion of
services. These produced similar run times as the
initially built solutions. This is expected since the
problem instance is almost as large as in the initial
setting.

Our measurements give an insight into the stress
inflicted on the composition engine in practice. Two
choices would be possible in case of failure: re-
compute a composition naively, which would have a
similar cost with the initial computation of the com-
position, or using our pre-computed backups. Obvi-
ously, the backup option is more advantageous. The
switch to the alternative composition is done instantly
eliminating the overhead on computing a new solu-
tion. Even though the composition re-computation
is not very high, it would still be desirable to avoid
any disruption. Our solution practically eliminates
any downtime caused by the failure. Moreover, for
situations when no pre-computed backups are avail-
able, the user or service administrator can be warned
ahead of time of critical services in the composition
that are unrecoverable, and for which other measures
could be taken (i.e., adding a new equivalent service
in the repository). Finally, we observe that the time
for building backups is not very significant, and does

ICSOFT 2019 - 14th International Conference on Software Technologies

582

Table 1: Experimental algorithm results. All run times are in seconds.

|P|
parameters

|R|
repository

|Q|
queries

total services
used

backups found
of each type

build
solutions

search
backups

1000 100 5 23 15 2 0.005 0.022
1000 500 20 171 63 12 0.07 0.35
10000 1000 100 464 232 29 0.56 2.02
10000 2500 20 905 273 132 0.41 9.05

not add delays for the user since this operation is per-
formed asynchronously after the initial composition
is retrieved.

5 RELATED WORK

The solution described in (Cardinale and Rukoz,
2011) is probably one of the closest techniques to
our work in providing fault tolerance in Web Service
Composition. The approach is based on a Colored
Petri Nets (CPN) modeling, used for backward re-
covery in the composition chain when a service fails,
which essentially leads to a re-composition. However,
the technique assumes several particular traits for the
component services, such as being compensatable
(i.e., some other service can semantically undo the
execution of the failed service), leading to a transac-
tional property for the composition. Our approach on
re-composing relies on finding sequences of services
providing the needed input and output parameters.

In (Vargas-Santiago et al., 2017), the authors
survey solutions that use checkpointing mechanisms.
Such solutions are mostly focused on situations when
the failure of a service is not complete (i.e., the
machine where the service resides is still operational).
Checkpoints are used to mark a safe state of the ser-
vice periodically. In case of a service malfunctioning,
rollback to a specific checkpoint is possible, followed
by resuming the service execution from such a safe
state. Local recovery is defined in such a manner
for individual services, while global recovery implies
the rollback to a previous state for the entire system
(i.e., covering the complete composition). Such
approaches are different from our solution, typically
not taking into account the impossibility of recovery
of a failed service, and not considering finding an
alternative composition. Also, the use of resources
is higher in checkpointing mechanisms, requiring
periodical state storage.

In (Laranjeiro and Vieira, 2008), the authors pro-
pose an architecture that relies on proxy service com-
ponents. Each proxy service can invoke redundantly
a series of alternate Web Services that provide the
needed functionality in the composition. Therefore,

when one or some of these services fail, another one
accessible by the same proxy can replace it. The
choice of the service is the outcome of a voting
mechanism that takes into account evaluation metrics
for low-cost redundancy. The solution is focused on
the functionality aspects of the proposed architecture,
such as integrating custom adapters that might be
needed for interfacing with redundant services - e.g.,
adapting from a temperature scale to another. It does
not discuss an effective algorithm for establishing the
composition chain or dealing with the situation when
a re-composition is needed following failures; i.e.,
when proxy services would fail, and an alternative
composition would be required. The paper actually
acknowledges that a consistency issue in case of
service failures is subject of future work.

The solution in (Rao et al., 2007) discusses practi-
cal integration of WSC for achieving fault-tolerance,
in particular referring to the integration of an external
tool: a fault-tolerant planner - BIFROST - for address-
ing the issue of faults. The paper does not introduce a
specific dedicated failover mechanism.

6 CONCLUSION

We approached in our solution the Web Service Com-
position problem from a highly practical perspective.
We believe that specific failure recovery integration
would be feasible in a real case scenario, where ser-
vices can break at any time or can be deleted. We in-
tegrated service maintenance with the composition al-
gorithm, in a manner that we consider an appropriate
failover for situations when any used service becomes
unresponsive. If an alternative composition path
exists, our solution selects this as a backup, which
can be used to restore the functionality instantly. The
proposed resilience mechanism does not address only
software faults as some of the previous work, but can
also work in a complete hardware failure scenario.
In this initial work, we implemented our algorithm
for the simplest version of service composition that
matches parameters by names. The algorithm was
evaluated on an automatically generated test suite that
simulates complex scenarios.

Towards Integrated Failure Recovery for Web Service Composition

583

Multiple additions to our solution can be consid-
ered for future work. First, new services could be
dynamically added to the repository. Existing valid
compositions could be optimized through shortening
following such addition. Second, a more extensive
evaluation could be conducted over an actual dis-
tributed set of services, simulating effective break-
down of nodes and their re-addition into the network.
This would give more accurate insight into the de-
lays caused by faults and the naive re-composition
option, which we believe could be more severe than
in our synthetic test setting. Other future work we
consider is taking into account modern variations of
the composition problem, like modeling semantics,
enabling Quality of Service measures for services
and generated compositions, or considering stateful
services. We believe that our proposed solution offers
a solid ground for pursuing such extensions.

REFERENCES

Blake, M. B., Tsui, K. C., and Wombacher, A. (2005). The
EEE-05 challenge: A new web service discovery and
composition competition. In Proceedings of the 2005
IEEE International Conference on e-Technology, e-
Commerce and e-Service, pages 780–783.

Cardinale, Y. and Rukoz, M. (2011). Fault tolerant exe-
cution of transactional composite web services: An
approach. In Proceedings of The Fifth International
Conference on Mobile Ubiquitous Computing, Sys-
tems, Services and Technologies, UBICOMM 2011.

Christensen, E., Curbera, F., Meredith, G., Weerawarana,
S., et al. (2001). Web services description language
(WSDL) 1.1.

Diac, P. (2017). Engineering polynomial-time solutions
for automatic web service composition. Procedia
Computer Science, 112:643–652.

Laranjeiro, N. and Vieira, M. (2008). Deploying fault tol-
erant web service compositions. International Jour-
nal of Computer Systems Science and Engineering,
23:337–348.

MoreThanCoding.com (2012). The web apis you use will
fail.

Rao, D., Jiang, Z., and Jiang, Y. (2007). Fault tolerant web
services composition as planning. In Proceedings of
The International Conference on Intelligent Systems
and Knowledge Engineering 2007. Atlantis Press.

Ţucăr, L. and Diac, P. (2018). Semantic web service com-
position based on graph search. Procedia Computer
Science, 126:116–125.

Vargas-Santiago, M., Pomares-Hernandez, S.,
Morales Rosales, L. A., and Hadj-Kacem, H.
(2017). Survey on web services fault tolerance
approaches based on checkpointing mechanisms.
Journal of Software, 12:507–525.

Weise, T., Bleul, S., Comes, D., and Geihs, K. (2008).
Different approaches to semantic web service compo-
sition. In Proceedings of the 2008 Third International
Conference on Internet and Web Applications and
Services, pages 90–96.

ICSOFT 2019 - 14th International Conference on Software Technologies

584

