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Abstract: Risk-sensitive decision making with constraints of coherent risk measures is discussed in Markov decision
processes. Risk-sensitive expected rewards under utility functions are approximated by weighted average
value-at-risks, and risk constraints are described by coherent risk measures. In this paper, coherent risk mea-
sures are represented as weighted average value-at-risks with the best risk spectrum derived from decision
maker’s risk averse utility, and the risk spectrum can inherit the risk averse property of the decision maker’s
utility as weighting. By perception-based extension for fuzzy random variables, a dynamic portfolio model
with coherent risk measures is introduced. To find feasible regions, firstly a dynamic risk-minimizing prob-
lem is discussed by mathematical programming. Next a risk-sensitive reward maximization problem under
the feasible coherent risk constraints is demonstrated. A few numerical examples are given to understand the
obtained results.

1 INTRODUCTION

Risk-sensitive decision making is one of most impor-
tant themes in management sciences and so on. Risk-
sensitive expected rewards and risk measures are rea-
sonable and effective tools in risk-sensitive decision
making. Risk-sensitive expectation, which was intro-
duced by (Howard and Matheson, 1972), is given by

f−1(E( f (·))), (1)

where f and f−1 are decision maker’s utility func-
tion and its inverse function and E(·) is an expecta-
tion. Risk-sensitive expectation is a method to es-
timate random risks through utility functions, and it
is studied by several authors. (Bäuerle and Rieder,
2014). However this criterion with non-linear utility
functions f has computational complexity in general.
For example, let {Xt} is a sequence of random vari-
ables. Then ∑t E( f (Xt)) implies a sum of decision
maker’s expected utility values and it is non-sense.
While f−1(E( f (Xt))) belongs to a space of values
where random variables Xt take, and their sum with
respect to t has meaning. Therefore in dynamic opti-
mization problems we need to compute a sum of val-
ues with criterion (1) with the inverse function f−1

by Bellman equations. When f are non-linear utility
functions, it is difficult to compute the optimal values

immediately (Bäuerle and Rieder, 2014).
In decision making, several risk measures have

been proposed for economic theory, financial analy-
sis, asset management and engineering. The variance
was classically used as a risk measure in decision
processes, and the risk measure has been improved
from both practical and theoretical aspects. Nowa-
days drastic declines of asset prices are studied, and
value-at-risk (VaR) is used widely to estimate the risk
of asset price decline in practical management (Jo-
rion, 2006). VaR is defined by percentiles at a speci-
fied probability, however it does not have coherency.
Coherent risk measures have been studied to improve
the criterion of risks with worst scenarios (Artzner et
al., 1999). Several improved risk measures based on
VaR are proposed: for example, conditional value-at-
risks, expected shortfall, entropic value-at-risk (Rock-
afellar and Uryasev, 2000), (Tasche, 2002). Recently
(Kusuoka, 2001) gave a spectral representation for co-
herent risk measures, and (Acerbi, 2002) and (Adam
et al., 2008) discussed its applications to portfolio se-
lection and so on. Further (Yoshida, 2018) has intro-
duced a spectral weighted average value-at-risk as the
best coherent risk measure derived from utility func-
tions. Using this derived coherent risk measure, the
risk measure can inherit the risk averse property of
the decision maker’s utility function as risk spectrum
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weighting. This paper adopts the spectral weighted
average value-at-risks to estimate risk-sensitive re-
wards under constraints, which is also a kind of risk-
sensitive extended model of (Yoshida, 2017).

Fuzzy random variables, which were introduced
by (Kwakernaak, 1978), are applied to decision mak-
ing under uncertainty with fuzziness such as linguistic
data in engineering, economics et al.. To represent un-
certainty, we use fuzzy random variables which have
two kinds of uncertainties, i.e. randomness and fuzzi-
ness. In this paper, randomness is used to repre-
sent the uncertainty regarding the belief degree of fre-
quency, and fuzziness is applied to linguistic impre-
cision of data because of a lack of information about
the current stock market. In this paper, using fuzzy
random variables, we deal with optimization of port-
folio allocation in an environment with both random-
ness and fuzziness. We extend coherent risk measures
and a risk-sensitive estimation for real-valued random
variables to one regarding fuzzy random variables
from the viewpoint of perception-based method in
(Yoshida, 2007), and we apply the perception-based
criteria to estimate the uncertainties. (Yoshida, 2006)
introduced the mean, the variance and the covariances
of fuzzy random variables, using evaluation weights
and θ-mean functions. This paper estimates fuzzy
numbers and fuzzy random variables by probabilis-
tic expectation and these criteria, which are charac-
terized by possibility and necessity criteria for sub-
jective estimation and pessimistic-optimistic indexes
for subjective decision.

In Section 2, we introduce coherent risk mea-
sures and their spectral representation for coherent
risk measures based on (Kusuoka, 2001), and a co-
herent risk measure is given with the best risk spec-
trum derived from decision maker’s utility. In Section
3, we introduce coherent risk measures and a risk-
sensitive estimation for fuzzy random variables by
perception-based extension, and we give estimation
tools with evaluation weights and θ-mean functions
in order to evaluate the randomness and fuzziness for
fuzzy random variables. In Section 4, we discuss a
risk-sensitive decision problem under risk constraints
by use of coherent risk measures. Then risk-sensitive
rewards are approximated by weighted average value-
at-risks with the risk spectrum derived from the util-
ity, and the risk constraints are described by coherent
risk measures which are represented by weighted av-
erage value-at-risks. In Section 5 we investigate the
lower bound of risk values to find feasible regions of
the constraints. In Section 6 we discuss maximiza-
tion of risk-sensitive rewards under risk conditions.
In Section 7, we give a few numerical examples to
understand the obtained results.

2 COHERENT RISK MEASURES
DERIVED FROM RISK AVERSE
UTILITY

Let R = (−∞,∞) and let P be a non-atomic probabil-
ity on a sample space Ω. Let X be the family of all
integrable real-valued random variables X on Ω with
a continuous distribution x 7→ FX (x) = P(X < x) for
which there exists a non-empty open interval I such
that FX (·) : I → (0,1) is strictly increasing and onto.
Then there exists a strictly increasing and continuous
inverse function F−1

X : (0,1)→ I. For a probability
p ∈ (0,1), value-at-risk (VaR) is given by the per-
centile of the distribution FX , i.e.

VaRp(X) = F−1
X (p). (2)

Then average value-at-risk (AVaR) at a probability
p ∈ (0,1] is given by

AVaRp(X) =
1
p

∫ p

0
VaRq(X)dq. (3)

The following fundamental concepts are well-known
(Artzner et al., 1999, Kusuoka, 2001).

Definition 1. Let a map ρ : X 7→ R.
(i) Random variables X(∈ X ) and Y (∈ X ) are called

comonotonic if (X(ω)−X(ω′))(Y (ω)−Y (ω′))≥
0 holds for almost all ω,ω′ ∈Ω.

(ii) ρ is called comonotonically additive if ρ(X+Y )=
ρ(X)+ρ(Y ) holds for all comonotonic X ,Y ∈ X .

(iii) ρ is called law invariant if ρ(X) = ρ(Y ) holds for
all X ,Y ∈ X satisfying P(X < ·) = P(Y < ·).

(iv) ρ is called continuous if limn→∞ ρ(Xn) = ρ(X)
holds for {Xn} ⊂ X and X ∈ X such that
limn→∞ Xn = X almost surely.

Hence the following definition characterizes co-
herent risk measures (Artzner at al., 1999).

Definition 2. A map ρ : X 7→ R is called a coherent
risk measure if it satisfies the following (i) – (iv):
(i) ρ(X) ≥ ρ(Y ) for X ,Y ∈ X satisfying X ≤ Y .

(monotonicity)

(ii) ρ(cX) = cρ(X) for X ∈ X and c ∈ R satisfying
c≥ 0. (positive homogeneity)

(iii) ρ(X +c) = ρ(X)−c for X ∈ X and c∈R. (trans-
lation invariance)

(iv) ρ(X +Y ) ≤ ρ(X) + ρ(Y ) for X ,Y ∈ X . (sub-
additivity)

It is known in (Artzner et al., 1999) that
−AVaRp(·) is a coherent risk measure however
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−VaRp(·) is not coherent because sub-additivity (iv)
does not hold, where − means the minus singature.
Conditional value-at-risks and expected shortfall are
also famous coherent risk measures (Rockafellar and
Uryasev, 2000, Tasche, 2002). Now, for a probability
p∈ (0,1] and a non-increasing right-continuous func-
tion λ on [0,1] satisfying

∫ 1
0 λ(q)dq = 1, we define a

weighted average value-at-risk with weighting λ on
(0, p) by

AVaRλ
p(X) =

∫ p

0
VaRq(X)λ(q)dq

/∫ p

0
λ(q)dq.

(4)
Then λ is called a risk spectrum, and −AVaRλ

p be-
comes a coherent risk measure. Further recently
(Kusuoka, 2001) proved coherent risk measures are
represented by weighted average value-at-risks in the
following spectral representation (Yoshida, 2018).

Lemma 1. Let ρ : X 7→R be a law invariant, comono-
tonically additive, continuous coherent risk measure.
Then there exists a risk spectrum λ such that

ρ(X) =−AVaRλ
1(X) (5)

for X ∈ X . Further, −AVaRλ
p is a coherent risk mea-

sure on X for p ∈ (0,1).

In this paper we use a law invariant, comonoton-
ically additive, continuous coherent risk measure ρ,
and we also deal with a case when value-at-risks are
represented as

VaRp(X) = E(X)+κ(p) ·σ(X) (6)

with the mean E(X) and the standard deviation σ(X)
of random variables X ∈ X , where κ : (0,1) 7→R is an
increasing function. From (4) and (6) we have

AVaRλ
p(X) = E(X)+κ

λ(p) ·σ(X), (7)

where

κ
λ(p) =

∫ p

0
κ(q)λ(q)dq

/∫ p

0
λ(q)dq. (8)

Let f : I 7→R be a C2-class risk averse utility function
satisfying f ′ > 0 and f ′′ ≤ 0 on I, where I is an open
interval. For a probability p ∈ (0,1] and a random
variable X ∈ X , a non-linear risk-sensitive form

f−1
(

1
p

∫ p

0
f (VaRq(X))dq

)
(9)

is an average value-at-risk of X on the downside (0, p)
under utility f . We note that (9) is reduced to (3) if
f is risk-neutral, i.e. it is a linear increasing function.
Hence we have the following lemma from (Yoshida,
2018).

Lemma 2. A risk spectrum λ which minimizes the
distance between (9) and (4):

∑
X∈X

(
f−1
(

1
p

∫ p

0
f (VaRq(X))dq

)
−AVaRλ

p(X)

)2

(10)
for p ∈ (0,1] is given by

λ(p) = e−
∫ 1

p C(q)dqC(p) (11)

with a component function C in (Yoshida, 2018) if λ

is non-increasing.

For exponential utility function f , the correspond-
ing component function C is given concretely in Ex-
ample 2. The component functions C for several
utilities f are also investigated in (Yoshida, 2018).
In Lemma 2 the coherent risk measure −AVaRλ

p has
a kind of semi-linear property such as Definition
2(ii)(iii) and it brings us effective computation, and
the risk spectrum λ can also inherit the risk averse
property of the non-linear utility function f as weight-
ing on (0, p). Regarding risk-sensitive rewards (1),
in the sequel we use the risk spectrum λ in Lemma
2 because −AVaRλ

p is the best coherent risk measure
derived from risk averse utility f .

3 FUZZINESS AND EXTENDED
CRITERIA

A fuzzy number is represented by its membership
function ñ : R → [0,1] which is normal, upper-
semicontinuous, fuzzy convex and has a compact sup-
port (Zadeh, 1965). Let N be the set of all fuzzy num-
bers. For a fuzzy number ñ ∈N , its α-cuts are given
by closed intervals ñα = {x∈R | ñ(x)≥α}= [ñ−α , ñ

+
α ]

for α ∈ (0,1]. An addition and a scalar multiplica-
tion for fuzzy numbers are defined by their α-cuts.
For fuzzy numbers ñ, m̃ ∈ N , fuzzy max order ñ � m̃
means that ñ±α ≥ m̃±α for all α ∈ (0,1]. A fuzzy-
number-valued map X̃ : Ω→N is called a fuzzy ran-
dom variable if X̃±α ∈ X for all α ∈ (0,1], where
X̃α(ω) = {x ∈ R | X̃(ω)(x) ≥ α} = [X̃−α (ω), X̃+

α (ω)]
for ω ∈ Ω. Let X̃ be the family of all fuzzy random
variables on Ω. (Kruse and Meyer, 1987) gave the ex-
pectation of fuzzy random variables X̃ ∈ X̃ in the fol-
lowing perception-based definition based on Zadeh’s
extension principle:

Ẽ(X̃)(x) = sup
X∈X :E(X)=x

inf
ω∈Ω

X̃(ω)(X(ω)) (12)

for x ∈ R, where E(·) is the expectation for real-
valued random variables. Then, the expectation
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Ẽ(X̃) is a fuzzy number with α-cut Ẽ(X̃)α =
[E(X̃−α ),E(X̃+

α )]. Define criterion (1) by

ϕ(X) = f−1(E( f (X))) (13)

for X ∈ X . For a weighted average value-at-risk
AVaRλ

p, the criterion ϕ and a coherent risk measure
ρ, their extensions for a fuzzy random variable X̃ ∈ X̃
are also fuzzy numbers:

ÃVaRλ
p(X̃)(x) = sup

X∈X :AVaRλ
p(X)=x

inf
ω∈Ω

X̃(ω)(X(ω)),

(14)
ϕ̃(X̃)(x) = sup

X∈X :ϕ(X)=x
inf

ω∈Ω
X̃(ω)(X(ω)), (15)

ρ̃(X̃)(x) = sup
X∈X :ρ(X)=x

inf
ω∈Ω

X̃(ω)(X(ω)) (16)

for x ∈ R. Then their α-cuts are given respec-
tively by ϕ̃(X̃)α = [ϕ(X̃−α ),ϕ(X̃+

α )] and ρ̃(X̃)α =
[ρ(X̃+

α ),ρ(X̃−α )], and the extended measure ρ̃(·) has
the following properties similarly to Definition 2
(Yoshida, 2008).

Lemma 3. ρ̃(·) is monotonically decreasing, pos-
itively homogeneous, translation invariant and sub-
additive.

In the latter sections we use a coherent risk mea-
sure ρ in Lemma 1 and its extension ρ̃ in (16) to esti-
mate risks in a financial model. We also need defuzzi-
fication methods. A defuzzification of a fuzzy number
ñ ∈N with a θ-mean and an evaluation weight w(α)
is given by

Eθ(ñ) =

∫ 1

0
(θ · ñ−α +(1−θ) · ñ+α )w(α)dα∫ 1

0
w(α)dα

, (17)

where ñα = [ñ−α , ñ
+
α ]. Here θ is called decision

maker’s pessimistic index if θ = 1, and it is also called
the optimistic index if θ = 0. w(α) is called the pos-
sibility evaluation if w(α) = 1 for α ∈ [0,1], and it is
also called the necessity evaluation if w(α) = 1−α

for α ∈ [0,1] (Yoshida, 2006, 2008). Then Eθ(·) has
the following properties.

Lemma 4. For θ ∈ [0,1], Eθ(·) is positively homoge-
neous, additive and monotonically increasing.

The randomness of fuzzy random variables is
evaluated by probabilistic expectation, and its fuzzi-
ness is estimated by the θ-mean and the weight w(α)
as follows: For a fuzzy random variable X̃ ∈ X̃ , the
mean of the expectation E(Eθ(X̃)) is a real number

E(Eθ(X̃)) = E


∫ 1

0
(θ · X̃−α +(1−θ) · X̃+

α )w(α)dα∫ 1

0
w(α)dα

.
(18)

From Lemma 4, we obtain the following results
(Yoshida, 2006, 2007).

Lemma 5. For θ∈ [0,1], E(Eθ(·)) is positively homo-
geneous, additive and monotonically increasing, and
it has the following properties (i) and (ii):

(i) E(Eθ(·)) = Eθ(Ẽ(·)).
(ii) E(Eθ(ñ)) = Eθ(ñ) and E(Eθ(X)) = E(X) for ñ ∈

N and X ∈ X .

Let X̃a be a family of fuzzy random variables X̃ ∈
X̃ for which there exist a random variable X ∈ X and
a fuzzy number ñ ∈N such that

X̃(ω)(x) = 1{X(ω)}(x)+ ñ(x) (19)

for ω ∈ Ω and x ∈ R, where 1{·} denotes the charac-
teristic function of a singleton. Then we can easily
check the following proposition for the weighted av-
erage value-at-risks AVaRλ

p, coherent risk measures ρ

and their extensions ÃVaRλ
p and ρ̃ (Yoshida, 2008).

Proposition 1. For θ ∈ [0,1], it holds that

Eθ(ÃVaRλ
p(X̃)) = AVaRλ

p(E
θ(X̃)), (20)

E1−θ(ρ̃(X̃)) = ρ(Eθ(X̃)) (21)

for fuzzy random variables X̃ ∈ X̃a.

4 RISK ALLOCATION WITH
COHERENT RISK MEASURES

Let a state space by S = R and an action space by
A = {(x1,x2, · · · ,xn)∈Rn |∑n

i=1 xi = 1 and xi≥ 0 (i=
1,2, · · · ,n)}, where n is a positive integer. In this
paper we focus on risk-sensitive expected rewards
to choose alternatives consisting of n assets. Let a
positive integer T be a terminal time, and let time
t = 1,2, · · · ,T . Let X̃ i

t (∈ X̃ ) be a fuzzy reward for as-
set i (= 1,2, · · · ,n). Hence we put their expectations
and covariances respectively by µi

t = Eθ(Ẽ(X̃ i
t )) =

E(Eθ(X̃ i
t )) and σ

i j
t = E((Eθ(X̃ i

t )−µi
t)(E

θ(X̃ j
t )−µ j

t ))
for i, j = 1,2, · · · ,n. We give Markov policies by
π = {πt}T

t=1 where mappings πt = (π1
t ,π

2
t , · · · ,πn

t ) :
Ω 7→A for t = 1,2, · · · ,T , and then πt is called a strat-
egy. They are chosen depending only on the current
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state Xπ
t−1. Put a collection of all Markov policies by

Π. A reward with a strategy πt = (π1
t ,π

2
t , · · · ,πn

t ) is
given by

X̃π
t =

n

∑
i=1

π
i
t X̃

i
t . (22)

Let a probability p ∈ (0,1) and let a positive con-
stant δ. Let f be a C2-class risk averse utility function
which is given in Section 2. While let ρ be a coherent
risk measure for risk constraints. Let β be a positive
constant. Hence we focus on the following optimiza-
tion problem with (13), (15) and (16).

Problem (P1). Maximize the risk-sensitive estima-
tion

T

∑
t=1

β
t−1 f−1(E( f (Eθ(X̃π

t )))) (23)

with respect to strategies πt ∈Π under risk constraint

E1−θ(ρ̃(X̃π
t ))≤ δ (24)

for time t = 1,2, · · · ,T .

From the results of Lemma 2, f−1(E( f (·))) =
f−1(

∫ 1
0 VaRq( f (·))dq) is approximated by AVaRλ

1(·)
with a risk spectrum λ. While by Lemma 1 there ex-
ists a risk spectrum ν such that ρ = −AVaRν

p. Hence
we estimate the downside risks on (0, p). By Proposi-
tion 1 this paper discusses the following optimization
instead of Problem (P1).

Problem (P2). Maximize the risk-sensitive estima-
tion

T

∑
t=1

β
t−1AVaRλ

1(E
θ(X̃π

t )) (25)

with respect to strategies πt ∈Π under risk constraint

−AVaRν
p(E

θ(X̃π
t ))≤ δ (26)

for time t = 1,2, · · · ,T .

In (25) and (26), risk spectra λ and ν are different
in general, however we can select same risk spectrum,
i.e. λ = ν. Hence from (22) the expectation and the
standard deviation of reward X̃π

t are

E(Eθ(X̃π
t )) =

n

∑
i=1

π
i
tµ

i
t (27)

and

σ(Eθ(X̃π
t )) =

√
n

∑
i=1

n

∑
j=1

πi
tπ

j
t σ

i j
t . (28)

Together with (7), we also have weighted average
value-at-risk

AVaRν
p(E

θ(X̃π
t )) =

n

∑
i=1

π
i
tµ

i
t +κ

ν(p)

√
n

∑
i=1

n

∑
j=1

πi
tπ

j
t σ

i j
t ,

(29)

where

κ
ν(p) =

∫ p

0
κ(q)ν(q)dq

/∫ p

0
ν(q)dq. (30)

In this paper we assume κλ(1) ≤ 0 and κν(p) < 0.
Let Πt(δ) be the collection of strategies πt satisfy-
ing risk constraint (26), and let Πt = supδ>0 Πt(δ). In
the rest of this section we investigate the lower bound
of −AVaRν

p(E
θ(X̃π

t )) for the feasibility of constraint
(26) in Problem (P2), i.e. Πt(δ) 6= /0. From (29),
we firstly discuss the following maximization prob-
lem for AVaRν

p(E
θ(X̃π

t )).

Problem (P3). Maximize weighted average value-at-
risk

AVaRν
p(E

θ(X̃π
t )) =

n

∑
i=1

π
i
tµ

i
t +κ

ν(p)

√
n

∑
i=1

n

∑
j=1

πi
tπ

j
t σ

i j
t

(31)
with respect to strategies πt = (π1

t ,π
2
t , · · · ,πn

t ).

Let γ ∈ R. From (27), under a constraint

E(Eθ(X̃π
t )) =

n

∑
i=1

π
i
tµ

i
t = γ, (32)

Problem (P3) is solved by quadratic programming and
then the corresponding value (31) is

γ+κ
ν(p)

√
Atγ2−2Btγ+Ct

∆t
, (33)

where

µ=


µ1

t
µ2

t
...

µn
t

,Σ=


σ11
t σ12

t · · · σ1n
t

σ21
t σ22

t · · · σ2n
t

...
...

. . .
...

σn1
t σn2

t · · · σnn
t

,111=


1
1
...
1

,
At = 111T

Σ
−1
t 111,Bt = 111T

Σ
−1
t µt ,Ct = µT

t Σ
−1
t µt ,∆t =AtCt−

B2
t and T denotes the transpose of a vector. If At >

0, ∆t > 0 and κν(p) < −
√

∆t/At are satisfied, we
can easily check the real-valued function (19) of γ

is concave and it has the maximum Bt−
√

At κν(p)2−∆t
At

at γ = Bt
At

+ ∆t

At
√

At κν(p)2−∆t
. Since supπt∈Π(31) =

supγ{sup
πt∈Π:∑

n
i=1 πi

t µ
i
t=γ

(31)}, we obtain the follow-
ing analytical solutions for Problem (P3).

Theorem 1. Let At > 0, ∆t > 0 and κν(p) <

−
√

∆t/At . Then the following (i) and (ii) hold.

(i) The maximum weighted average value-at-risk of
Problem (P3) is

Bt −
√

Atκν(p)2−∆t

At
(34)

Risk-sensitive Markov Decision Processes with Risk Constraints of Coherent Risk Measures in Fuzzy and Stochastic Environment

273



at the expected reward

γ =
Bt

At
+

∆t

At
√

Atκν(p)2−∆t
. (35)

The corresponding strategy is given by

π
◦
t = ξ

◦
t Σ
−1
t 111+η

◦
t Σ
−1
t µt (36)

if π◦t ≥ 000, where ξ◦t =
Ct−Bt γ

∆t
and η◦t =

At γ−Bt
∆t

.

(ii) If Σ
−1
t 111≥ 000, Σ

−1
t µt ≥ 000 and κν(p)≥Ct , then the

strategy (36) satisfies π◦t ≥ 000.

5 RISK-SENSITIVE REWARD
MAXIMIZATION UNDER
FEASIBLE RISK
CONSTRAINTS

Let p∈ (0,1) be a probability and let ν be a risk spec-
trum which are given in Section 4. From Theorem 1,
we define the lower bound of −AVaRν

p(E
θ(X̃π

t )) by a
constant δt(p):

δt(p) = inf
πt∈Πt

(−AVaRν
p(E

θ(X̃π
t )))

= − sup
πt∈Πt

AVaRν
p(E

θ(X̃π
t ))

= −Bt

At
+

√
Atκν(p)2−∆t

At
. (37)

Thus the feasible range of δ in risk constraint (26) is
{δ |Πt(δ) 6= /0}= [δt(p),∞). Now we take a risk level
δ ∈ [δt(p),∞), and then we have supπt∈Πt (δ) (31) =
supγ{sup

πt∈Πt (δ):∑n
i=1 πi

t µ
i
t=γ

(31)}. Thus, from the view
point of (33), Problem (P2) is reduced to the following
problem with constraint (32), i.e. ∑

n
i=1 πi

tµ
i
t = γ.

Problem (P4). Maximize the risk-sensitive estima-
tion

γt +κ
λ(1)

√
Atγ

2
t −2Btγt +Ct

∆t
(38)

with respect to γ ∈ R under risk constraint

γt +κ
ν(p)

√
Atγ

2
t −2Btγt +Ct

∆t
≥−δ. (39)

Hence (39) is equivalent to γt ∈ [γ−t ,γ
+
t ], where

γ
±
t =

Btκ
ν(p)2 +∆tδ

Atκν(p)2−∆t

∓
√

∆tκ
ν(p)

√
Atδ2 +2Btδ+Ct −κν(p)2

Atκν(p)2−∆t
. (40)

By solving concave maximization (38) within con-
straint [γ−t ,γ

+
t ] in Problem (P4), we easily obtain the

following results for Problem (P2).

Theorem 2. Let At > 0, ∆t > 0, κν(p) ≤ κλ(1) ≤
0 and κν(p) < −

√
∆t/At . Then the maximum risk-

sensitive estimation in Problem (P2) is

ϕ
∗
t =



Bt

At
−
√

Atκλ(1)2−∆t

At

at γ∗t =
Bt

At
+

∆t

At
√

Atκλ(1)2−∆t
if δ

+
t ≤ δ and κλ(1)<−

√
∆t/At ,

γ
+
t −

κλ(1)
κν(p)

(δ+ γ
+
t )

at γ∗t = γ
+
t otherwise,

(41)

where δ
+
t =−Bt

At
+

Atκ
λ(1)κν(p)−∆t

At
√

Atκλ(1)2−∆t
.

6 DYNAMIC MAXIMUM
RISK-SENSITIVE REWARD
UNDER FEASIBLE RISK
CONSTRAINTS

Let the initial state be a real number Xπ
0 = x0. Then

E(X0) = γ0 = x0 and σ(X0)
2 = 0. For a Markov pol-

icy π = {πt}T
t=1 ∈Π, the expectation and the standard

deviation of terminal rewards Xπ
T = x0 +∑

T
t=1 Rπ

t are

Problem (P5). Maximize the total risk-sensitive ex-
pected immediate reward

T

∑
t=1

β
t−1

γt +κ
λ(1)

√
Atγ

2
t −2Btγt +Ct

∆t

 (42)

with respect to (γ1,γ2, · · ·γT ) ∈ RT under risk con-
straint

γt ∈ [γ−t ,γ
+
t ] (43)

for all t = 1,2, · · · ,T .

Lemma 6. Let {vt} be a sequence given by the fol-
lowing optimality equations

vt = sup
γt∈[γ−t ,γ+t ]

γt +κ
λ(1)

√
Atγ

2
t −2Btγt +Ct

∆t


+βvt+1 (44)

for t = 1,2, · · · ,T and vT+1 = 0. Then v1 is the max-
imum total risk-sensitive expected immediate reward
for Problem (P5).
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From Theorem 2, we have the following results.

Theorem 3. Let At > 0, ∆t > 0, κν(p) ≤ κλ(1) ≤ 0
and κν(p)<−

√
∆t/At for t = 1,2, · · · ,T .

(i) Let {vt} be a sequence given by the following op-
timality equations

vt = ϕ
∗
t +βvt+1 (45)

for t = 1,2, · · · ,T and vT+1 = 0. Then v1 is the
maximum of the total risk-sensitive expected re-
wards in Problem (P5).

(ii) Further the optimal portfolios of (44) in Lemma
6 are given by

w∗t = ξ
∗
t Σ
−1
t 111+η

∗
t Σ
−1
t µt (46)

for t = 1,2, · · · ,T , where γ∗t is given by (41), ξ∗t =
Ct−Bt γ

∗
t

∆t
and η∗t =

At γ
∗
t −Bt
∆t

.

(iii) Further, one of sufficient condition for w∗t ≥ 000
is the followings: κλ(1)2 ≥Ct , Ctκ

ν(p)2 ≥ (Ct +

Btδ)
2, Atκ

ν(p)2 ≥ (Atδ + Bt)
2, Σ

−1
t 111 ≥ 000 and

Σ
−1
t µt ≥ 000 for t = 1,2, . . . ,T .

7 NUMERICAL EXAMPLES

We give a few examples to understand the results in
the previous sections.

Example 1. Let a domain I = R and let f be a risk
neutral utility function f (x) = ax+ b for x ∈ R with
constants a(> 0) and b(∈ R). Then its risk spectrum
in Lemma 2 is given by λ(p) = 1. The corresponding
weighted average value-at-risk (4) is reduced to the
average value-at-risk (3), and we have

f−1(E( f (X))) = E(X) = AVaR1(X) (47)

for X ∈ X (Yoshida, 2018).

Example 2. Let a domain I = R and let a risk averse
exponential utility function

f (x) =
1− e−τx

τ
(48)

for x ∈ R with a positive constant τ. Then − f ′′
f ′ = τ is

the degree of decision maker’s absolute risk aversity
(Arrow, 1971). Fig.1 illustrates utility functions f (x).
Let X be a family of random variables X which have
normal distribution functions. Define the cumulative
distribution function G : R→ (0,1) of the standard
normal distribution by

G(x) =
1√
2π

∫ x

−∞

e−
z2
2 dz (49)

for x ∈ R, and define an increasing function κ :
(0,1) 7→ R by its inverse function κ(p) = G−1(p) for
probabilities p ∈ (0,1). Then we have value-at-risk
VaRp(X) = µ+κ(p) ·σ for X ∈ X with mean µ and
standard deviation σ. Suppose there exists a distri-
bution ψ : R× (0,∞) 7→ [0,∞) such that ψ(µ,σ) =

φ(µ) · 21−n/2

Γ(n/2) σn−1e−
σ2
2 for (µ,σ) ∈ R× [0,∞), where

φ(µ) is some probability distribution, Γ(·) is a gamma

function and 21−n/2

Γ(n/2) σn−1e−
σ2
2 is a chi distribution with

degree of freedom n. We take a utility f (x)= 1−e−0.05x

0.05
with τ = 0.05 in (48), and by Lemma 2 there exists a
risk spectrum λ satisfying f−1(E( f (·)))≈ AVaRλ

1(·).
Then, by (Yoshida, 2018), the best risk spectrum in
Lemma 2 is given by

λ(p) = e−
∫ 1

p C(q)dqC(p) (50)

for p ∈ (0,1] with the component function

C(p)=
1
p
·

∫
∞

0

(
1− 1

1
p
∫ p

0 eτσ(κ(p)−κ(q)) dq

)
σne−

σ2
2 dσ∫

∞

0
log
(

1
p
∫ p

0 eτσ(κ(p)−κ(q)) dq
)

σne−
σ2
2 dσ

.

(51)

with τ = 0.05. From (49) and (50), we have κλ(1) =∫ 1
0 κ(q)λ(q)dq

/∫ 1
0 λ(q)dq = −0.03. On the other

hand for risk measures ρ we use another utility g(x) =
1−e−x with τ= 1 in (48). Then by Lemma 1 there ex-
ists a risk spectrum ν such that ρ(·)=−AVaRν

p(·). We
discuss a case of risk probability 5%, i.e. p = 0.05, in
the normal distribution, and then similarly we can cal-
culate κν(0.05) =

∫ 0.05
0 κ(q)ν(q)dq

/∫ 0.05
0 ν(q)dq =

−2.29701. We give fuzzy rewards by fuzzy random
variables X̃ i

t ∈ X̃a (i = 1,2, . . . ,n) as follows:

X̃ i
t (ω)(·) = 1{X i

t (ω)}(·)+ ãi
t(·) (52)

for ω ∈ Ω, where X i
t (∈ X ) and ãi

t is a fuzzy num-
ber ãi

t(x) = max{1 − |x|/ci
t ,0} for x ∈ R with a

positive number ci
t , which is a fuzzy factor. Let

n = 4 be the number of assets. Hence we put
the expectations µi

t of rewards X i
t and fuzzy fac-

tors ci
t by Table 1, and we let the covariances σ

i j
t

of rewards X i
t by Table 2. We deal with an opti-

mistic and possibility case, i.e. θ = 0 and w(α) =
1 for α ∈ [0,1]. Hence we have At = 15.1405 >
0 and ∆t = 0.003449 > 0. And we can easily
check κν(0.05)< κλ(1)<−

√
∆t/At =−0.0150931.

From (37) we also have δt(p) = 0.495737. There-
fore now we take a risk level δ = 0.55 in the fea-
sible range [0.495737,∞). From Theorem 2, we
obtain the maximum risk-sensitive estimation ϕ∗t =
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Table 1: Expectations µi
t and fuzzy factors ci

t .

µi
t ci

t
i = 1 0.098 0.008
i = 2 0.084 0.008
i = 3 0.091 0.007
i = 4 0.088 0.006

Table 2: Variance-covariances σ
i j
t .

σ
i j
t j = 1 j = 2 j = 3 j = 4

i = 1 0.38 −0.09 −0.07 0.05
i = 2 −0.09 0.39 −0.08 0.06
i = 3 −0.07 −0.08 0.38 −0.06
i = 4 0.05 0.06 −0.06 0.37

0.0879143 at the expected reward γ∗t = 0.0968356
for Problem (P2) with an optimal strategy π∗t =
(0.453443,0.159892,0.313565,0.0731002). Hence
the difference between the real expected reward γ∗t =
0.0968356 and the decision maker’s maximum risk-
sensitive estimation ϕ∗t = 0.0879143 comes from de-
cision maker’s risk averse feeling.

1 1 2 3 4 5
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0.5

0.5

1.0

0
0 x

Example 1

Example 2

Example 1 Example 2

Example 2

Example 2

 !"

 !#

 !"

 !#

x$!!%f
&

&

&

&

Figure 1: Utility functions f (x).

We can also use a pessimistic and necessity case,
i.e. θ = 1 and w(α) = 1− α for α ∈ [0,1]. From
Tables 1 and 2, we find the maximum risk-sensitive
estimation is in 0.0785810≤ϕ∗t ≤ 0.0874494, and the
expected reward is in 0.0875022≤ γ∗t ≤ 0.0968356.

Fig.2 illustrates the maximum risk-sensitive es-
timation ϕ∗t for δ in Theorem 2, and we see the
two lines are cut and connected at δ

+
t . Fig.3 illus-

trates the maximum risk-sensitive estimation ϕ∗t and
the expected reward γ∗t for δ. We see ϕ∗t is smaller
than γ∗t because γ∗t implies actual expected rewards
and ϕ∗t contains decision maker’s risk aversity un-
der his utility. Fig.4 also shows the feasible range
{(p,δ) |Πt(δ) 6= /0}= {(p,δ) | δt(p)≤ δ} in Example
2 (τ = 1).

We discuss a dynamic case with an expiration date
T = 20 and a discount rate β = 0.95. Then by The-

Table 3: Risk-sensitive estimation ϕ∗t and expected reward
γ∗t .

Pess. & Nec. Opti. & Poss.
γ∗t 0.0875022 0.0968356
ϕ∗t 0.0785810 0.0879143

(   )p +

*

Max risk-sensitive expectation

t

t

t 0.55 0.60 0.65 0.70

0.086

0.087

0.088

0.089

0.090

Figure 2: The max. risk-sensitive estimation ϕ∗t .

*

*

Max risk-sensitive expectation

Expected reward

(   )p +
t

t

t

t

0.55 0.60 0.65 0.70

0.085

0.090

0.095

0.100

Figure 3: The max. risk-sensitive estimation ϕ∗t and the ex-
pected reward γ∗t .

orem 3 we obtain the optimal total weighted average
value-at-risk v1 = 1.67037 for Problem (P4) and we
can observe the sequence {vt} of sub-total weighted
average value-at-risks after time t in Theorem 3.

Concluding Remarks. Using Lemma 2, we can in-
corporate the decision maker’s risk averse attitude
into coherent risk measures as weighting for average
value-at-risks. As we have seen in Examples 1 and 2,
risk-sensitive estimations with utility f are approxi-
mated by weighted average risks with a spectrum λ in
(50) and (51), and the coherent risk measures ρ with
fuzzy factors is given by weighted average risks with
a spectrum ν. The proposed method brings us reason-
able and computable risk-sensitive optimization mod-
els under risk constraints, and it is useful for other
subjective optimization in management sciences. We
can reply immediately risk values ρ =−AVaRλ

p from
(7) when we prepare constants (8), and this approach
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Figure 4: Feasible region for risk levels δ.
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0.5
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Figure 5: Sequences {vt} for Example 1 and Example 2
(τ = 1) (p = 0.05).

will be applicable to timely and quick risk-sensitive
decision making together with AI computing, for ex-
ample, stock trading, auto driving and so on (Yoshida,
to appear).
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