
Distributed Multi-objective Particle Swarm Optimization using

Time-delayed Virtual Global Best Method

Yuji Sato, Shota Ueno and Toshio Hirotsu
Department of Computer and Information Sciences, Hosei University, Tokyo, Japan

Keywords: Particle Swarm Optimization, Parallel and Distributed System, Performance Improvement, Multi-objective

Optimization.

Abstract: To reduce the computational cost of particle swarm optimization (PSO) methods, research has begun on the

use of Graphics Processing Units (GPUs) to achieve faster processing speeds. However, since PSO methods

search based on a global best value, they are hampered by the frequent need for communication with global

memory. Even using a standard PSO that uses a local best value does not solve this problem. In this paper,

we propose a virtual global best method that speeds up computations by defining a time-delayed global best

as a virtual global best in order to reduce the frequency of communication with low-speed global memory.

We also propose a method that combines decomposition-based multi-objective PSO (MOPSO/D) with a

virtual global best method to speed up multi-objective particle swarm optimization by running it in parallel

while maintaining search accuracy, and we demonstrate the effectiveness of this approach by using a number

of unimodal/multimodal single objective benchmark test functions and three classical benchmark test

functions with two objectives.

1 INTRODUCTION

Particle swarm optimization (PSO) is an optimization

algorithm that models the behavior of flocks of birds

and schools of fish (Kennedy, 1995), and which is one

of the population based non-deterministic

optimization algorithms. There is a personal best and

global best and both affect the direction in which

particles are moving. PSO has attracted attention as a

useful optimization tool due to its simple algorithm

and other attributes. However, a problem with this

algorithm is that when the number of particles is

increased in order to deal with a more complex

objective function, the computational cost also

increases, resulting in longer search times. There have

already been studies aimed at preventing this issue of

increased search times by using GPUs to distribute

the computational load (Zhou, 2009; Souza, 2011;

Hussain, 2016). A study that uses parallel

acceleration of PSO on a GPU based on a master-

slave model to solve multi-objective problems has

also been reported (Cao, 2017; Hussain, 2018).

However, since these previous studies use global

memory to store particle swarm data, they are unable

to achieve adequate speed increases even when

running many cores in parallel. Alternatively, if

attempts are made to speed up processing based on a

master-slave model, the efficiency of processing

speed improvements is liable to deteriorate as the

number of cores increases. To address these issues,

this paper proposes a method that can improve

computation speeds by defining a time-delayed

global best as a virtual global best for each streaming

multiprocessor (SM) in order to reduce the frequency

of communication with low-speed global memory.

Next, compared with single-objective optimization

where it is important to converge on just one optimal

solution, in multi-objective optimization it is

necessary to increase the speed of computation while

maintaining diversity in the search process as well as

convergence on the Pareto front. However, there is

often a trade-off between convergence on the Pareto

front and maintenance of diversity, and this problem

cannot be solved simply by operating the proposed

method in parallel. Therefore, we propose running a

multi-objective particle swarm optimization method

in parallel by combining a virtual global best method

and decomposition-based multi-objective PSO

(MOPSO/D) (Peng, 2008), which is capable of global

searching, and we use benchmark problems to

demonstrate the effectiveness of this approach.

Sato, Y., Ueno, S. and Hirotsu, T.
Distributed Multi-objective Particle Swarm Optimization using Time-delayed Virtual Global Best Method.
DOI: 10.5220/0007955200210030
In Proceedings of the 11th International Joint Conference on Computational Intelligence (IJCCI 2019), pages 21-30
ISBN: 978-989-758-384-1
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

21

2 OVERVIEW OF PARTICLE

SWARM OPTIMIZATION

2.1 Original PSO

In original PSO, each particle has a position vector

and a velocity vector that are used to calculate the

evaluation values and the positions to which these

particles move. After using the position vectors to

calculate the evaluation value at the current position

of each particle, the velocity vectors and position

vectors are updated according to the following

formula:

𝑣(𝑡 + 1) = 𝑣(𝑡) + 𝑐1 ∗ 𝑟𝑎𝑛𝑑1

∗ (𝑃𝑏𝑒𝑠𝑡𝑥 − 𝑥(𝑡))

 +𝑐2 ∗ 𝑟𝑎𝑛𝑑2 ∗ (𝐺𝑏𝑒𝑠𝑡𝑥 − 𝑥(𝑡))

(1)

𝑥(𝑡 + 1) = 𝑥(𝑡) + 𝑣(𝑡 + 1) (2)

where v(t) and v(t+1) are the velocity vectors in

generations t and t+1 respectively, and x(t) and x(t+1)

are the corresponding position vectors. Pbestx

represents the personal best which is the best solution

found by each particle up to generation t. Gbestx is the

global best, which is the current best position found

by the whole group. The coefficients c1 and c2 are

positive constants, and rand1 and rand2 are random

variables in the range from 0 to 1. After each particle

has been moved, the calculation of evaluation values

and the updating of vectors are repeated until the end

condition is satisfied in order to find an

approximation to the optimal solution.

2.2 Standard PSO

Standard particle swarm optimization (SPSO)

(Bratton, 2007) is an algorithm that extends the

original PSO algorithm described above. Based on

the topology of the particle group defined by the

designer, the best position from among each particle

and its neighbors is used as a local best instead of

using a global best.

In SPSO, changing the topology changes the

search motion of the entire particle group. A

simplified diagram of the ring topology that is

generally used as the topology for SPSO is shown in

Fig. 1. In a ring topology, a particle shares

information with its neighbors on both sides. This is

because convergence on the optimal solution is

impaired if the particles are split into completely

independent groups. In this case, with a reduced

amount of shared information, the convergence is

slightly worse compared with the original PSO, but

the global search performance is maintained for a

longer time. SPSO is therefore able to search for

better solutions to problems that converge to a local

solution in PSO.

Figure 1: Ring topology example.

Furthermore, particle groups in PSO may fail to

converge due to an excessive increase in velocity.

Therefore, in order to guarantee that the particle

group converges as the search proceeds, SPSO uses

the following calculation formula taking the inertia

weight χ into consideration. Here, Lbestx represents the

local best.

𝑣(𝑡 + 1) = 𝜒 ∗ 𝑣(𝑡) + 𝜒 ∗ c1 ∗ 𝑟𝑎𝑛𝑑1

∗ (𝑃𝑏𝑒𝑠𝑡𝑥 − 𝑥(𝑡)) + 𝜒 ∗ 𝑐2

∗ 𝑟𝑎𝑛𝑑2 ∗ (𝐿𝑏𝑒𝑠𝑡𝑥 − 𝑥(𝑡))

(3)

χ =
2

|2 − 𝜑 − √𝜑2 − 4𝜑|
 𝜑 = 𝑐1 + 𝑐2 (4)

When a search is performed using the above

formula, the movement of the entire particle group

changes according to the value of φ. When φ is less

than 4, the particle groups repeatedly converge and

diverge. When it is greater than 4, the particle groups

are guaranteed to converge. Therefore, a combination

of c1 = c2 = 2.05 is generally used in SPSO.

3 RUNNING PSO IN PARALLEL

3.1 Parallel PSO in Earlier Research

In a GPU-based parallel implementation of PSO, the

computational load is distributed by allocating each

particle to a CUDA core. The GPU can be used to

parallelize parts that exist independently for each

particle, such as calculating its evaluation value and

updating its vectors. However, the global best

calculation requires the collection of information on

the whole particle group, which reduces the degree of

parallelism. In previous studies by Zhou et al. (Zhou,

2009) and Hussain et al. (Hussain, 2016), SPSO was

run in parallel by using a ring topology. Hussain et al.

ECTA 2019 - 11th International Conference on Evolutionary Computation Theory and Applications

22

also sought to achieve greater speed by using coreless

access, which is an access technique for efficient

communication with global memory.

In the methods proposed in these previous studies,

there remains a problem in that the frequency of

communication with global memory increases. In

parallel SPSO, neighboring particles may exist in

another SM. When using a topology where there is no

sharing between particles in different SMs, it is not

possible to perform searches using a global best, the

overall convergence of the particle group is impaired,

and it is not possible to search efficiently. Therefore,

when SPSO is run in parallel, it must use global

memory to share information between SMs. For these

reasons, the previous studies basically used global

memory to store data. This results in frequent

communication with global memory while

performing search calculations. When implementing

parallel processing on a GPU, this communication

with low-speed memory becomes a bottleneck,

making it hard to improve the effective execution

speed no matter how great the degree of parallelism.

3.2 Parallelization using Virtual Global
Best

Figure 2 shows an outline of our proposed

parallelization using virtual global best. The virtual

global best method reduces the frequency of

communication with global memory. First, the

population (particle swarm) in PSO is separated into

several new swarms. These new swarms are

associated with each SM, with information such as

the particle coordinates being stored in registers or

shared memory. In order to minimize the number of

data transfers between SMs, each particle searches

using a virtual global best instead of the current global

best. The initial value of the virtual global best is

allocated to each SM as the global best of the particle

swarm in the initial state before separation. The local

best of each SM is compared with the virtual global

best, and when the local best is better than the virtual

global best, the virtual global best is updated and is

simultaneously compared with the global best stored

in global memory. When necessary, the global best

and virtual global best are updated. In this way, it is

no longer necessary to communicate with global

memory when particle information is required. This

can reduce the memory communication bottleneck,

making parallel processing more effective. When the

global best is updated in global memory, the timing

of this event is delayed in each sub-swarm to prevent

loss of data.

The virtual global best search algorithm
(Algorithm 1) is as follows:

1 let N = the number of particles in the sub swarm

2 let s = the index of sub swarm

3 let B = the number of sub swarms

4 let T = the number of migration interval

5 store global best in global memory

6 store virtual global best in shared memory

7 if the index of thread is N+1 then

8 for j = 1 to iterations do

9 if (j%(B*T)) is (s*T) then

10 update global best and virtual global best

11 end if

12 end for

13 end if

14 else

15 for j = 1 to iterations do

16 update velocity and position

17 calculate fitness, personal best, and virtual global

best

18 end for

19 end else

Figure 2: Outline of virtual global best method.

4 PARALLEL MOPSO USING

VIRTUAL GLOBAL BEST

4.1 Multi-objective Optimization

Multi-objective optimization is a method that

simultaneously optimizes multiple objective

functions in a trade-off relationship. Figure 3 shows a

conceptual illustration of the optimization of two

objectives. In multi-objective optimization, one of the

currently known solutions that has a good evaluation

value for any particular objective function is called a

non-inferior solution and is regarded as an optimal

solution. As shown in Fig. 3, there are usually

Distributed Multi-objective Particle Swarm Optimization using Time-delayed Virtual Global Best Method

23

multiple non-inferior solutions. The set of non-

inferior solutions is called the Pareto optimal

solution. The surface formed by the Pareto optimal

solution is called the Pareto front, and the purpose of

a search algorithm such as evolutionary computation

is to conduct searches so that the Pareto front takes a

form that better satisfies the criteria of the objective

function. Basically, PSO is a population based non-

deterministic optimization algorithms as a single

objective optimizer. On the other hand, research on

PSO strategy for solving multi-objective problems

(Multi-Objective PSO, MOPSO) has already began

(Moore, 1999; Hussain, 2018).

Figure 3: Conceptual illustration of the optimization of two

objectives.

4.2 Proposal of Parallel MOPSO/D
using Virtual Global Best

In MOPSO, the global best cannot be updated in the

same way as in single-objective PSO because the

optimal solution of the whole particle swarm is not

uniquely determined. Thus, when the virtual global

best algorithm is simply implemented as parallel

MOPSO, we can consider a method that uses an

archive. The archive stores the coordinates of

multiple candidate best solutions out of the personal

best solutions of each particle. A particle updates its

velocity by using the coordinates of one candidate

selected from the archive as the virtual global best.

In MOPSO using an archive, when selecting a

solution stored in the archive or a global best, it is

possible to improve diversity by considering

parameters such as the particle congestion factor.

However, if this solution requires complex

computations, it will increase the computational load

and adversely affect the execution time. Furthermore,

to prevent the loss of information stored in memory,

the addition of information to the archive must be

performed sequentially for each particle, making it

difficult to conceal the added computational load in

parallel processing. Accordingly, the above trade-off

relationship cannot be resolved in the virtual global

best method using an archive. Therefore, in the

proposed method, we use a combination of

MOPSO/D, which is capable of performing global

searches, and a virtual global best approach that

effectively operates at high speed in parallel by

avoiding communication with low-speed memory.

This not only ensures the diversity of solutions, but

can also reduce the execution time.

4.2.1 MOPSO/D

In MOPSO/D, a partition function is uniformly

distributed in evaluation value space based on the

objective function, and the particles optimize this

partition function. In this way, by having each particle

optimize a single objective function, the overall

particle swarm find uniform and diverse solutions in

evaluation value space by optimizing a single

objective function. The Tchebycheff function

(Zhang, 2007) is used as a partition function. This

function is calculated as follows,

(5)

where j represents the number of objective

functions, λ is a weighting vector corresponding to

each partition function, and the search direction

changes according to its value. z* is a reference point,

and the coordinates of this point are determined by

the values of the whole particle swarm. An overview

of MOPSO/D is shown in Fig. 4. When the reference

point is set as the minimum value of the particle

swarm in a minimization problem as shown in Fig. 4,

the optimal solution can be obtained by determining

the minimum value of the partition function.

Figure 4: Outline of MOPSO/D.

The difference between this method and ordinary

PSO lies in the way in which the global best solution

is updated. Since MOPSO/D uses a different function

for the evaluation of each particle, it is not possible to

compare each of these calculated evaluation values

directly. Therefore, each particle calculates an

evaluation value by inputting the coordinates of its

neighboring particles into its own partition function.

ECTA 2019 - 11th International Conference on Evolutionary Computation Theory and Applications

24

When the evaluation value is better than the current

global best, the coordinates of the referenced particle

are set as the new global best coordinates. In

MOPSO/D, adjustment of parameters is required in

order to influence the solution accuracy and execution

speed of neighboring particles that are referenced

when updating the global best and the number of

partition functions.

4.2.2 Proposed Parallelization of MOPSO/D
using Virtual Global Best

Figure 5 shows an outline of the distributed

MOPSO/D with virtual global best method. In the

proposed method, the particle swarm is partitioned

between each SM as in the virtual global best method.

This makes it possible to perform the calculations to

update coordinates and personal best solutions

without using global memory. Furthermore, the

number of partition functions is assumed to be equal

to the number of particles in an SM, and the

distribution of partition functions is assumed to be the

same for any sub-swarm. Therefore, in SM there is a

one-to-one correspondence between particles and

partition functions, and in the overall particle swarm,

a single partition function is searched by the number

of particles allocated to an SM. By sharing the global

best with particles searching for the same partition

function, it is thought that this will improve the

convergence so that an optimal solution can be found

in fewer generations. Furthermore, by storing each

particle's virtual global best solution in a register, the

frequency of communication with global memory can

be reduced. By delaying the global best update time

for each sub-swarm, we can expect to maintain the

global search performance in each partition function.

Figure 5: Outline of the distributed MOPSO/D with virtual

global best method.

The basic algorithm is the same as in the virtual

global best method, but with two main changes. The

first is that a different method is used to update the

virtual global best. In MOPSO/D, the coordinates of

neighboring particles are required when updating the

global best. Essentially, storing the coordinates in

shared memory allows the operations related to these

particles to be completed inside the SM. However,

due to shared memory capacity limits, it is not

possible to store the coordinates of sub-swarms.

Therefore, in the proposed method, the particle

coordinates are stored in global memory for the

purpose of sharing information, and are retrieved

when updating the virtual global best. In this way,

communication with the global memory takes place

at each generation, which is liable to adversely affect

the execution speed.

The second change is that there is no thread

responsible for updating the global best solution

(thread N+1 in Algorithm 1). In MOPSO/D, the

global best is stored individually by each particle, so

when one thread communicates with global memory,

the amount of communication is large, and the

execution time becomes longer. Therefore, the global

best is updated by the thread that updates each

particle.

5 EVALUATIONS

5.1 Evaluation Method

Table 1 shows the environment used in the

experiment. In this study, we performed three types

of comparative experiments. First, we solved the five

benchmark problems of previous studies shown in the

appendix in the same environment (Zhou, 2009;

Hussain, 2016), and we compared the execution times

and solution accuracy by solving five benchmark

problems with three global best methods. The results

shown here are the average values from 20 runs of

this experiment with 7,936 particles, a 100-

dimensional sphere function, and other functions with

50 dimensions, and 2,000 generations.

Table 1: Experimental environment.

CPU Intel core i7-6700 3.40 GHz

RAM 16.00 GB

GPU NVIDIA GeForce GTX 960

OS Windows 10 Home

Second, by comparing the execution speeds and

solution distributions of MOPSO/D using a virtual

global best method when implemented on a CPU and

when implemented in parallel on a GPU, we verified

that it maintains the same level of accuracy while

reducing the execution time. The benchmark

problems with two objectives used in this experiment

were ZDT1, ZDT2 and ZDT3 (Zitzler, 2000) shown

below. The experiments related to execution speed

Distributed Multi-objective Particle Swarm Optimization using Time-delayed Virtual Global Best Method

25

were conducted with 4,096 particles, 30 dimensions

and 250 generations, and the experiments related to

distribution were conducted with the number of

dimensions changed to 200.

[ZDT1 function]

min f1(x) = x1

min f2(x) = g･h

where, 𝑔 = 1 + 9.0 ∑ (𝑥𝑖 𝑛 − 1⁄)𝑛
𝑖=2 ,

 ℎ = 1 − √𝑓1 𝑔⁄ ,

xi ∈ [0, 1]

[ZDT2 function]

min f1(x) = x1

min f2(x) = g･h

where, 𝑔 = 1 + 9.0 ∑ (𝑥𝑖 𝑛 − 1⁄)𝑛
𝑖=2 ,

 ℎ = 1 − (𝑓1 𝑔⁄)2 ,

xi ∈ [0, 1]

[ZDT3 function]

min f1(x) = x1

min f2(x) = g･h

where, 𝑔 = 1 + 9.0 ∑ (𝑥𝑖 𝑛 − 1⁄)𝑛
𝑖=2 ,

 ℎ = 1 − √𝑓1 𝑔⁄ − (𝑓1 𝑔⁄)𝑠𝑖𝑛(10𝜋 ∙ 𝑓1) ,

xi ∈ [0, 1]

Third, we imposed a time limit on the CPU

execution, and compared the resulting distribution

with the results obtained by running on a GPU. In the

limited time experiment, the GPU execution was set

to either the time taken to reach the set number of

generations, or the time taken for all the particles to

reach the Pareto front of the benchmark problem. The

number of particles was 4,096, and the number of

generations was 250. We used the same benchmark

problem as in the second experiment, with the number

of dimensions set to 30.

5.2 Experimental Comparison of
Virtual Global Best Method with
Previous Studies

As shown in Table 2, the virtual global best method

yields much more accurate solutions for the Sphere

function and Griewank function than the parallel PSO

method used in previous studies. This is thought to be

because the virtual global best method achieves the

same high level of convergence as the original PSO

method. The Sphere function is a unimodal function

without any local solutions, while the Griewank

function is similar to a unimodal function in that it

features a large global gradient. Since a highly

convergent search algorithm is effective for searching

unimodal functions, the proposed method was able to

find better solutions. It also found very similar

solutions for other multimodal functions. This is

thought to be because the division of the particle

swarm into sub-swarms allows greater global search

performance to be maintained than with ordinary

PSO. Also, according to Table 3, the virtual global

best method is about four times faster than the

conventional parallel PSO, except for the Sphere

function. This is due to the effect of using virtual

global memory to reduce the frequency of

communication with global memory.

Table 2: Comparison of the accuracy of previous studies

and the proposed method.

Function
Zhou,

2009

Hussain,

2016

Proposed

method

Sphere 1.06e-01 1.32e-01 4.51e-29

Rosenbrock 2.11e+01 2.11e+01 2.22e+01

Rastrigin 1.45e+02 1.38e+02 8.42e+01

Griewank 8.32e-10 1.29e-09 1.40e-45

Ackley 9.44e-05 1.17e-04 3.81e-06

Table 3: Comparison of the execution time of previous

studies and the proposed method.

Function
Zhou,

2009 [ms]

Hussain,

2016 [ms]

Proposed

method [ms]

Sphere 9463.55 2767.95 1148.17

Rosenbrock 2758.78 1495.40 314.77

Rastrigin 2898.74 1579.15 409.13

Griewank 2927.17 1599.27 445.46

Ackley 2891.06 1596.29 414.08

5.3 Experimental Comparison with
Parallel MOPSO/D

Tables 4 through 6 show the average execution times

for 20 trials of each benchmark problem when the

number of generations is 250 and dimension size is

30. According to these tables, we achieved a speed

improvement factor of at least 14 for every function.

It shows an average higher performance improvement

rate than related work (Hussain, 2018). When

implemented on a CPU, the execution speed varies

with the function parameters, whereas on a GPU there

is almost no variation. This is because the evaluation

values have to be calculated sequentially on a CPU,

which has a direct effect on the function's

computation time. On the other hand, since the GPU

performs the function calculations in parallel, the

variation of computation time with the difficulty of

the function can be concealed.

ECTA 2019 - 11th International Conference on Evolutionary Computation Theory and Applications

26

In addition, when implemented on a GPU, the

acceleration effects of parallel processing do not vary

greatly with the number of cores. This can be attributed

to various factors, including the proposed algorithm's

higher proportion of computations involving

neighboring particles, the use of global memory when

updating the virtual global best solutions, and the fact

that the global best is not updated in parallel.

Furthermore, the execution time increases in

proportion to the number of particles. This is thought

to be due to the large number of registers used by a

single thread. The number of threads that are run in

parallel by the GPU is scheduled according to how

much each thread occupies memory resources such as

shared memory and registers. Therefore, when a single

thread requires more memory, fewer threads can be

processed at a time, and the overall execution becomes

sequential. Since parallel MOPSO/D stores virtual

global best coordinates in addition to the particle

coordinates and personal best coordinates, each thread

requires a large number of registers. As the number of

particles increases, the number of threads that are

executed sequentially also increases by a

corresponding amount, so it is thought that the

execution time increases in proportion to the number

of particles.

Table 4: Speed improvement factors for ZDT1.

Num. of

particles
CPU GPU

Speed improvement

factor

1024 144.9 9.8 14.71

2048 288.1 16.7 17.27

4096 650.0 32.5 17.38

8192 1133.2 68.7 16.50

Table 5: Speed improvement factors for ZDT2.

Num. of

particles
CPU GPU

Speed improvement

factor

1024 159.3 9.6 16.51

2048 263.0 16.8 15.67

4096 504.6 31.7 15.94

8192 1001.7 67.4 14.86

Table 6: Speed improvement factors for ZDT3.

Num. of

particles
CPU GPU

Speed improvement

factor

1024 167.0 10.3 16.23

2048 331.9 17.4 19.09

4096 650.0 33.2 19.58

8192 1283.6 70.7 18.15

Figures 6 through 8 compare the Pareto fronts of

the solution distributions obtained when optimizing

each problem on a CPU and on a GPU. The accuracy

is almost the same for any function, but in the solution

distributions of problems ZDT1 and ZDT3, there are

slight differences in uniformity and solution

accuracy. This seems to be due to minute calculation

discrepancies between the CPU and the GPU that are

amplified when the search process is repeatedly

iterated.

Figure 6: Comparison of ZDT1 solutions on a distribution

chart.

Figure 7: Comparison of ZDT2 solutions on a distribution

chart.

Figure 8: Comparison of ZDT3 solutions on a distribution

chart.

5.4 Comparison with the Case Where
Time Limits Are Imposed

Figures 9 through 11 compare the distributions of

solutions obtained by the CPU and GPU

implementations when subject to time constraints.

Although the GPU implementation converges on the

Pareto front of the benchmark problems, the CPU

version found few Pareto solutions and yielded

similar solution distributions for any function. This is

because the CPU version can only process about 10

generations in the time it takes for the GPU version to

process 250 generations, so it was not possible to

perform sufficient searching to be able to ascertain

ZDT1

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

f2

f1 CPU

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

f2

f1 GPU

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

f2

f1 CPU

ZDT2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

f2

f1 GPU

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

f2

f1 GPU

ZDT3

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

f2

f1 CPU

Distributed Multi-objective Particle Swarm Optimization using Time-delayed Virtual Global Best Method

27

the shape of the Pareto front. These results suggest

that parallelization by the proposed method is

effective even for real-time applications.

We experimented by assigning the same

execution parameter settings to different algorithms

this time. In the future, we think that the comparison

in the case of performing parameter adjustment for

each algorithm is also necessary. It is also necessary

to compare the execution time and the search

accuracy when the number of dimensions is changed.

Figure 9: Comparison of ZDT1 solutions on a distribution

chart.

Figure 10: Comparison of ZDT2 solutions on a distribution

chart.

Figure 11: Comparison of ZDT3 solutions on a distribution

chart.

6 CONCLUSION

In this study, we have shown that the proposed virtual

global method can reduce processing time by up to

90% and perform searches at least with the same level

of accuracy as the parallel processing methods of

previous studies.

We have also proposed a parallel MOPSO

algorithm that runs quickly while maintaining the

diversity of solutions by performing parallel

distributed processing based on a virtual global best

method for MOPSO/D where multiple particles

search a single partition function when performing

multi-objective optimization using virtual global best

solutions. We performed experiments to compare the

performance of the proposed method when

implemented on a CPU and on a GPU, and showed

that the proposed method can adapt to changes in the

Pareto front and can improve the processing speed by

a factor of at least 14 without loss of precision when

run in parallel.

ACKNOWLEDGEMENTS

The authors would like to thank Dr. Minami

Miyakawa from Sinshu University and Dr. Mikiko

Sato from Tokai University for their feedback. This

work was supported by JSPS KAKENHI Grant

Numbers JP19K12162.

REFERENCES

Bratton, D., and Kennedy, J., 2007. Defining a Standard for

Particle Swarm Optimization. In Proceedings of the

2007 IEEE Swarm Intelligence Symposium, pp. 120–

127.

Cao, B., Zhou, Y., and Lv, Y., Liu, X., Yang, S., and Kang,

X., Kang, K., 2017. Distributed Parallel Particle Swarm

Optimization for Multi-Objective and Many-Objective

Large-Scale Optimization. IEEE Access, vol.5, pp.

8214-8221.

Hussain, Md. M., Hattori, H., and Fujimoto, N., 2016. A

CUDA Implementation of the Standard Particle Swarm

Optimization. In Proceedings of the 18th International

Symposium on Symbolic and Numeric Algorithms for

Scientific Computing, pp. 219–226.

Hussain, Md. M., and Fujimoto, N., 2018. Parallel Multi-

Objective Particle Swarm Optimization for Large

Swarm and High Dimensional Problems, In

Proceedings of the 2018 IEEE Congress on

Evolutionary Computation (CEC-2018), pp. 1-10.

Kennedy, J., and Eberbart, R., 1995. Particle Swarm

Optimization. In Proceedings of IEEE International

ECTA 2019 - 11th International Conference on Evolutionary Computation Theory and Applications

28

Conference on Neural Networks. Perth, WA, Australia,

pp. 1942–1048.

Moore, J., and Chapman, R., 1999. Application of particle

swarm to multi-objective optimization, in an

unpublished manuscript, department of Computer

Science and Software Engineering, Auburn University.

Peng, W., and Zhan, Q., 2008. A Decomposition-based

Multi-Objective Particle Swarm Optimization

Algorithm for Continuous Optimization Problem, In

Proceedings of IEEE International Conference on

Granular Computing, pp. 534–537.

Souza, D. L., Martins, T. C., Dmitriev, V. A., and Monteiro,

G. D., 2011. PSO-GPU: Accelerating Particle Swarm

Optimization in CUDA Based Graphics Processing

Unit. In Proceedings of the 2011 ACM/SIGEVO

Genetic and Evolutionary Computation Conference

(GECCO’11), pp. 837-838.

Wikipedia: Test function for optimization., 2019,

https://en.wikipedia.org/wiki/Test_functions_for_opti

mization (cited 2019.07.06)

Zhang, Q., and Li, H., 2007. MOEA/D: A Multiobjective

Evolutionary Algorithm Based on Decomposition. In

IEEE Trans. Evolutionary Computation, Vol. 11, No. 6,

pp. 712–731.

Zhou, Y., and Tan, Y., 2009. GPU-based Parallel Particle

Swarm Optimization. In Proceedings of the 2009 IEEE

Congress on Evolutionary Computation, pp. 1493–

1500.

Zitzler, E., Deb, K., and Thiele, L., 2000. Comparison of

Multiobjective Evolutionary Algorithms: Empirical

Results. In IEEE Trans. Evolutionary Computation 8,

pp. 173–195.

APPENDIX

The five benchmark functions for single-objective

optimization (Wikipedia: Test functions for

optimization, 2019) for compare with previous

studies (Zhou, 2009; Hussain, 2016).

[Sphere function]

𝑓(𝑥) = ∑ 𝑥𝑖
2

𝑛

𝑖=1

[Rosenbrock function]

𝑓(𝑥) = ∑ [100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (1 − 𝑥𝑖)2]

𝑛−1

𝑖=1

[Rastrigin function]

𝑓(𝑥) = 𝐴𝑛 + ∑ [𝑥𝑖
2 − 𝐴𝑐𝑜𝑠(2𝜋𝑥𝑖)]𝑛

𝑖=1 , 𝐴 = 10

[Griewank function]

𝑓(𝑥1, 𝑥2) = 1 +
1

4000
𝑥1

2 +
1

4000
𝑥2

2

−𝑐𝑜𝑠(𝑥1)𝑐𝑜𝑠 (
1

2
𝑥2√2)

[Ackley function]

𝑓(𝑥, 𝑦) = −20𝑒𝑥𝑝 [−0.2√0.5(𝑥2 + 𝑦2)]

− exp[0.5(𝑐𝑜𝑠2𝜋𝑥 + 𝑐𝑜𝑠2𝜋𝑦)] + 𝑒 + 20

Distributed Multi-objective Particle Swarm Optimization using Time-delayed Virtual Global Best Method

29

ECTA 2019 - 11th International Conference on Evolutionary Computation Theory and Applications

30

