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Abstract: Conventional secret sharing schemes, such as Shamir's secret sharing scheme, cannot prevent the leak of 

shares when they are deposited on servers. In contrast, in an asymmetric secret sharing scheme, the owner of 

the secret has a stronger authority than the server, and the number of servers storing the share can be set to 

less than k. Therefore, even if all the shares stored in the server leak, the secret is not leaked. This can prevent 

the leakage of secrets from attacks on servers. In the conventional secret sharing scheme, a correct secret 

cannot be reconstructed if the attacker outputs a false share at the time of reconstruction by hijacking the 

server. This problem cannot be addressed even if asymmetric secret sharing is used. Therefore, we extend the 

asymmetric secret sharing scheme in a manner enabling the owner to detect a secret when an attacker outputs 

a false share. In the proposed scheme, a server is not required to store information other than the share if n > 

k. In other words, no burden is imposed on the server for verification. In addition, the hijacked servers can be 

identified under certain conditions, realizing an efficient verification method for secrets that is suitable for the 

asymmetric secret sharing scheme. 

1 INTRODUCTION 

In recent years, the utilization of big data using cloud 

computing has garnered attention for the creation of 

new businesses, including e-business. Cloud 

computing can distribute and store a user's data in a 

virtual mass storage consisting of multiple servers on 

a network, called cloud, and access the data from 

anywhere through the network as required by the 

user. However, when data are deposited in the cloud, 

the data must be encrypted to render it resistant to 

information leakage. In addition to encrypting and 

storing data, a function of the secret calculation 

capable of performing arithmetic processing while 

concealing individual data using concealed data 

distributed and stored in the cloud is required. Use of 

the secret sharing scheme as a method of realizing 

such data concealment and concealment calculation 

has garnered attention. In secret sharing, the original 

secret is distributed into n pieces, called share, and 

can be reconstructed by collecting k (k ≦ n) shares. 

However, from the less than k shares, no secret. The 

(k, n) threshold secret sharing scheme (hereinafter 

called the Shamir scheme) by Shamir is well known 

as one of these secret sharing schemes (Shamir, 

1979). A conventional secret sharing system, 

including the Shamir scheme, consists of n data 

servers that store shares, a dealer that distributes a 

secret, and a restorer that restores the secret. That is, 

at the time of distribution, the owner of the secret 

distributes it as a dealer or the distribution of the 

secret is requested from a dealer who appears only at 

the time of secret distribution. The dealer then 

performs a secret distribution operation to calculate 

the n shares. The shares are stored separately in n data 

servers. The restorer can reconstruct the secret by 

collecting k shares among the distributed n shares. 

However, k servers are attacked without the secret 

owner’s knowledge because the conventional secret 

sharing systems cannot prevent k or more shares from 

being collected; hence, the shares are leaked, and the 

secret is reconstructed. A scheme, called asymmetric 

secret sharing scheme (Takahashi and Iwamura., 

2014); (Takahashi and Iwamura, 2013); (Sarathi Roy 

et al., 2014), was also proposed. In this scheme, the 

owner can generate up to k − 1 shares from one key. 

In the secret sharing schemes other than the 

asymmetric secret sharing scheme, each server is 

generally equal, and the owner cannot prevent the 

secret from being leaked from the server. In contrast, 

in the asymmetric secret sharing scheme, if the owner 
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has more authority than the server, and the number of 

servers storing the share is less than k, the secret will 

not leak even if all the shares stored in the server are 

leaked. That is, k or more shares are not leaked unless 

the owner generates the share from one key; hence, 

the owner of the secret can prevent the share leakage 

by managing the key safely.Therefore, the 

asymmetric secret sharing scheme is secure against 

secret leakage; however, a problem that occurs is that 

an attacker can output a false share at the time of 

reconstruction by hijacking the server. The restorer 

cannot reconstruct the correct secret, and the secret 

cannot be verified. This problem cannot be solved 

even if the asymmetric secret sharing scheme is used. 

Meanwhile, the verification method of the 

reconstructed secret in the conventional secret 

sharing scheme often contains extra information, 

called authenticator, other than the share to verify the 

reconstructed secret. Consequently, a problem arises 

involving an increase in the amount of information 

managed by the server (Cabelllo et al., 2002); (Ogata 

and Araki, 2013); (Ogata and Satoshi, 2013); 

(Hoshino and Obana, 2015); (Zhu, 2017).  

In addition, these methods often cannot calculate 

in any finite field; therefore, the convenience is low. 

In many verification methods, servers exchange 

shares and authenticators and calculate to verify the 

secret using their information at the time of 

reconstruction, thereby increasing the amount of 

communication and number of calculations (Al 

Mahmoud, 2016). Thus, as a verification method that 

does not use the authenticator, the method with 

tamper resistance using public key cryptography 

exists (Takahashi and Iwamura., 2014). However, 

attacks against this are limited to the chosen 

ciphertext attack, and the attacker repeatedly sends 

his/her own fake ciphertext to the server and analyzes 

the message and timing returned by the server to 

obtain the secret key and plaintext. Therefore, the 

conventional verification method for secrets is not 

efficient and often not applicable in any case. 

We propose herein an efficient verification 

method for secrets by extending the asymmetric 

secret sharing scheme. The extension is realized by 

enabling the owner to generate not only the shares, 

but also the server ID from the key. This allows the 

owner to verify the restored secret even if the attacker 

outputs a false share. Additionally, if n > k, each 

server is not required to store information other than 

the shares; that is, no burden is imposed on the server 

for verification. Furthermore, when k + u servers 

exist, all the attacked servers can be identified if the 

number of e servers that outputs a false share is u > e. 

As mentioned earlier, our verification method for 

secrets  having  less calculation  and  communication, 

which can specify the fraudulent server is realized. 

Section 2 describes various conventional methods 

for verifying the recovered secret; Section 3 presents 

the related works required to understand our proposed 

scheme; Section 4 denotes the details of Proposed 

Scheme 1, where no information other than the share 

is required when n > k. 

2 CONVENTIONAL METHOD 

2.1 Authenticator Method by 
Exponentiation of Secret (Cabelllo 
et al., 2002); (Ogata and Araki, 
2013) 

a = 𝑠2  (Cabelllo et al., 2002) or a = 𝑠3  (Ogata and 

Araki, 2013) is generated as an authenticator. 

However, they cannot be calculated in any finite field. 

In particular, in the scheme described in (Cabelllo 

et al., 2002), the probability of an attacker's success is 

1 when 𝑝 = 2𝑛. For example, if an attacker uses false 

shares for the secret and the authenticator, false secret 

𝑠′ = 𝑠 + ∆𝑠  and false authenticator 𝑎′ = 𝑎 + ∆𝑎  are 

reconstructed. In this case, the attacker must set 𝑎′ =
(𝑠′)2, such that the fraud is successful. However, the 

attacker can always realize∆𝑎= ∆𝑠2 when 𝑝 = 2𝑛. 

𝑎′ = 𝑎 + ∆𝑎= 𝑠2 + ∆𝑠2 

Therefore, the probability of the attacker’s success is 

1. This method is less convenient because the bit 

string used by the computer is often an element of GF 

(2𝑛). Another problem is that the storage capacity of 

each server increases by storing the share of the 

authenticator. Similarly, in the case of the method in 

(Ogata and Araki, 2013), when  𝑝 = 3𝑛 , the 

convenience is increased compared to the method in 

(Cabelllo et al., 2002) because the attacker's success 

probability is 1; however, it also has a restriction on 

the finite field in addition to storage capacity 

increases. 

2.2 First Section Authenticator Method 
for Bit String Decomposition of 
Secret (Ogata and Satoshi, 2013); 
(Hoshino and Obana, 2015) 

Split the secret s on GF (22𝑛) in half, divide the bit 

string s = (s1,s2 ) ∈ GF(2n) , and distribute secret s 

and authenticator 𝑎′ = s1∙s2  using the secret sharing 

scheme. If the recovered secret 𝑠′  and the 

authenticator 𝑎′  are 𝑎′ = s1∙s2 , the information 

restored is valid. If they do not match, the information 
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restored is invalid. This cannot be applied to arbitrary 

bit sequences. In the scheme presented in (Ogata and 

Satoshi, 2013), it is valid only when the bit length is 

even, and the secret is 𝑠 ∈ 𝐺𝐹(22𝑛). In addition, the 

method in (Hoshino and Obana, 2015) decomposes a 

secret into N bits; however, it is effective only when 

𝑠 ∈ 𝐺𝐹(2𝑁𝑚) , and cannot set an arbitrary bit 

sequence. Furthermore, the storage capacity increases 

because each server required information other than 

the shares of the secret. 

2.3 Authenticator Method using 
Functions and Random Numbers 
on Share (Zhu, 2017) 

The random number b and 𝑔(𝑥)  are generated in 

addition to the polynomial 𝑓(𝑥)  of the k − 1-th 

equation related to the secret s. The shares of 𝑓(𝑥) 

and 𝑔(𝑥) are distributed to each server. Additionally, 

at the time of restoration, the restorer restores 

𝑓(𝑥) and 𝑔(𝑥) using Lagrange's interpolation 

formula. Subsequently, if a random number b exists 

that satisfies 𝑓(𝑥) + 𝑏𝑔(𝑥), the secret s is restored. 

However, a secret can be found by most k − 2 

attackers instead of k − 1. As mentioned in Section 1, 

an authenticator exists in addition to the sharing of 

𝑓(𝑥) and 𝑔(𝑥). Therefore, the storage capacity of the 

server is increased. 

2.4 Method of Broadcasting 
Authenticator (Al Mahmoud, 2016) 

Each server divides the received share 𝑆𝑖 = 𝑆𝑖,0 +

𝑆𝑖,1. Each server stores 𝑆𝑖,1, and 𝑆𝑖,0 is the information 

for verification. Each server prepares 𝐴𝑖(𝑥) of the k 

− 1 linear expression such that 𝐴𝑖(0) = 𝑆𝑖,0 . 

Furthermore, each server uses the random numbers 

𝑏𝑖,0, 𝑏𝑖,1, ⋯ , 𝑏𝑘−1  such that 𝐵𝑖(0) = 𝑏𝑖,0 . 

Additionally, expression 𝐵𝑖(𝑥)  is prepared. 

Subsequently, 𝐶𝑖,𝑗 = 𝑔𝑠𝑖,𝑗ℎ𝑏𝑖,𝑗  is calculated, and 

𝐴𝑖(𝑗), 𝐵𝑖(𝑗), and 𝐶𝑖,𝑗  are calculated. Each server 

broadcasts to each other. At the time of restoration, 

from the 𝐴𝑖(𝑗), 𝐵𝑖(𝑗), 𝐶𝑖,𝑗  collected by each server, 

this test verifies whether 𝑔𝑠𝑖,𝑗ℎ𝑏𝑖,𝑗  𝑚𝑜𝑑 𝑝 = ∏ 𝐶𝑖,𝑙
𝑗𝑙

𝑘
𝑙=1  

holds. If it holds, then 𝑆𝑖,0is correct, and each server 

restores the secret S. 

2.5 Method using Public Key 
Encryption (Takahashi and 
Iwamura, 2014) 

Assuming an attacker, called overlap-joint tampering, 

the attacker can additionally obtain shares that are not 

subject to tampering as input. In addition, the purpose 

of the attacker is to use the decryption oracle, receive 

a share of a certain message m, and generate a share 

that can be reassembled into a message related to m. 

It performs a selective ciphertext attack, but supports 

it using a secure public key cryptosystem (IND-CCA 

secure). It offers computational security; however, it 

is limited to the selected ciphertext attack, and the 

number of attackers is not concretely shown. 

3 PRELIMINARIES 

3.1 Shamir’s Secret Sharing Scheme 

[Share Generation] 

Calculate n shares from a secret s and distribute the 

shares to n servers. Hereinafter, the calculation is 

performed with the following prime number p as a 

modulus: 

Choose an arbitrary prime number p such that s < 

p and n < p. 

Select different n values from 
𝐙

𝑝𝐙
 and set server ID 

𝑥1, … , 𝑥𝑛. 

From
𝐙

𝑝𝐙
, k −1 random numbers 𝑎1, … , 𝑎𝑘−1 are 

generated, and the following k − 1-order polynomial 

𝑓(𝑥) is created. 

𝑓(𝑥) = 𝑠 + 𝑎1𝑥 + ⋯ + 𝑎𝑘−1𝑥𝑘−1 (𝑚𝑜𝑑 𝑝) (1) 

Substitute n server ID 𝑥1, … , 𝑥𝑛 for 𝑓(𝑥) and 

calculate n shares 𝑊1, … , 𝑊𝑛. 

𝑊𝑖 = 𝑓(𝑥𝑖) (mod 𝑝) (2) 

Distribute shares to each server. Server IDs 𝑥1, … , 𝑥𝑛 

are public information. 
 

[Reconstruction] 

Let 𝑊𝑖(𝑖 = 1,2, ⋯ , 𝑘)  be the share used for 

reconstruction. Furthermore, let 𝑥𝑖(𝑖 = 1,2, ⋯ , 𝑘) be 

the server ID corresponding to the share. 

The restorer collects k (𝑥𝑖 , 𝑊𝑖) and obtains s using 

the Lagrange's interpolation formula. 

3.2 Lagrange's Interpolation Formula 

Let 𝑥𝑖(𝑖 = 1,2, ⋯ , 𝑛) be the server ID. In general, 𝑥𝑖 

is public information, and 𝑊𝑖 is a share output from 

each server. Therefore, if the share 𝑊𝑖 output from k 

servers and its server ID 𝑥𝑖 are known, the following 

equation is obtained, and secret s can be obtained by 

substituting 𝑥 = 0. 
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𝑊(𝑥) = ∑ 𝑊𝑖 ∏
(𝑥 − 𝑥𝑘)

(𝑥𝑖 − 𝑥𝑘)
𝑖≠𝑘

𝑘

𝑖=1

 (3) 

 

However, if an attacker sends a fake share 𝑊𝑖 + ∆𝑊𝑖  

instead of 𝑊𝑖 , 𝑊′(0)  shown in (4) is calculated, 

where 𝑓𝑖(𝑥) = ∏ (𝑥 − 𝑥𝑘)𝑘≠𝑖 : 
  

𝑊′(0) = 𝑊(0) + ∑ 𝛥𝑤𝑖

𝑓𝑖(0)

𝑓𝑖(𝑥𝑖)

𝑛

𝑖=1

 (4) 

 

That is, not the secret 𝑆, but the incorrect secret 𝑆′ is 

reconstructed such as follows: 
 

𝑊(0) = 𝑆 ≠ 𝑆′ = 𝑊′(0) 
 

Furthermore, if the server ID 𝑥1, … , 𝑥𝑛  used in the 

Lagrange's interpolation formula is known, the 

attacker can continuously manipulate false secret 𝑆′. 

For example, if the server 𝑥𝑖 transmits false share 

𝑊𝑖 + ∆𝑊𝑖  for the first time, and the server 𝑥𝑗 

transmits false share 𝑊𝑗 + ∆𝑊𝑗 for the second time, 

the secret is reconstructed as follows: 
 

𝑊′(0) = 𝑊(0) + 𝛥𝑤𝑖

𝑓𝑖(0)

𝑓𝑖(𝑥𝑖)
 (5) 

𝑊′′(0) = 𝑊(0) + 𝛥𝑤𝑗

𝑓𝑖(0)

𝑓𝑖(𝑥𝑖)
 (6) 

At this time, the attacker can adjust ∆𝑊𝑖  and ∆𝑊𝑗 

according to Eqs. (7) and (8) such that the difference 

between 𝑊′(0)  and 𝑊′′(0) becomes 0. In this case, 

false secret 𝑆′ = 𝑊′(0) can be repeatedly restored. 
 

𝑊′(0) − 𝑊′′(0) = 𝛥𝑊𝑖

𝑓𝑖(0)

𝑓𝑖(𝑥𝑖)

− 𝛥𝑊𝑗

𝑓𝑗(0)

𝑓𝑗(𝑥𝑗)
= 0 

(7) 

 

𝜟𝑾𝒊 = 𝜟𝑾𝒋

𝒇𝒋(𝟎)

𝒇𝒋(𝒙𝒋)
∙

𝒇𝒊(𝒙𝒊)

𝒇𝒊(𝟎)
 (8) 

3.3 Asymmetric Secret Sharing Scheme 

The asymmetric secret sharing scheme is a secret 

sharing scheme in which the owner of the secret uses 

pseudorandom numbers generated using the key as 

the shares. The asymmetric secret sharing scheme has 

been proven to exhibit computational security 

depending on the encryption method. 𝐸𝑛𝑐(𝑎, 𝑏)  is 

used. 

 
[Asymmetric Secret Sharing Scheme]. 

Select t servers (t < k) from n servers, and call these a 

key server. The key server contains no share, and 

contains only a key to generate pseudorandom 

numbers. The n − t servers other than the key server 

are called data servers, and they store the calculated 

shares. However, n − t < k. Furthermore, the owner 

with a secret has one key𝐾𝑒𝑦_𝑜, and all keys of the 

key server are generated from 𝐾𝑒𝑦_𝑜. Additionally, 

𝑑𝐼𝐷[𝑠𝑖](𝑖 = 1, … , 𝑚)  is assigned to m secrets 

𝑠1, … , 𝑠𝑚  for data identification. 𝐸𝑛𝑐(𝑎, 𝑏)  
represents the encryption of 𝑎  using key 𝑏 . 

(Takahashi and Iwamura, 2014). 

[Share Generation] 

The owner generates t keys 𝐾𝑒𝑦𝑗(𝑗 = 1, … , 𝑡) for t 

key servers using 𝐾𝑒𝑦_𝑜 as follows: 

𝐾𝑒𝑦𝑗 = 𝐸𝑛𝑐(𝑗, 𝐾𝑒𝑦_𝑜)      (𝑗 = 1, … , 𝑡) (9) 

The owner generates a pseudorandom number 𝑞𝑖𝑗  as 

follows using the data identifier 𝑑𝐼𝐷[𝑠𝑖] of the secret 

𝑠𝑖. 𝑞𝑖𝑗(𝑗 = 1, … , 𝑡) are shares 𝑊𝑗 of 𝑠𝑖 . 

𝑞𝑖𝑗 = 𝐸𝑛𝑐(𝑑𝐼𝐷[𝑠𝑖], 𝐾𝑒𝑦𝑗)  (10) 

The owner determines 𝑘 − 1 − 𝑡  coefficients 
[𝑎𝑡+1, … , 𝑎𝑘−1] of Eq. (1). 

The owner solves the following equations using 

𝑆 = [𝑠𝑖 , … , 𝑠𝑖]𝑇  and 𝑄 = [𝑞𝑖1, … , 𝑞𝑖𝑡]𝑇  and 

determines the remaining 𝑡  coefficients, 𝐴(𝑖)𝑡 =
[𝑎1, … , 𝑎𝑡]𝑇: 

 

𝑋′ = [
𝑥1 ⋯ 𝑥1

𝑘−1

⋮ ⋱ ⋮
𝑥𝑙 ⋯ 𝑥𝑙

𝑘−1
] (11) 

𝐴(𝑖)𝑙 = 𝑋′−1(𝑄 − 𝑆). (12) 

The owner calculates the remaining shares 

𝑊𝑗+1, … , 𝑊𝑛  using Eq. (1) with the determined 

coefficients and sends 𝑊𝑗  and 𝑑𝐼𝐷[𝑠𝑖] to the data 

servers 𝑥𝑗  (𝑗 = 𝑡 + 1, … , 𝑛). 
 

[Reconstruction] 

The restorer, who reconstructs the secret 𝑠𝑖 , selects 

any k − t server from the n − t data servers and sends 

the data identifier 𝑑𝐼𝐷[𝑠𝑖]  of the secret 𝑠𝑖  to the 

selected server. 

The selected data server 𝑥𝑗  sends share 𝑊𝑗 

corresponding to 𝑑𝐼𝐷[𝑠𝑖] to the restorer. 

The restorer requests t shares to the owner. 

When the owner permits the restorer to restore, 

𝐾𝑒𝑦𝑗(𝑗 = 1, … , 𝑡) is generated from the 𝐾𝑒𝑦_𝑜 using 

Eq. (9), and the pseudorandom number 𝑞𝑖𝑗  is 

generated from Eq. (10) to be sent to the restorer. 

The restorer who receives share and 

pseudorandom numbers reconstructs secret 𝑠𝑖  using 

the Lagrange's interpolation formula. 
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4 PROPOSED SCHEME 

The attacker can set the difference between the false 

secrets shown in Eq. (7) to 0 because he can calculate 

𝑓𝑖(𝑥) = ∏ (𝑥 − 𝑥𝑘)𝑘≠𝑖  using public server ID 𝑥𝑘 . 

Therefore, we extend the asymmetric secret sharing 

scheme in which the owner can generate and hide 

only the share, to enable the owner to generate and 

hide the server ID of the key server as well. However, 

the server ID of the data server is public. Furthermore, 

the extended asymmetric secret sharing scheme as the 

proposed scheme 1 assumes 𝑛 > 𝑘. 

4.1 Extended Asymmetric Secret 
Sharing Scheme 1 (N > K) 

4.1.1 [Share Generation] 

1. The owner generates two sets of t key server’s 

keys 𝐾𝑒𝑦′𝑗  and 𝐾𝑒𝑦𝑗(𝑗 = 1, … , 𝑡)  using 𝐾𝑒𝑦_𝑜 

as follows, where 𝑟  is a constant, and 𝑗|𝑟  is a 

concatenation of 𝑗 and 𝑟. 
 

𝐾𝑒𝑦′
𝑗

= 𝐸𝑛𝑐(𝑗|𝑟, 𝐾𝑒𝑦𝑜)     

  (𝑗 = 1, … , 𝑡) 
(13) 

𝐾𝑒𝑦𝑗 = 𝐸𝑛𝑐(𝑗, 𝐾𝑒𝑦_𝑜)      (𝑗 = 1, … , 𝑡)  

2. The owner generates pseudorandom numbers 𝑟𝑖𝑗  

and 𝑞𝑖𝑗  using the data identifier 𝑑𝐼𝐷[𝑠𝑖]  of the 

secret 𝑠𝑖. 

𝑟𝑖𝑗 = 𝐸𝑛𝑐(𝑑𝐼𝐷[𝑠𝑖], 𝐾𝑒𝑦′𝑗)  (14) 

𝑞𝑖𝑗 = 𝐸𝑛𝑐(𝑑𝐼𝐷[𝑠𝑖], 𝐾𝑒𝑦𝑗)   

3. The owner uses 𝑟𝑖𝑗  generated in 2 as the server ID 

𝑥𝑗(𝑗 = 1, … , 𝑡) for the key server and 𝑞𝑖𝑗  as the 

share 𝑊𝑗 of 𝑠𝑖 . 

4. The owner performs processing 3–5 using 𝑞𝑖𝑗  in 

Share Generation, as shown in Section 3.3. The 

owner sends 𝑊𝑡+1, … , 𝑊𝑛 to the data server. 

4.1.2 [Reconstruction and Verification] 

1. Let  𝑛 = 𝑘 + 𝑢(0 < 𝑢) ). The restorer who 

reconstructs the secret 𝑠𝑖 sends the data identifier 

𝑑𝐼𝐷[𝑠𝑖] of the secret 𝑠𝑖 to all data servers. 

2. The data server 𝑥𝑗  sends the shared 𝑊𝑗 

corresponding to 𝑑𝐼𝐷[𝑠𝑖] to the restorer. 

3. The restorer requests t shares to the owner. 

4. When the owner permits the restorer to restore, 

𝐾𝑒𝑦′𝑗  and 𝐾𝑒𝑦𝑗(𝑗 = 1, … , 𝑡) are generated from 

𝐾𝑒𝑦𝑜 using Eq. (13), and 𝑟𝑖𝑗   and 𝑞𝑖𝑗  are 

generated from Eq. (14).The owner then sends 

them to the restorer. 

5. The restorer changes the k − t combinations 

received from the data server and reconstructs 

secrets in addition to the t sets of 𝑟𝑖𝑗  and 𝑞𝑖𝑗  

generated by the owner. Furthermore, he verifies 

that the reconstructed results match each other. If 

all results do not match, all recovered secrets are 

not adopted. The matched reconstruction results 

are adopted. 

4.2 Security Verification 

As shown in Section 3.3, the owner can control the 

generation of shares in the asymmetric secret sharing 

by securely managing their own key: hence, k shares 

will not be leaked without the owner's knowledge. 

Similarly, in the case of the extended asymmetric 

secret sharing scheme 1 shown in Section 4.1, k 

shares will not be leaked without the owner’s 

knowledge because the owner must give permission 

at the time of reconstruction. Therefore, the security 

concerning share leakage can be regarded the same. 

The feature of extended asymmetric secret sharing 

scheme 1 is that the server ID 𝑟𝑖𝑗  is created and 

concealed by the owner. Consequently, an attacker 

who is not permitted to reconstruct will not know the 

server ID used to generate the share; therefore, he 

cannot manipulate the difference between the 

reconstructed secrets, as shown in Eq. (7). 

Therefore, even if the attacker manipulates the 

share from 𝑊𝑖  to𝑊𝑖 + ∆𝑊𝑖 , the difference between 

all the reconstructed secrets cannot be made to match. 

As a result, the unmatched secrets are not adopted as 

incorrect values. 

We will explain the principle of security for 

verification using simple examples. For simplicity, 

we assume herein that the owner is a restorer. For 

example, in the case of 𝑘 = 3, 𝑛 = 4, 𝑡 = 2, 𝑢 = 1, in 

the Share Generation process, the owner generates 

and hides server ID 𝑥1 = 𝑟𝑖1, 𝑥2 = 𝑟𝑖2  and the 

corresponding share from the key. The server ID of 

the data server is 𝑥3, 𝑥4 (publicly known). Consider a 

case in which two data servers 𝑥3 and 𝑥4 are hijacked 

by an attacker at the time of reconstruction, and false 

shares 𝑦3 + 𝛥𝑦3, 𝑦4 + 𝛥𝑦4 are the output. 

In this case, the combination of the two shares 

received from the data server is changed, and 

restoration is performed twice. The first time, secret 

is reconstructed by the combination of 𝑥1, 𝑥2, 𝑥3, and 

the second time is reconstructed by the combination 

of 𝑥1, 𝑥2, 𝑥4 . Here, 𝑥1and 𝑥2  are the server IDs 

generated by the owner, which the attacker is unaware 

of. In this case, 𝑊′(0) is reconstructed the first time, 
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and 𝑊"(0)  is reconstructed the second time as 

follows: 

𝑊′(0) = 𝑠𝑖 + 𝛥𝑦3

(−𝑥1)(−𝑥2)

(𝑥3 − 𝑥1)(𝑥3 − 𝑥2)
 (15) 

𝑊"(0) = 𝑠𝑖 + 𝛥𝑦4

(−𝑥1)(−𝑥2)

(𝑥4 − 𝑥1)(𝑥4 − 𝑥2)
 (16) 

 

Here, even if 𝑥3 and 𝑥4  are hijacked by the same 

attacker, the attacker does not know 𝑥1 and 𝑥2  and 

cannot set 𝛥𝑦3 and 𝛥𝑦4 as 𝑊′(0)=𝑊"(0). 
 

𝛥𝑦3 = 𝛥𝑦4

(𝑥3 − 𝑥1)(𝑥3 − 𝑥2)

(𝑥4 − 𝑥1)(𝑥4 − 𝑥2)
 (17) 

 

That is, if 𝐻(𝑥) is the entropy for 𝑥, then 
 

𝐻(𝛥𝑦3) = 𝐻(𝛥𝑦3|𝛥𝑦4, 𝑥3, 𝑥4) (18) 
 

However, the example above is the case of 𝑢 = 1, and 

although it is understood that a false share is the 

output, the incorrect server cannot be identified. 

Next, if  𝑘 = 4, 𝑛 = 6, 𝑡 = 3, and 𝑢 = 2 , three 

data servers exist, and three shares can be used for 

verification. Here, when 𝑥5 is hijacked and outputs a 

false share𝑦5 + 𝛥𝑦5, the secrets reconstructed using 

other correct shares are identical because 𝛥𝑦4 =
𝛥𝑦6 = 0, and the secret reconstructed using the share 

of 𝑥5  is a different value from the others. In this case, 

an invalid data server𝑥5 can be identified.  

As the second example, when two data servers are 

hijacked, all the reconstructed secrets are invalid 

because they do not match. Therefore, assuming that 

𝑒  is the number of data servers that output false 

shares, if 𝑢 − 𝑒 ≧ 1, an unauthorized server can be 

identified, and if 𝑢 − 𝑒 ≧ 0, an unauthorized server 

cannot be identified, although it can verify fraud. 

Furthermore, when the restorer is not the owner, 

the restorer who is permitted to restore a certain secret 

𝑠𝑖 , knows the key server IDs 𝑥1 = 𝑟𝑖1, 𝑥2 = 𝑟𝑖2, but 

the key server ID 𝑟𝑖𝑗  is for each i, which is different. 

Therefore, even if an attacker knows the key 

server's ID and shares regarding a secret, it cannot be 

applied to other secrets. 

In addition, the extended asymmetric secret 

sharing scheme 1 has no restrictions on the finite field 

because the secret is used as it is and not divided. 

5 EVALUATION 

Tables 1 and 2 show the comparison between the 

proposed scheme 1 and the conventional methods. In 

Tables 1 and 2, “secret” implies the restriction on the 

secret, and the maximum number of attackers implies 

the maximum number of servers that can be hijacked. 

In the proposed method 1, the maximum is 𝑘 − 1 

because 𝑛 − 𝑡 < 𝑘. 

Table 1: Comparison of the Proposed and Conventional 

Methods. 

 Proposed 
Conventional 

(Cabello et al., 2002) 

Conventional (Ogata 

and Satoshi, 2013) 

Condition 𝑛 > 𝑘 𝑛 ≥ 𝑘 𝑛 ≥ 𝑘 

Secret Any Any Any 

Prime number Any Other than 𝑝 = 2𝑛 Other than 𝑝 = 3𝑛 

Maximum 

number of 

attackers 

𝑘 − 1 𝑘 − 1 𝑘 − 1 

Server's 

memory 

capacity 

One share 

of secret 

Two shares of secret 

and authenticator 

Two shares of secret 

and authenticator 

Communication 

amount 

between servers 

0 0 0 

Server 

complexity 
0 0 0 

Rogue server 

detection 
〇 × × 

Number of 

reconstructions 
u + 1 2 2 

Table 2: Comparison of the Proposed and Conventional 

Methods. 

 Proposed 
Conventional 

(Zhu, 2017) 

Conventional (Al 

Mahmoud., 2016) 

Condition 𝑛 > 𝑘 𝑛 > 𝑘 𝑛 > 𝑘 

Secret Any Only 𝑠 ∈ 𝐺𝐹(22𝑛) Only 𝑠 ∈ 𝐺𝐹(2𝑁𝑛) 

Prime number Any Any Any 

Maximum 

number of 

attackers 

𝑘 − 1 𝑘 − 2 𝑘 − 1 

Server's 

memory 

capacity 

One share 

of secret 

Two shares of 

secret and 

authenticator 𝑔(𝑥) 

One share＋ 

One Authenticator※5 

Communication 

amount 

between servers 

0 0 (𝐴 + 𝐵) × 𝑘(※6) 

Server 

complexity 
0 × × 

Rogue server 

detection 
〇 0 𝐶 × 𝑘(※7) 

Number of 

reconstructions 
u + 1 2 2 

(※5)𝐴𝑖(𝑗), 𝐵𝑖(𝑗), 𝐶𝑖,𝑗 

(※6)𝐴: Amount of communication that the server 

sends 𝐴𝑖(𝑗), 𝐵𝑖(𝑗), 𝐶𝑖,𝑗 

(※6)𝐵:Amount of communication that the server receives 𝐴𝑖(𝑗), 𝐵𝑖(𝑗), 𝐶𝑖,𝑗 

(※7)𝐶: Calculation for processing to solve discrete logarithms 

 

In evaluation, (Cabello et al., 2002) and (Ogata 

and Satoshi, 2013) are representative in 2.1 and 2.2 

and compared with the proposed scheme 1. The 

method shown in 2.5 uses public key encryption; 

hence, the amount of calculation is large, and the 

assumed attack is different from those of other 
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methods. Therefore, the comparison is omitted 

herein. 

From Table 1, the proposed scheme has less data 

stored by each server, and it is also possible to detect 

unauthorized servers.  

In addition, only the proposed method is not 

limited as to the prime number that is the module in 

calculation. 

Tables 1 and 2 shows that the proposed scheme 

only requires the share compared to the other method, 

and the secret and prime number used are not restrics. 

6 PRACTICALITY 

Currently, individuals and companies are big data 

societies with a lot of information. There are two 

ways to save data: 1) using the on-premises type 

servers owned by each individual, and 2) using the 

cloud type servers deposited in a virtual environment 

on the Internet.  

Recently, individuals and many companies have 

begun to use data storage systems such as 

MicrosoftAzure, -Google Drive, and iCloud. 

However, data on the cloud are the target of 

malicious attackers and the leakage of customer 

information has been in the news multiple times. 

When a secret sharing scheme is used to protect 

customer information, schemes other than 

asymmetric secret sharing have no means of 

preventing information leakage. 

Therefore, as an example of application of our 

proposed extended asymmetric secret sharing 

scheme, we use it to protect customer information. In 

this case, the customer, as the owner, distributes their 

information using the extended asymmetric secret 

sharing scheme, and manages keys securely. If the 

number of shares deposited in the data server is k-1 or 

less, the customer information is protected even if the 

information stored in all the data servers leaks. In 

addition, it is possible to efficiently confirm whether 

the restored information has been falsified by our 

extended asymmetric secret sharing scheme.  

Therefore, the proposed scheme realizes safe and 

low-cost customer service. 

7 CONCLUSIONS 

We proposed herein extended asymmetric secret 

sharing schemes to verify secret reconstruction at 

𝑛 > 𝑘. 

By concealing the server ID, we secured against 

attack using the weak point of the Lagrange's 

interpolation formula. Consequently, our schemes 

can show the legitimacy of the reconstructed secret by 

performing u + 1 times or 2 times the reconstruction 

without using special functions, such as an 

authenticator. Furthermore, the server held only the 

share for which 𝑛 > 𝑘, and the secret and the finite 

field used were not restricted. 
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