
Java Web Services: A Performance Analysis

Pedro Costa e Silva1 and Jorge Bernardino1,2 a
1Polytechnic of Coimbra – ISEC, Rua Pedro Nunes, Quinta da Nora, 3030-199 Coimbra, Portugal

2CISUC - Centre of Informatics and Systems of University of Coimbra, Pinhal de Marrocos, 3030-290 Coimbra, Portugal

Keywords: Web Services, Soap, Rest, Performance, SOA.

Abstract: Service-oriented architecture (SOA) is being increasingly used by developers both in web applications and in
mobile applications. Within web services there are two main implementations: SOAP communication
protocol and REST. This work presents a comparative study of performance between these two types of web
services, SOAP versus REST, as well as analyses factors that may affect the efficiency of applications that
are based on this architecture. In this experimental evaluation we used an application deployed in a Wildfly
server and then used the JMeter test tool to launch requests in different numbers of threads and calls. Contrary
to the more general idea that REST web services are significantly faster than SOAP, our results show that
REST web services are 1% faster than SOAP. As this programming paradigm is increasingly used in a
growing number of client and server applications, we conclude that the REST implementation is more
efficient for systems which have to respond to less calls but have more requests in a connection.

1 INTRODUCTION

Service Oriented Architecture (SOA) is a software
development model for distributed application
components that incorporates, among other elements,
access control, data mapping, and security features.
SOA has two main functions. The first is to create a
broad architecture model that defines the objectives
of the applications that communicate with it and their
approaches that will help meet those goals. The
second function is to define particular
implementation specifications, usually linked to the
formal specifications of Web Services Description
Language (WSDL) and Simple Object Access
Protocol (SOAP).

For decades, software development has required
the use of modular functional elements that perform a
particular function at various places within the same
application. With application integration operations
and the trend of component sharing among resource
pools, distributed client-server architectures, and
database connections, companies needed a way to
adapt their procedures-based development model to
the use of remote and distributed components. Simple
models such as Remote Procedure Call (RPC) were a
start in the right direction, but the RPC did not have

a https://orcid.org/0000-0001-9660-2011

the data security and independence features required
for truly open and distributed operations.
The solution to this problem was to redefine the old
operating model in a new, broader and clearer
architecture of services that could be delivered to an
application using fully distributed software
components. The architecture that involved these
services in mechanisms to support full open-source
security and management was called a service-
oriented architecture, or SOA.

Initially, SOA implementations were based on
available RPC and Object-Broker technologies in the
early 2000s. But this architecture was quickly split
into two implementations. The first branch is the Web
Services (WS) field, which represents a highly
organized and formal management of procedures and
remote components. The second is the
representational state transfer field (REST), which
represents the use of a technology strand that accesses
remotely hosted components.

The SOA WS model uses the WSDL to bind to
interfaces with services and SOAP to define
procedure or component APIs. The principles of WS
were used to connect applications through a "business
service bus" (BSB), which helped companies

570
Silva, P. and Bernardino, J.
Java Web Services: A Performance Analysis.
DOI: 10.5220/0007979205700576
In Proceedings of the 14th International Conference on Software Technologies (ICSOFT 2019), pages 570-576
ISBN: 978-989-758-379-7
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

integrate them into their applications, ensure their
efficiency and improve their data management.
The SOA WS model never reached the adoption
levels that its proponents had predicted; in fact, it
collided with another model of remote components
based on the Internet “language”, the REST. RESTful
application program interfaces (APIs) offered less
overhead and were easy to understand

There are many commercial and open source tools
available for testing web services. To test the
performance of the implemented services we will use
JMeter tool, one of the most used and documented.
This tool will help you measure service quality and
network performance in real time. The comparison is
performed based on response time and usability
(Radhakrishna and Nachamai, 2018).

In this work two web services were created, one
using the SOAP implementation and the other REST.
These web services are implemented on an
application server (Wildfly) to which requests are
made through the JMeter application. With the data
obtained in the requests made by the test program
(average order time, minimum order time, maximum
order time and standard deviation), we evaluated the
performance of each service by varying the number
of threads (calls to the application server) or by
varying the number of sequential requests on the
same call. In this work we conclude that for several
sequential requests in a single thread the REST
architecture is more efficient.

The remainder of this paper is structured as
follows. In section 2, we analyse the current state of
art regarding web services and SOA architecture.
Section 3 presents the methodology used and section
4 presents the results of the experimental evaluation.
Section 5 discusses the results obtained and their
implications. Finally, section 6 presents the
conclusions and some future work.

2 RELATED WORK

Becker et al., (2009) compare two types of web
services (SOAP and REST). This study presents a
business network of manufacturers and service
providers in the electronic area, for the
implementation of a service-oriented architecture
(SOA). For each of the types of web services
analysed, a project with SOA architecture was
developed and evaluated in relation to the previously
defined set of requirements.

In the study by Belqasmi et al. (Belqasmi et al.,
2012 a comparison of two web interfaces (a SOAP-
based web service and a REST-based service) of

multimedia conference applications is made. The
results obtained in this study showed that SOAP-
based request processing in a mobile environment can
take 10 times longer and consume 8 times more
memory than equivalent REST-based requests.

Tihomirovs and Grabis, 2016 summarize in their
study the main advantages and disadvantages of
REST and SOAP interfaces using evaluation of
software metrics. Several metrics were analysed,
namely cost, effort required for implementation or
execution, efficiency, maintenance, etc.

Analysing the results, the researchers concluded
that it is not possible to clearly identify the best
approach to ensure data communication, and each
project should be evaluated individually. Each
protocol (SOAP and REST) has its advantages and
disadvantages. However, it was possible to identify
the main characteristics to choose the best approach.
If the project requires great scalability, compatibility
and performance the best option is to choose a REST
service.

The complexity of the implementation, the
execution speed, the consumed memory resources
and the performance are better in the REST services
when compared to the SOAP protocols. If the project
requires mobile availability, REST is also the best
choice.

If the project requires security, reliability and easy
maintenance on the client side, the best choice will be
the SOAP protocol. SOAP also has an advantage over
REST if the project needs to process data
asynchronously.

In the study by Malik et al. (Malik and Kim, 2017)
a comparison of REST and SOAP interfaces is made
in terms of ease of use, deployment and resource
utilization. The objective of his study was to compare
the two services through the projection of home
networks based on the architectural styles of SOAP
and REST.

In the study by Potti et al. (Potti, et al., 2012) a
performance comparison of two service
implementations (one based on SOAP and one based
on REST) is made. SOAP and REST-based web
services have been created that perform Create, Read,
Update, and Delete (CRUD) operations on a database
and retrieve local files. The authors used response
times and file transfer rate metrics to compare the
performance of both services. The results of this study
reveal that, on average, the REST service performs
better than the SOAP service, however not all the
results were statistically conclusive. Through their
study they concluded that the development of services
using SOAP is easier since there is a greater support.

Java Web Services: A Performance Analysis

571

The development of services using REST was
considered more difficult due to the need for high
knowledge about the http protocol and the lack of
support.

Mumbaikar et al. (Mumbaikar and Padiya, 2013)
present in their study a comparison of the
performance of SOAP and REST services based on
different metrics of mobile applications and
multimedia conferencing. The results of this research
showed that REST services perform better than
SOAP services.

In the study by Castillo et al. (Castillo et al., 2011)
a high-level comparison is made between SOAP and
REST. The results obtained show a significant time
difference between REST and SOAP
implementations. Although both are suitable for
parallel systems development, SOAP
implementations are heavier than REST
implementations because XML increases the
"translation" time of messages.

Wagh and Thool (2012) in their study make a
detailed comparison between two frameworks used to
provide web services through SOAP and REST and
also address their problems and challenges. The
comparison made can help in deciding which
framework best suits wireless environments and
which best responds to the needs of continuously
accessing mobile web services from devices with
limited resources.

In the work developed by Radhakrishna et al.
(Radhakrishna and Nachamai, 2018) Two tools are
described to test web services performance based on
response times. In order to do this analysis, two test
automation tools, JMeter and SoapUI, were analysed
and the response times in each tool were analysed.
The comparative study of the tools is done by
performing an operation with different numbers of
threads. The main difference in our study is that this
paper explicitly measures the difference of
performance (time to response) and only use a test
tool (Jmeter) to avoid errors from application´s
overhead.

3 METHODOLOGY

In order to verify the performance of the two types of
services, a computer with an Intel Core i7-8550U @
1.8Ghz processor with 16 Gb of Ram was used, a
Windows 10 64-bit operating system (version 1803
build 17134.523) where two projects were created in
Java 10 (version "10.0.1" 2018-04-17 with Java (TM)
SE Runtime Environment 18.3 (build 10.0.1 + 10)
and Java HotSpot (TM) 64-Bit Server VM 18.3 (build

10.0.1+ 10, mixed mode) in the IDE (Integrated
Development Environment) Eclipse (Version IDE for
Enterprise Java Developers Version 2018-12 (4.10.0)
and Build id 20181214-0600.). In order to facilitate
the construction of the deploy artefacts, we use
Apache Maven (version 3.5.2) as a build tool since it
is one of the most popular and used among java
developers. To launch the requests, we used Jmeter
(version 5.0 r1890935).

Two files were created, one for the REST web
service project and one for the SOAP web service
project.
For the construction of the REST endpoint was used
the implementation of Oracle, Jersey version 1.19.4.
In the construction of the SOAP endpoint we used the
standard 2.0 implementation of JAX-WS in version
2.1.3 (Java API for standardized XML web services
to create and consume SOAP services). The
implementation used was that of Oracle, as well as for
the REST service.

To test web services a service has been
implemented that returns the first n prime numbers.
The request to the web service should indicate an
integer, for example five, and the answer will indicate
the first five prime numbers in the format: "FIRST 5
numbers: 2 3 5 7 11". For this purpose, a Java method
was created which was also used in both
implementations of the service. So, in the REST
service the class responsible was as follows.

import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.PathParam;
import javax.ws.rs.Produces;
import javax.ws.rs.core.MediaType;
@Path("/prime")
public class RestWSPerformance {
@Path("/{number}")
@GET
@Produces(MediaType.TEXT_PLAIN)
public String GetPrimes(@PathParam("number") Str
ing number) {
… JAVA code that returns a string with the first
n prime numbers
 }
}

The Web.xml file is the default deployment

descriptor for the web application that the service is
part of. In it are declared the filters and servlets used
by the service. On the Java EE platform, the servlet
listening for SOAP calls is the WSServlet that is part
of the JAX-WS reference. The file developed for the
SOAP project is shown below.

ICSOFT 2019 - 14th International Conference on Software Technologies

572

<?xml version="1.0" encoding="UTF‐8"?>
<web‐app
xmlns:xsi="http://www.w3.org/2001/XMLSchema‐
instance"
xmlns="http://java.sun.com/xml/ns/javaee"
xsi:schemaLocation="http://java.sun.com/xml/ns/j
avaee http://java.sun.com/xml/ns/javaee/web‐
app_3_0.xsd" version="3.0">
<display‐name>SoapWSPerf</display‐name>
<listener>
<listener‐
class>com.sun.xml.ws.transport.http.servlet.WSSe
rvletContextListener</listener‐class>
</listener>
<servlet>
 <servlet‐name>SoapWSPerf</servlet‐name>
 <servlet‐
class>com.sun.xml.ws.transport.http.servlet.WSSe
rvlet</servlet‐class>
</servlet>
 <servlet‐mapping>
 <servlet‐name>SoapWSPerf</servlet‐name>
 <url‐pattern>/soapwsperf</url‐pattern>
 </servlet‐mapping>
</web‐app>

Another important file in the implementation of a
WS SOAP is sun-jaxb.xml. This file provides details
about endpoints when JAX-WS Web services are
deployed to servlet containers, such as Wildfly. This
file is placed in the WEB-INF directory and contains
the endpoint name, implementation class, URL
pattern, and other additional information. The sun-
jaxb.xml file used in the SOAP project was as
follows.

<?xml version="1.0" encoding="UTF‐8"?>
 <endpoints
xmlns='http://java.sun.com/xml/ns/jax‐
ws/ri/runtime' version='2.0'>
 <endpoint name='soapwsperf'

 implementation='pt.isec.si.SoapWSPerf'
url‐pattern='/prime'/>
</endpoints>

As for the REST project the web.xml file used was

as follows.

<?xml version="1.0" encoding="UTF‐8"?>
<web‐app
xmlns:xsi="http://www.w3.org/2001/XMLSchema‐
instance"
xmlns="http://xmlns.jcp.org/xml/ns/javaee"
xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/
javaee http://xmlns.jcp.org/xml/ns/javaee/web‐
app_4_0.xsd" version="4.0">
<display‐name>RestWSPerformance</display‐name>
<servlet>
<servlet‐name>RestWSPerformance</servlet‐name>
<servlet‐class>
com.sun.jersey.spi.container.servlet.ServletCont
ainer</servlet‐class>
 <load‐on‐startup>1</load‐on‐startup>

</servlet>
<servlet‐mapping>
 <servlet‐name>RestWSPerformance</servlet‐name>
 <url‐pattern>/restwsperformance/*</url‐pattern>
</servlet‐mapping>
</web‐app>

Both services were implemented on Wildfly
application server version 15.0.1.Final. To test the
performance of both services the JMeter tool was
used.

4 RESULTS

The comparison of web services is based on the
analysis of the times observed during the execution of
each operation. Each web service operation is
invoked by a certain number of threads. For each data
set (different thread numbers, different order numbers
per thread, different response sizes) the average,
maximum and minimum execution times of a request
/ response sequence are calculated. In each of the data
sets we also measured the times in an individual
execution of each web service and also the joint
execution times (concurrent REST and SOAP
requests).

The requests to the services indicated that the
latter should respond by calculating the first 100,000
prime numbers. These values were decided, based on
the load experiments, in order to have significant
values, since if the service requested fewer prime
numbers, the response was made too fast (in the order
of 0 to 3 ms). Thus, it is only with this amount that
the server response time allowed to obtain data of
sufficient size to allow performance analysis.

Another important aspect was the choice of the
total number of requests to keep the data consistent.
After the tests carried out, it was concluded that 40
requests were a reasonable number of tests once we
increased that number, and due to the typical timeout
value for a response in Wildfly, the response time was
exceeded and we would get errors in the calls services
to be tested. After these values have been fixed, we
have decided to divide the data into 3 distinct groups
according to the number of threads (server
connections) and requests per connection. For a better
understanding the analysed datasets are described in
Table 1.

Java Web Services: A Performance Analysis

573

Table 1: Description of the data sets used.

The time were obtained through the JMeter tool
and the different services were tested for each one of
the referred data sets. For each dataset, three
measurements were taken. One for SOAP requests,
one for RESTs and one for both simultaneously. The
observed results are described in Tables 2 and 3.

Table 2: Time observed in requests by service (10 threads
with for 4 requests).

Table 3: Time observed in simultaneous requests (10
threads with for 4 requests).

In Table 2 and Table 3 the observed values for the
execution of the different web services are registered,
for a request of the first 100,000 prime numbers.
There were 40 requests divided by 10 threads with 4
requests each, and for individual and simultaneous
execution respectively. The observation of results
allows to conclude that, for requests made separately
(only REST requests, or only SOAP requests), the
average execution time is lower for REST web
services than for SOAP, however the minimum value
was observed for a SOAP request. When executed
simultaneously, lower and lower average times were
observed in SOAP web services, compared to REST
requests, however the observed standard deviation is
much higher which indicates that there is a greater
dispersion of the sample data.

Table 4: Time observed in requests by service (40 threads
with for 1 requests).

Table 5: Time observed in simultaneous requests (40
threads with for 1 requests).

When ordering in 40 threads (Table 4 and Table
5) with only one order in each one, it can be seen that
the differences between the averages are practically
nil. However, it is also observed that in individual
requests the standard deviation of REST requests is
less than the standard deviation of SOAP requests,
which indicates that the data dispersion is smaller. On
the other hand, in concurrent requests, the opposite is
observed, a lower standard deviation for SOAP
requests, which indicates that the dispersion of
sample data is smaller than in REST requests.

To complete the tests, we re-measure the values
this time by sending two requests per thread in 20
threads. The values were those recorded in Table 6
and 7.

Table 6: Time observed in requests by service (20 threads
with for 2 requests).

Table 7: Time observed in simultaneous requests (20
threads with for 2 requests).

From the analysis of Table 6 and Table 7 it can
be observed that for individual requests, all registered
values were lower in REST requests than in SOAP
requests. In the simultaneous requests, the average
and the maximum value observed were smaller in the
REST requests, being only the smallest minimum
value in the SOAP requests. In both cases, the
standard deviation is lower in REST requests, which
means that sample dispersion is lower in these
requests than in SOAP requests.

By analyzing the chart in figure 1 we can see
that for asynchronous requests with fewer threads and
more requests per thread the average response times
of REST services are less than the average times for
SOAP services. When the number of threads (value =
20) is increased, the difference between the mean

Prime

Numbers

Total

requests
threads

requests

per thread

100000 40 10 4

100000 40 40 1

100000 40 20 2

WS # requests
Average

(ms)
Min (ms) Max (ms)

St

deviation

REST 40 29794 27596 31121 932.62

SOAP 40 29903 27430 31704 1166.15

WS # requests
Average

(ms)
Min (ms) Max (ms)

St

deviation

REST 40 60704 53409 68194 3935.13

SOAP 40 60007 49572 70297 5264.34

WS # requests
Average

(ms)
Min (ms) Max (ms)

St

deviation

REST 40 122556 97697 129197 7786.56

SOAP 40 119883 90698 126885 9229.43

WS # requests
Average

(ms)
Min (ms) Max (ms)

St

deviation

REST 40 262956 193942 276924 20846.69

SOAP 40 262904 205439 277604 18349.01

WS # requests
Average

(ms)
Min (ms) Max (ms)

St

deviation

REST 40 59954 50627 64452 3317.32

SOAP 40 62651 53524 68204 3981.41

WS # requests
Average

(ms)
Min (ms) Max (ms)

St

deviation

REST 40 121045 99986 135177 9529.92

SOAP 40 121743 94213 135822 10703.33

ICSOFT 2019 - 14th International Conference on Software Technologies

574

response times is no longer significant, even though
the REST service values remain lower. When the
number of threads increases even more (value = 40),
the observed trend reverses, since, although not very
noticeable, the average response times of the SOAP
service are lower than the REST service times.

Figure 1: Comparative chart of the mean values for
asynchronous requests.

Unlike asynchronous requests, when the
concurrent request values are observed, only with 20
threads the average time of the REST service is less
than the average time of the SOAP service. For an
execution with 10 or 40 threads, the average time of
the SOAP service, although notorious, is less than the
average time observed in REST requests.

Figure 2: Comparative chart of the mean values for
simultaneous requests.

When executing REST requests isolated from
SOAP requests, it is verified (Figure 3 and Figure 4)
that for a smaller number of threads (value = 10) the
difference between the mean, minimum and
maximum values is practically imperceptible. As the
number of threads increases, the difference between
these values is also increasing. It is important to note
that the difference between the two cases (SOAP
requests and REST requests and 20 and 40 threads) is
greater than the difference to the maximum value.

Figure 3: Comparative chart representing the average,
minimum and maximum times of REST requests when
executed separately.

Figure 4: Comparative chart representing the average,
minimum and maximum times of SOAP requests when
executed separately.

From the analysis of the graph of Figure 5 it is
possible to conclude that for both web services the
average execution time for asynchronous requests is
much lower when compared to concurrent requests
for the same number of threads.

Figure 5: Summary chart of average order execution times.

5 DISCUSSION

In the individual 10- and 20-threaded tests the REST
implementation is 1% faster than SOAP, however, if
we increase the number of threads (in our case 40),
SOAP becomes 1% faster. This apparent performance

A
ve

ra
ge

 r
es

po
ns

e
tim

e
(m

s)

A
ve

ra
ge

 r
e

sp
o

n
se

 t
im

e
 (

m
s)

Java Web Services: A Performance Analysis

575

gain from the SOAP implementation may be linked
to the server's internal latency, since 40 requests are
made for 1 second, only on a server connection.

In the concurrent tests, that is, when the SOAP
and REST requests were sent to the server at the same
time by Jmeter, the results were not conclusive, since
SOAP was faster with 20 threads and REST with 10
and 40 threads. Here the results can be explained by
the way Wildfly treats requests to the server and
internally forwards them to the intended service,
since the two services are available, the results may
have been tainted by internal rules of order
forwarding for web services many different. Still,
REST remains 1% faster.

In order to better gauge the results, we can also
verify that as the requests per thread increased, the
dispersion of data accompanies this same difference,
so there is a greater difference between the values of
the maximum and minimum response time. This is
confirmed by the values of the standard deviation that
are significantly larger in the 40 threaded assays.

6 CONCLUSIONS AND FUTURE
WORK

This paper quantifies a pre-established idea that
REST type services are faster than SOAP because of
the "machinery" they bring on the server side. After a
series of trials, it was concluded that actually the
REST implementation is faster, but only at 1% than
SOAP. However, it has also been proved that, under
certain conditions, when many requests are made in a
single thread, SOAP is slightly (1%) more efficient.
The essays focused only on a web service that
returned a text and it would be interesting to approach
in another similar study, the use of more complex
objects in the services answers, for example through
Json or Xml more elaborated. The language used in
this article was Java but this work could also be
replicated in another language, for example .NET.

REFERENCES

Becker, J., Matzner, M., & Müller, O. (2009). Comparing
architectural styles for service-oriented architectures -
A REST vs. SOAP case study. Information Systems
Development: Towards a Service Provision Society,
207–215. https://doi.org/10.1007/b137171_22

Belqasmi, F., Singh, J., Bani Melhem, S. Y., & Glitho, R.
H. (2012). SOAP-based vs. RESTful web services: A
case study for multimedia conferencing. IEEE Internet

Computing, 16(4), 54–63. https://doi.org/10.1109/MIC.
2012.62

Castillo, P. A., Bernier, J. L., Arenas, M. G., Merelo, J. J.,
& Garcia-Sanchez, P. (2011). SOAP vs REST:
Comparing a master-slave GA implementation.
Retrieved from http://geneura.wordpress.com

Malik, S., & Kim, D. H. (2017). A comparison of RESTful
vs. SOAP web services in actuator networks.
International Conference on Ubiquitous and Future
Networks, ICUFN, 753–755. https://doi.org/10.1109/
ICUFN.2017.7993893

Mumbaikar, S., & Padiya, P. (2013). Web Services Based
On SOAP and REST Principles. International Journal
of Scientific and Research Publications, 3(5), 3–6.
Retrieved from www.ijsrp.org

Potti, P. P. K., Ahuja, S., Umapathy, K., & Prodanoff, Z.
(2012). Comparing Performance of Web Service
Interaction Styles: SOAP vs. REST. Proceedings of the
Conference on Information Systems Applied Research
ISSN, 2167, 1508. https://doi.org/http://dx.doi.org/10.
1016/j.plantsci.2009.07.009

Radhakrishna, S., & Nachamai, M. (2018). Performance
inquisition of web services using soap UI and JMeter.
2017 IEEE International Conference on Current
Trends in Advanced Computing, ICCTAC 2017, 2018–
Janua, 1–5. https://doi.org/10.1109/ICCTAC.2017.
8249993

Service-oriented architecture (SOA) news, help and
research - ComputerWeekly.com. (n.d.). Retrieved
January 12, 2019, from https://www.computerweekly.
com/resources/Service-oriented-architecture-SOA

Tihomirovs, J., & Grabis, J. (2016). Comparison of SOAP
and REST Based Web Services Using Software
Evaluation Metrics. Information Technology
and Management Science, 19(1), 92–97. https://doi.org/
10.1515/itms-2016-0017

Wagh, K., & Thool, R. (2012). A Comparative Study of
SOAP Vs REST Web Services Provisioning
Techniques for Mobile Host. Journal of Information
Engineering and Applications, 2(5), 12–16. Retrieved
from www.iiste.org

ICSOFT 2019 - 14th International Conference on Software Technologies

576

