
Detecting Domain-specific Events based on Robot Sensor Data

Bernhard G. Humm1 and Guglielmo van der Meer2

1Hochschule Darmstadt, University of Applied Sciences, Darmstadt, Germany
2KUKA Roboter GmbH, Augsburg, Germany

Keywords: Robots, Time Series, Complex Event Detection.

Abstract: This paper presents an approach for detecting domain-specific events based on robot sensor data. Events may
be error situations as well as successfully executed manufacturing steps, depending on the application domain
at hand. The approach includes segmenting streams of sensor data into meaningful intervals and subsequently
matching patterns on those segments. Pattern matching is performed in near real-time allowing events to be
detected continuously during the execution of a robotics application. The approach is demonstrated by means
of a real-world manufacturing use case, namely the automated assembly of electrical components by a robot.
The approach has been implemented prototypically had has been evaluated successfully.

1 INTRODUCTION

The role of robotics is becoming increasingly impor-
tant in various application domains, particularly in in-
dustrial manufacturing (Wang et al., 2018). Recently
developed robots are sensitive, i.e., they integrate sen-
sors like joint torque sensors which allow measuring
physical values like forces on the robot. Sensitive
robots allow for new application scenarios, e.g., col-
laborative robotics in which a robot and can share its
workspace with humans (Fantini et al., 2018). In this
paper, we examine another application scenario for
sensitive robotics, namely detecting events from robot
sensor data.

Complex event processing (Cugola and Margara,
2015) is a method of tracking and analysing streams
of data about events, and deriving conclusions from
them. Events are relevant occurrences that happen in
a certain application domain. In industrial manufac-
turing, events may be error situations as well as suc-
cessfully executed manufacturing steps, depending on
the application domain at hand.

In this paper we present an approach for detecting
domain-specific events based on robot sensor data.
This approach includes segmenting streams of sen-
sor data into meaningful intervals and subsequently
matching patterns on those segments, where the pat-
terns are given in a symbolic form.

The remainder of this paper is structured as fol-
lows. In Section 2, we introduce a sample application
use case in order to motivate and demonstrate our ap-

Figure 1: Automated electrical component assembly by
robot.

proach. Section 3 presents related work. In Section
4, we specify the problem statement by means of re-
quirements. Section 5 is the core of this paper pre-
senting our approach. Section 6 briefly describes a
sample implementation. Section 7 evaluates our ap-
proach. Section 8 concludes our paper and indicates
future work.

2 SAMPLE USE CASE

We motivate our approach by means of a sample ap-
plication use case, namely the automated assembly of
electrical components by a robot. See Figure 1.

In this application use case, a sensitive robot (in
this case a KUKA LBR iiwa 7) picks an electrical
component, e.g. a fuse, from a container and mounts
it onto a profile rail within a switch cabinet. The

398
Humm, B. and van der Meer, G.
Detecting Domain-specific Events based on Robot Sensor Data.
DOI: 10.5220/0007952503980405
In Proceedings of the 16th International Conference on Informatics in Control, Automation and Robotics (ICINCO 2019), pages 398-405
ISBN: 978-989-758-380-3
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



Figure 2: Comparison of force signals at (a) successful as-
sembly and (b) unsuccessful assembly.

assembly is successful if the electrical component
snapped into the profile rail. However, various situ-
ations can cause an unsuccessful assembly. Examples
are defects in the snapping mechanism of the elec-
trical component, obstructions on the profile rail, or
slight deviations in the positioning of the rail. In such
cases, the electrical component will not be assembled
successfully but may fall down.

Detecting unsuccessful assembly is of utmost im-
portance to the assembly process since subsequent
manufacturing steps rely on the success of previous
steps. In this paper, we focus on event detection based
on the assembling robot’s sensor data.

Figure 2 shows the time series of the sensor sig-
nals of a typical successful and unsuccessful assem-
bly step.

The figure shows the force in dimension z, i.e.,
in the direction of the flange mounting the electrical
component. On successful assembly, a characteristic
curve shape can be observed, as marked with a red cir-
cle in Figure 2 (a). This curve characteristic is caused
by the electrical component snapping in: A sharp in-
crease in force followed by a sudden decrease. In sit-
uations of unsuccessful assembly, e.g. due to a defect
in the snapping mechanisms, this curve characteristic
can usually not be observed.

The approach presented in this paper allows dis-
criminating between successful and unsuccessful as-
sembly by analysing the time series of the force sen-
sor signals.

3 RELATED WORK

There is a variety of sources for time series data,
including financial data (stock prices), electroen-
cephalograms (EEGs), climate- and weather data
(temperatures, wind speeds), human motion data, as
well as sensor data in industrial applications. There-
fore, the task of detecting patterns in time series data
has been addressed by many researches, focussing
on different application domains. The survey by
(Fakhrazari and Vakilzadian, 2017) categorizes the
data mining tasks for time series data into indexing,

clustering, classification, prediction, anomaly detec-
tion, motif discovery, rule discovery, summarization
and visualization.

In this paper, we focus on the classification of time
series data. For a given time series, we want to asso-
ciate it with a certain class, namely the class of the
event that caused a certain shape of the time series.

The main building blocks for the efficient detec-
tion of events in streaming time series data are the
preprocessing of the incoming raw data, the resulting
representation, and the actual pattern detection that is
applied to this representation..

3.1 Preprocessing

The goals of preprocessing time series data usually
are to generate a compressed or simplified representa-
tion of the time series in order to allow indexing and
querying time series databases, to increase the effi-
ciency of subsequent data mining and analysis pro-
cesses in general.

In the context of pattern detection or pattern
search, the compressed representations of time series
data are usually based on variuos forms of segmenta-
tion. For example, in order to support pattern searches
in time series data, (Pratt and Fink, 2002) suggests a
segmentation that is based on the detection of ”impor-
tant points”, specifically minima and maxima, in or-
der to obtain a compressed representation of the time
series. Similarly, (Fu et al., 2007) describe a way to
detect patterns in stock data based on the identifica-
tion of perceptually important points (PIP) in the time
series. The more general notion of ”change points”
as being points where some characteristics of time se-
ries data change has been examined by (Aminikhang-
hahi and Cook, 2017), including a detailed compari-
son and classification of approaches for preprocessing
time series in order to detect these change points.

The survey of (Keogh et al., 1993) classifies ap-
proaches for computing segmentations – specifically,
piecewise linear approximations – including the as-
pect of how the approximating line segments are com-
puted. This can be done via interpolation, creating a
line connecting the first and the last entry of a time
series interval, or via regression, where the approxi-
mation is a line that has the lowest least squares error.

The challenges that are imposed by processing
streaming time series data in resource-constrained en-
vironments has been addressed by (Soroush et al.,
2008). They propose an algorithm that has linear time
complexity, constant space complexity, and generates
the minimum number of line segments that approxi-
mate the given data for a given error bound.

For our application case, the primary goal is to

Detecting Domain-specific Events based on Robot Sensor Data

399



obtain a simple representation that captures the over-
all shape of the incoming signal. Therefore, we use
a simple segmentation based on important points,
which are essentially minima and maxima, similar to
the approach of (Pratt and Fink, 2002).

3.2 Representations

Different representations of time series data have been
developed, and a taxonomy of time series representa-
tions was given in (Lin et al., 2003). A comparison of
the performance of many different time series repre-
sentations and associated distance measures was per-
formed in (Wang et al., 2013).

The result of the preprocessing step in our appli-
cation case is a segmented time series. There are dif-
ferent options for the actual representation of such a
segmented time series. In some cases, like (Pratt and
Fink, 2002), the representation may be given by the
line segments between important points, augmented
with additional information that allows more efficient
indexing and queries. In other cases, the segmented
time series data is transferred into a symbolic repre-
sentations. With SAX (Symbolic Aggregate approXi-
mation) (Lin et al., 2003), each segment is aggregated
and represented by an element of an alphabet.

The most simple representation is that of a piece-
wise linear approximations of the original time series.
For our use-case, this representation is the most suit-
able one, due to the high compression that can be
achieved compared to the original time series data,
and the simple, intuitive notion of shapes and patterns
that can be expressed with a piecewise linear approx-
imation.

3.3 Pattern Matching

The task of detecting various forms of patterns in time
series data has been addressed by many researches in
different application domains. An important distinc-
tion for the approaches that have been proposed refers
to the particular data mining task.

In some application domains, the goal is to find
time series that are similar to a given time se-
ries, which is often referred to as query-by-content
((Faloutsos et al., 1994)). In other cases, the goal is
to find time series that have certain characteristics in-
side a large time series database (see, for example,
(Pratt and Fink, 2002)). In both cases, it is possible
to generate an index that allows efficient queries for
similar time series. Based on such a database and in-
dexing structures, high-level query languages can be
defined. For example, SQL-TS by (Sadri et al., 2001)
is a query language that allows SELECT-FROM-WHERE

queries that are tailored for the properties of time se-
ries data.

Indexing structures and classical similarity-based
queries cannot be applied when the pattern should be
detected in streaming time series data. For example,
(Wu et al., 2004) describe a query language for event-
driven subsequence similarity search based on finan-
cial data streams.

The theoretical background for a general query
evaulation model for event streams was laid out by
(Agrawal et al., 2008). They define the NFAb, a
non-deterministic finite automaton with a buffer, that
allows describing the pattern matching process as a
sequence of state transitions based on the incoming
events, and analyze the expressibility of such an au-
tomaton.

One of the goals of our approach is to define a
simple, intuitive and explainable definition of the pat-
terns, in a symbolic form. It should be possible to ex-
press the pattern directly based on the characteristics
of the time series representation. Therefore, we chose
to represent the patterns using simple conditions that
describe these characteristics, which can directly be
expressed using any language that supports basic re-
lational operators and conjunctions.

4 PROBLEM STATEMENT

We specify the goals of our approach by means of
requirements.

(R1) Event Detection: The approach shall allow
detecting application-specific events based on robot
sensor data.

Here, events are relevant situations during the ex-
ecution of a robotics application, e.g., errors during
a manufacturing step. A concrete event detection
mechanism is specific to the application domain. The
approach shall allow specifying criteria for domain-
specific events.

(R2) Explainable: The criteria for domain-specific
events can be specified by domain experts and ex-
plained to and discussed with other domain experts.
Depending on the criticality of the robotics applica-
tion, this may be an important aspect of quality assur-
ance.

In the sample application use case introduced
above, snapping an electronic component into a pro-
file rail results in a characteristic shape of the curve
force in z dimension caused by the snapping mecha-
nism: A sharp increase in force followed by a sudden

ICINCO 2019 - 16th International Conference on Informatics in Control, Automation and Robotics

400



decrease. This curve characteristic can be interpreted
by an engineer as a successful snap-in event.

(R3) Continuous Detection: Events shall be de-
tected during the execution of the robotics applica-
tion, not ex post.

This means that the detection is performed con-
tinuously on the incoming sensor data. How much
delay between the occurrence and the detection of an
event is acceptable, is domain-specific. For example,
in the use case introduced above, a delay of 1s could
be deemed acceptable.

(R4) Accurate: The classification performance of
the detector shall be appropriately high.

Various measurements of classification perfor-
mance may be employed, e.g., accuracy or F1 score.
Which measurement and which classification perfor-
mance is suitable is domain-specific. For example, in
the use case introduced above, an accuracy of 0.85
could be deemed necessary.

(R5) Feasible: The approach shall be imple-
mentable in a real-world robotics manufacturing set-
ting. This takes into consideration limited computing
power of a robot and limited bandwidth between robot
and data analytics server due to network and protocol
limitations.

5 APPROACH

5.1 Overview

Figure 3 shows the conceptual view on the approach
presented in this paper.
Stream of signals

Segmentation

Stream of segments

Pattern matching

Stream of events

Figure 3: The conceptual view on the proposed approach.

A stream of low-level signals is obtained from the
robot sensors. This stream is preprocessed to com-
pute the segments, which are an approximation of the
raw data. The segments are then passed to the pattern
matcher. When a sequence of segments matches the
desired pattern, a high-level event is generated.

The following sections summarize the definitions
that serve as the basis for our approach. The next
sections explain the main building blocks of our ap-
proach, which are the segmentation and the pattern
matching step.

5.2 Definitions

The basic definitions given here refer to the elements
of Figure 3, and consist of a formal definition of the
signal stream, segments, and patterns.

5.2.1 Signal Stream

The stream of low-level signals that is obtained from
the robot sensor can be described as numerical time
series. Such a time series S is a sequence of entries
si∈N0 , where si = (ti,vi), with ti being the time stamp,
and vi being the value of the signal at index i. The
time stamps are assumed to be numeric and strictly
increasing, meaning that ti < ti+1, and thus, to define
an order on the entries.

5.2.2 Segments and Segment Measures

We refer to a segment as a line segment, which, in the
context of this paper, is an approximation of a con-
nected subset of the entries of a time series. A seg-
ment therefore is a tuple I = ((tstart,vstart),(tend,vend))
where (tstart,vstart) are a time stamp and value of the
start of the segment, and (tend,vend) the time stamp
and value of the end of the segment, with tstart < tend.

A sequence of segments that are computed from a
time series of a signal can thus be written as (Ii)i∈N0 .
For an interval [a,b) of the natural numbers, (Ii)i∈[a,b)
refers to a subsequence of segments that starts at in-
dex a and ends before index b, thus having a length of
b−a.

Different measures for segments can be de-
fined. For a signal that is represented with a
time series S = (ti,vi)i∈N0 and a given segment I =
((tstart,vstart),(tend,vend)) that has been computed from
such a signal, we define

∆t(I) =tend− tstart

∆v(I) =vend− vstart

Slope(I) =∆v(I)/∆t(I)
(1)

5.2.3 Patterns and Pattern Matches

A pattern is a description of the characteristics of a
time series which correspond to the occurrence of a
domain-specific event. It is a conjunction of condi-
tions that say whether a certain relation holds for a
given segment. Each condition is therefore an unary
predicate C on a segment that compares one ot the
segment measures that have been given in Section
5.2.2 to a real number x∈R. Thus, a condition C for a
segment I = ((tstart,vstart),(tend,vend)) has the follow-
ing form:

Detecting Domain-specific Events based on Robot Sensor Data

401



C(I) =



tstart
tend
vstart
vend
∆t(I)
∆v(I)
Slope(I)



 >
=
<

 x (2)

where x is the threshold value that the segment
measure is compared against.

For example, for segments I0 and I1, such condi-
tions may be

C0(I0) = ∆v(I0)> 0.2
C1(I0) = ∆t(I0) = 0.5
C2(I1) = Slope(I1)< 0.3

We then can define a pattern P as an m-ary predi-
cate on segments that is a conjunction of q such con-
ditions: P =

∧ j<q
j=0 C j.

For a sequence of segments (Ii)i∈[a,b) that is the
argument list of P, the index of the argument for con-
dition C j is given as r j ∈ [a,b). Therefore, a pattern
P matches a given sequence (Ak)k∈[a,b) of segments
when

P((Ak)k∈[a,b)) =
j<q∧
j=0

C j(Ar j) (3)

For example, for a pattern P =C0∧C1∧C2 based
on the conditions C0,C1,C2 shown above, we have
r0 = 0, r1 = 0, and r2 = 1, and the pattern matches
the sequence of segments (I0, I1) when

P(I0, I1) = C0(I0)∧C1(I0)∧C2(I1)

= ∆v(I0)> 0.2 ∧
∆t(I0) = 0.5 ∧
Slope(I1)< 0.3

When a pattern matches a given sequence of seg-
ments, the match can be written as a tuple M =
(P,(Ik)k∈K) with P being the pattern and (Ik)k∈K be-
ing the sequence of segments for which the match was
detected.

5.3 Segmentation

One goal of this paper is to execute the simplifica-
tion and compression of the input data and the subse-
quent pattern matching continually, in order to detect
the desired events during the operation. This means
that we have to compute a highly compressed, simpli-
fied representation of the time series data on the fly.
Therefore, we focus on piecewise linear approxima-
tions (PLA) for time series.

5.3.1 Preprocessing

The raw input data that is obtained from the sensors
may contain noise. There are different possible pre-
processing steps for the raw data that can reduce the
amount of noise.

An overview and comparison of different noise re-
duction methods for time series is given in (Köhler
and Lorenz, 2005). Since we are operating on stream-
ing data, approaches that are based on frequency anal-
ysis are not directly applicable. So in order to meet
the requirement imposed by the goal of continually
processing the data stream, we reduce the noise by
applying a simple moving average (SMA) to the raw
input data. The SMA is a convolution of the stream-
ing time series data with a rectangular pulse, and thus
computes the unweighted mean of a certain number of
previous data points. Therefore, it can easily and effi-
ciently be implemented even on robot hardware with
limited memory and computing power.

The choice of a SMA for denoising is justified in
our application case by the fact that the magnitude of
the noise in the input signal is small, and its frequency
is high compared to the overall shape that has to be
detected. For application cases where the input sig-
nal contains other forms of noise, more sophisticated
noise reduction methods, like the ones compared in
(Köhler and Lorenz, 2005), can be used.

The smoothed time series data is then passed to
the actual segmentation routine.

5.3.2 Segment Computation

For the main use case addressed in our paper, we
can apply a simple segmentation approach: We track
the derivative of the signal, and emit a new segment
whenever the sign of the derivative changes. Algo-
rithm 1 shows how the stream of segments is com-
puted by the stream of preprocessed signals.

5.3.3 Segmentation Results

The result of the segmentation process is a contin-
uous stream of segments that is computed from the
sensor data: A new segment is emitted whenever the
sign of the derivative of the signal changes. A spe-
cial case that has to be considered is that the signal
remains constant for an indeterminate amount of time
– for example, when the robot comes to a halt and
the recorded forces or velocities do not change any
more. To handle this, the segment computation can
be extended to emit an interim segment for the pat-
tern matcher when the difference of the time stamp
of a new signal and the end of the previously emitted
segment is longer than an application specific limit.

ICINCO 2019 - 16th International Conference on Informatics in Control, Automation and Robotics

402



Input: A stream of signals si∈N0 , where
si = (ti,vi)

Output: A stream of segments I j∈N0
Data: The signal sstart = (tstart,vstart)

where the current segment starts,
initialized with sstart = s0

Data: The derivative dstart of the start of
the current segment, initialized
with dstart = (v1− v0)/(t1− t0)

for each new signal si with i > 1 do
// Compute the derivative at the
current point

d = (vi− vi−1)/(ti− ti−1)
if sign(d) 6= sign(dstart) then

// Emit a new segment
I j = (sstart,si−1)
dstart = d
sstart = si
emit A j

end
end

Algorithm 1: Derivative-based segmentation.

5.4 Pattern Matching

The goal of the pattern matching process is to de-
tect whether a sequence of segments contains a sub-
sequence that describes the characteristic shape that
indicates the occurrence of the domain-specific event
that is described via a pattern.

5.4.1 Pattern Matching Process

Algorithm 2 shows the process of the pattern match-
ing. It receives the stream of segments that has been
computed by Algorithm 1, and generates a stream of
pattern matches.

6 IMPLEMENTATION

In order to assess the feasibility of the approaches pre-
sented in this paper, we implemented different seg-
mentation algorithms for an actual robot.

Specifically, the prototypical implementations of
segmentation algorithms can be executed on the con-
troller of a KUKA LBR iiwa 7 and run synchronously
with the control cycle loop at 1kHz. The resulting
segment data are passed during the execution of the
robotics application to an analytics server for further
processing, which includes the pattern detection de-
scribed in the previous section.

Input: Pattern P, Stream of segments
(Ii)i∈N0

Output: Stream of matches (M j) j∈N0
for each new segment Ii do

if i≥ m then
// Check if the pattern matches
// the m most recent segments
K = [i−m, i+1)
if P((Ik)k∈K) then

M j = (P,(Ik)k∈K)
emit M j

end
end

end

Algorithm 2: Pattern matching.

The comparisons and classification benchmarks
presented in the following section have been per-
formed with an offline implementation in Java that
reads the data from files that contain recordings of the
actual robot data.

7 EVALUATION

We evaluate our approach by analysing the require-
ments specified in Section 4.

(R1) Event Detection: Our approach presented al-
lows specifying a domain-specific pattern which,
when matching on a stream of robot sensor data, emits
an event. Here, events are relevant situations during
the execution of a robotics application, e.g., errors
during a manufacturing step.

(R2) Explainable: We consider the pattern lan-
guage introduced above as explainable to domain ex-
perts. The sample pattern can be constructed by a do-
main expert and can be explained to another expert as
being characteristic for a successful snap-in event.

However, to verify this requirement, analyses with
many domain experts in various application use cases
are required. This is subject to future work.

(R3) Continuous Detection: Events are detected
continuously during the execution of the robotics ap-
plication, not ex post.

The computing time of the segmentation and pat-
tern matching algorithms is negligible. Even on lim-
ited computing resources, the detection logic executes
within milliseconds. On a standard desktop PC with 3

Detecting Domain-specific Events based on Robot Sensor Data

403



GHz CPU, our prototypical implementation in Java 8
took less than 1 millisecond for the segmentation, and
less than 1 millisecond for the pattern matching when
a new segment was emitted.

(R4) Accurate: Which measurement and which
classification performance is suitable is domain-
specific. In the sample use case presented above,
an accuracy of 0.85 for the detection of a successful
mounting could be deemed necessary. We have per-
formed an evaluation of our approach based on three
different data sets.

Each data set contains 60 recordings of the sen-
sor outputs of the robot that have been measured dur-
ing the assembly process. For each data set, there are
40 recordings where the mounting process succeeded
and 20 recordings where the mounting process failed.
The relevant sensor is the sensor that records the force
in z-direction, measured at a 1 ms interval. The time
series for the data sets A, B and C have been smoothed
with a simple moving average, with a window size of
25, 35 and 30 respectively.

For all data sets, the same pattern was used:

P(I0, I1, I2) = Slope(I0)<−0.03 ∧
Slope(I1)> 0.03 ∧
Slope(I2)<−0.03

The pattern captures the intuitive description of
the required shape of the characteristic element of a
curve where the mounting process succeeded: A seg-
ment where the force decreased, followed by a sudden
increase and a sudden decrease. The threshold values
of 0.03 have been chosen by a domain expert, based
on knowledge about the magnitude of the change of
the force that is to be expected.

Table 1 summarizes the classification results for
these test cases.

Table 1: Classification results for the three data sets. The ta-
ble shows the number of true positives, false positives, true
negatives, and false negatives, and the resulting accuracy.

Data set TP FP TN FN acc.
A 38 0 20 2 0.967
B 39 0 20 1 0.983
C 34 6 18 2 0.867

So in this sample use case, the accuracy require-
ment can be considered as being met.

(R5) Feasible: An important aspect of our approach
is the strict separation of segment detection and pat-
tern matching. Segment detection operates on large
volumes of sensor data, e.g., hundreds of sensor val-
ues each millisecond. Transferring such volumes of

data from the robot to a data analytics server is often
not feasible in a real-world manufacturing setting, due
to restrictions of bandwidth and protocols like OPC
UA.

Segmentation can be seen as a mechanism of data
compression: characteristic information is extracted
from the stream of data and the data volume is mas-
sively reduced. Table 2 shows the compression that is
achieved with the segmentation.

Table 2: The compression that is achieved by the segmen-
tation process. The table shows the average number of time
series entries (E) for the 60 recordings of each data set, the
window size (WS) of the simple moving average that was
used, and the average number of segments (S) that have
been generated.

Data set avg. E WS avg. S
A 676 25 21
B 960 35 24
C 963 30 26

The separation of segment detection and pattern
matching allows for various deployment options for
implementations of our approach. While segmenta-
tion and pattern matching may both be executed on
the robot server, it can also be split: Segmentation
on the robot server and transmission of segment data
via protocols like OPC UA to a data analytics server
where pattern matching and complex event process-
ing may be executed.

8 CONCLUSIONS AND FUTURE
WORK

In this paper we have presented an approach for de-
tecting domain-specific events based on robot sensor
data. Detection is performed continuously, allowing
to react to events during the execution of a robotics
application. The approach is feasible and can be im-
plemented in a real-world robotic manufacturing set-
ting. We have implemented the approach prototypi-
cally and validated it successfully by means of a sam-
ple use case.

We see a great potential in this approach since sen-
sitive robots are increasingly becoming commonplace
in industrial manufacturing. Towards this end, we
plan to evaluate our approach in a number of appli-
cation use cases and settings. This includes the appli-
cation of the approach to detect events that are indi-
cated by different patterns, and a qualitative compari-
son of the capabilities of detecting complex events in
comparison to other approaches and based on differ-
ent data sets.

ICINCO 2019 - 16th International Conference on Informatics in Control, Automation and Robotics

404



An extension of our approach may consider speci-
fying inter-relations between pattens in different time
series, e.g., while the speed of the robot flange is in a
certain limit, a specific pattern on force in z dimension
matches. This requires extending the pattern language
with temporal relationships as in (Allen, 1983).

We envisage a large potential in applying machine
learning and optimization techniques for learning pat-
terns based on labelled time series. This would allow
to largely reduce the time and effort involved in spec-
ifying patterns. The fact that patterns are explainable
allows domain experts to inspect and validate patterns
learned, similarly to decision trees generated by ma-
chine learning.

We will continue to publish our results on this.

ACKNOWLEDGEMENTS

This work was done within the project ProDok 4.0,
funded by the German Ministry of Education and Re-
search (BMBF) within the framework of the Services
2010 action plan under funding no. 02K14A110.
Executive steering committee is the Karlsruher In-
stitut für Technologie - Karlsruhe Institute of Tech-
nology (KIT). Project partners are KUKA Deutsch-
land GmbH, ISRA VISION AG, dictaJet Ingenieurge-
sellschaft mbH and Hochschule Darmstadt - Univer-
sity of Applied Sciences.

REFERENCES

Agrawal, J., Diao, Y., Gyllstrom, D., and Immerman, N.
(2008). Efficient pattern matching over event streams.
In Proceedings of the 2008 ACM SIGMOD Interna-
tional Conference on Management of Data, SIGMOD
’08, pages 147–160, New York, NY, USA. ACM.

Allen, J. F. (1983). Maintaining knowledge about temporal
intervals. Commun. ACM, 26(11):832–843.

Aminikhanghahi, S. and Cook, D. J. (2017). A survey
of methods for time series change point detection.
Knowl. Inf. Syst., 51(2):339–367.

Cugola, G. and Margara, A. (2015). The complex event
processing paradigm. In Colace, F., de Santo,
M., Moscato, V., Picariello, A., Schreiber, F. A.,
and Tanca, L., editors, Data Management in Perva-
sive Systems, Data-Centric Systems and Applications,
pages 113–133. Springer, Cham.

Fakhrazari, A. and Vakilzadian, H. (2017). A survey on
time series data mining. In 2017 IEEE International
Conference on Electro Information Technology, EIT
2017, pages 476–481. IEEE Computer Society.

Faloutsos, C., Ranganathan, M., and Manolopoulos, Y.
(1994). Fast subsequence matching in time-series
databases. SIGMOD Rec., 23(2):419–429.

Fantini, P., Pinzone, M., Sella, F., and Taisch, M. (2018).
Collaborative robots and new product introduction:
Capturing and transferring human expert knowledge
to the operators. In Trzcielinski, S., editor, Ad-
vances in Ergonomics of Manufacturing: Managing
the Enterprise of the Future, pages 259–268, Cham.
Springer International Publishing.

Fu, T.-C., Chung, K. F.-L., Luk, R. W. P., and man Ng, C.
(2007). Stock time series pattern matching: Template-
based vs. rule-based approaches. Eng. Appl. of AI,
20:347–364.

Keogh, E., Chu, S., Hart, D., and Pazzani, M. (1993). Seg-
menting time series: A survey and novel approach.
In In an Edited Volume, Data mining in Time Series
Databases. Published by World Scientific, pages 1–22.
Publishing Company.

Köhler, T. and Lorenz, D. (2005). A comparison of denois-
ing methods for one dimensional time series.

Lin, J., Keogh, E., Lonardi, S., and Chiu, B. (2003). A sym-
bolic representation of time series, with implications
for streaming algorithms. In Proceedings of the 8th
ACM SIGMOD Workshop on Research Issues in Data
Mining and Knowledge Discovery, DMKD ’03, pages
2–11, New York, NY, USA. ACM.

Pratt, K. B. and Fink, E. (2002). Search for patterns in com-
pressed time series. Int. J. Image Graphics, 2(1):89–
106.

Sadri, R., Zaniolo, C., Zarkesh, A. M., and Adibi, J. (2001).
A sequential pattern query language for supporting
instant data mining for e-services. In Proceedings
of the 27th International Conference on Very Large
Data Bases, VLDB ’01, pages 653–656, San Fran-
cisco, CA, USA. Morgan Kaufmann Publishers Inc.

Soroush, E., Wu, K., and Pei, J. (2008). Fast and quality-
guaranteed data streaming in resource-constrained
sensor networks. In Proceedings of the 9th ACM In-
ternational Symposium on Mobile Ad Hoc Networking
and Computing, MobiHoc ’08, pages 391–400, New
York, NY, USA. ACM.

Wang, T.-M., Tao, Y., and Liu, H. (2018). Current re-
searches and future development trend of intelligent
robot: A review. International Journal of Automation
and Computing, 15(5):525–546.

Wang, X., Mueen, A., Ding, H., Trajcevski, G., Scheuer-
mann, P., and Keogh, E. (2013). Experimental com-
parison of representation methods and distance mea-
sures for time series data. Data Mining and Knowl-
edge Discovery, 26(2):275–309.

Wu, H., Salzberg, B., and Zhang, D. (2004). On-
line event-driven subsequence matching over finan-
cial data streams. In Proceedings of the 2004 ACM
SIGMOD International Conference on Management
of Data, SIGMOD ’04, pages 23–34, New York, NY,
USA. ACM.

Detecting Domain-specific Events based on Robot Sensor Data

405


