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Abstract: Storage, per se, is not only an important process in a warehouse, also it has the greatest influence on the most 
expensive one, i.e., order picking. This study aims to give a literature overview on class-based storage location 
assignment (CBSLAP). In this paper, we discuss storage policies and present a classification of storage 
location assignment problem. Next, different configuration of classes are presented. We identify the research 
gaps in the literature and conclude with promising future research directions. 

1 INTRODUCTION 

Establishment of effective and smooth logistics 
operations is under pressure by the growing trend of 
shorter time window order fulfillment, bigger product 
assortment and smaller order quantities. Contributing 
to a large share of the total product costs, logistics 
operations are determinants in company’s survival in 
the current competitive business world. The 
efficiency and effectiveness of a distribution network, 
in turn, greatly depends on the performance of the 
nodes in such a network, i.e., the warehouses 
(Rouwenhorst et al, 2000). Warehouse operations are 
thus crucial in the context of logistics. They provide 
a means to make the storage of all kind of inventories, 
from raw material to final products, easier among 
upstream to downstream stages of a supply chain 
(Choy et al, 2017). Planning the warehouse 
operations in an effective way is not simple because 
they consist of different activities (Lam et al, 2015). 
These operations can be categorized into four 
activities or processes: receiving, storage, order-
picking and shipping ((van den Berg and Zijm, 1999); 
(Gu et al, 2007); (Rouwenhorst et al, 2000)). 

The interface of a warehouse for incoming and 
outgoing material flow are receiving and shipping. 
Storage deals with assignment of products to storage 
locations to utilize space as much as possible and 
facilitate efficient material handling (Gu et al, 2007). 
Order picking is the retrieval of items from their 
storage locations and can be performed manually or 
(partly) automated (Rouwenhorst et al, 2000). 

Storage is traditionally considered as the most 
important facet of logistics. Efficient inventory 
control, lower personnel cost, higher productivity, 
and convenient product identification are the 
outcomes of a proper storage system (Fontana and 
Cavalcante, 2014). Order fulfillment time, and 
thereby customer service level, can substantially be 
improved by even slight storage process 
enhancements (Fontana and Nepomuceno, 2017).  

The amount of stored products, the time and the 
rate of reorders, and the place of inventories in the 
warehouse are three basic and main issues that should 
be addressed in storage function (Gu et al, 2007). 
Classical inventory control fields of lot sizing and 
staggering deal with the first two topics that are out 
of the scope of this paper. 

The storage location assignment problem (SLAP) 
deals with how to put the stock keeping units (SKUs) 
away in a warehouse to optimize a performance 
measure (Kovács, 2011). Customers ask for more 
diverse products which cause warehouses to take on 
larger product assortment and this situation 
accordingly leads to a more complex storage location 
assignment problem (Choy et al, 2017). Storage 
location assignment influences almost all key 
warehouse performance indicators including order-
picking time and cost, productivity, shipping and 
inventory accuracy, and storage density (Frazelle, 
2002). The most important performance measures in 
a warehouse are generally related to the time or effort 
required for order picking (Kovács, 2011). Picking 
performance is directly affected by storage process 
and, therefore, it is tried to consider this interaction in 
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the design stage (Davarzani and Norman, 2015). 
Roodbergen and de Koster (2001) have presented 
four approaches to reduce travel time or distance for 
order picking activity: (1) determining good order 
picking routes; (2) zoning the warehouse; (3) 
assigning products to the right storage locations; (4) 
picking orders in batches. The third approach, storage 
assignment of SKUs, is more influential on the 
effectiveness of order picking than any of the other 
three approaches and a well-designed storage 
assignment approach could substantially decrease the 
travel distance or time of order picking (Chiang et al, 
2014).  Higher material handling costs and lower 
space utilization are the outcomes of unsystematic 
assignment of SKUs to storage locations (Choy et al, 
2017). 

In the next section, we introduce, classify and 
discuss different storage policies and various existing 
methodologies of CBSLAP in the literature are 
presented. Section 3 is about configuration of classes 
and finally we conclude the paper with presenting the 
identified research gaps and future research 
directions.. 

2 STORAGE POLICIES 

Products can be assigned to storage locations either 
arbitrarily or based on certain criteria. The first option 
is often referred to as “random policy”; we will refer 
to it as the “haphazard policy”. The second option is 
referred to as “dedicated storage”. Haphazard storage 
assigns SKUs to locations chaotically over planning 
horizon while with the dedicated storage the location 
are kept for specific products in a warehouse. These 
two policies are the extremes of a spectrum of policies 
(Malmborg, 1998). In between of these extreme 
policies of haphazard and dedicated storage, is class-
based storage policy. Conversely, haphazard and 
dedicated storage can be seen as extreme cases of the 
class-based storage policy: haphazard storage 
considers a single class and dedicated storage 
considers one class for each product. 

As a general comparison, dedicated storage 
locates compact and high-demanded items near the 
input/output (I/O) point, thus is more material 
handling friendly in comparison to haphazard policy. 
On the other hand, it needs more storage space to 
accommodate the maximum inventory levels of each 
product in their predetermined locations. Class-based 
storage is a compromised policy that tries to combine 
the advantages of both policies (Gu et al, 2007). A 
detailed explanation of each policy will follow. 

Since haphazard and class-based policy permit 
different SKUs to be put away in the same location 
successively, they are also called shared storage 
policies, (see figure 1) ((van den Berg and Zijm, 
1999); (Kulturel et al, 1999)). 

 

Figure 1: Classification of storage policies. 

2.1 Haphazard Storage 

The haphazard policy is a simple procedure and the 
only information that is needed to implement this 
policy is if the storage locations are available or not. 
The most common haphazard policies consist of 
random location assignment, closest open location, 
farthest open location and longest open location, (see 
figure 1), (Gu et al, 2007). 

In random assignment, the SKUs are assigned to 
empty location considering probability. If the 
replenishers put away the SKUs however they are 
convenient, the result is probably the so called closest 
open location storage. They normally put the items in 
the first vacant locations they come across, which 
eventually leads to a warehouse with full locations 
close to I/O point and more spots farther away (de 
Koster et al, 2007). Hausman et al (1976) explain if 
the SKUs are transported in full pallets, closest open 
location storage and random storage result in the 
same performance. Farthest open location policy 
allocates the most remote free positions from the I/O 
point to SKUs. If the locations are assigned to SKUs 
based on the time they have not been occupied, then 
it is the longest open location policy. 

Haphazard storage is a popular policy in practice 
due to its simplicity and advantages including space 
utilization, simple implementation, immunity to 
demand and assortment fluctuations, and uniform 
usage of aisles that leads to lower congestion. 
However, since SKUs do not have predetermined 
locations a tracking system is required that may cause 
difficult and confusing positioning. Moreover, in this 
class of policies, the lack of a systemic view 
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eventually declines the global warehouse 
performance because of not considering consecutive 
processes and not utilizing product information 
((Chiang et al, 2011); (Quintanilla et al, 2015)). 

2.2 Dedicated Storage 

In dedicated storage polices a storage location is 
allocated and reserved for SKUs over the planning 
horizon. This allocation is based on a suitable 
criterion. Kallina and Lynn (1976) present four major 
determinants for this: compatibility, 
complementarity, popularity and space. Compatible 
items can be kept nearby one another without taking 
risk of contamination, infection, corrosion, or other 
damages, and hence incompatible items should not be 
stored closely. Complementary refers to those 
products that are often concurrently ordered together 
and it may be beneficial to keep them in adjacent 
locations. Popular items are those that have a higher 
demand and if they are stored in locations closer to 
I/O point, the total travelled distance reduces since 
popular items are the greatest contributor to this 
distance. Finally, it is better to allocate the locations 
near I/O point to the less bulky items. 
The most common criteria in the literature, which 
have also been illustrated in figure 1, are explained as 
follows. 

2.2.1 Part Number 

Assigning SKUs based on their part number is 
probably the earliest storage policy. Some researchers 
(e.g. (Brynzér and Johansson, 1996); (Fontana and 
Nepomuceno, 2017)) have already mentioned part 
number as a criterion for dedicated policy. Back in the 
years, without having an information system to track 
the items, dedicated storage based on the part 
numbers was helping the storekeepers to find the 
position of the SKUs by following the sequence of the 
part numbers. Afterwards, when IT solutions became 
widespread, cheap and accessible, the application of 
part number as a criterion for dedicated policy 
became obsolete and old-fashioned. 

2.2.2 Turnover 

One of the most popular criterion for dedicated 
storage assignment is based on the turnover or 
demand of the products. With this criterion, the most 
desired products are placed to the most accessible 
locations which are usually the ones close to I/O 
point. Remote locations are assigned to slow-movers 
(de Koster et al, 2007). One of the problem with this 
policy is that product turnover rate and the warehouse 

product portfolio always fluctuate causing violating  
turnover-based assignment of locations that 
eventually demands relocations of SKUs to keep the 
assignment principle and its advantages (Roodbergen 
and Vis, 2009). In the literature, the turnover-based 
storage (also known as full-turnover or volume-
based) often represents the dedicated policy 

2.2.3 Cube-per-order 

One of the first dedicated storage algorithm is the 
cube-per-order index (COI) which was proposed by 
Heskett (1963). The COI is defined as the ratio of 
maximum allotted space to the number of 
storage/retrieval operations per unit time. The 
algorithm places the products with lower COI to more 
convenient locations and as COI increases the SKUs 
are located in more distant spots farther from I/O 
point (Cormier and Gunn, 1992). Although the COI 
algorithm was initially conceived as a heuristic, 
several authors later showed that it yields an optimal 
solution in certain specific environments. 

It is worth to mention when single-command, i.e. 
either a single storage or a single retrieval in each 
cycle happens, is prevalent, then COI is an excellent 
candidate. However, Schuur (2015) shows that there 
is no performance guarantee when a single-command 
storage strategy is implemented for a multi-command 
situation, that is, storage and picking of several loads 
in one cycle. In particular, the worst-case behavior of 
the COI strategy is infinitely bad. 

2.2.4 Duration-of-Stay 

Even though it was first introduced by Goetschalckx 
and Ratliff (1990) as a shared storage policy, we 
classify Duration of Stay (DOS) policy as a dedicated 
one, because based on our definition it is a criterion 
which an items is assigned to a location. With this 
policy, in a system where the input and output rate are 
equivalent, products units, upon their arrivals, get a 
better location if they stay shorter in the warehouse. 
In other words, the shorter the DOS of units of 
products, the closer the location to the I/O point they 
are placed. The information of incoming/outgoing of 
all units of a specific must be available to apply DOS 
procedure while the only required information for 
turnover policy is the turnover rate at product level 
(Pohl et al, 2011). This is a crucial consideration as 
DOS approach needs the most data in comparison to 
other policies for storage location assignment 
(Goetschalckx and Ratliff, 1990). Kulturel et al 
(1999) simulated the performance of turnover-based 
and DOS-based storage and it turned out that the 
former had better performance where the reasons may 
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stem from the barely existing assumptions of the DOS 
model in real situations which are more like a pure 
fantasy in warehouse contexts ((Gu et al, 2007); 
(Goetschalckx and Ratliff, 1990)). 

2.2.5 Correlation 

Correlated storage (or family-grouping) considers 
products complementary where stores similar 
products close to each other in the warehouse. This 
strategy requires a suitable index to determine, or at 
least estimate, the correlation among items of the 
warehouse assortment. The lack of accurate data to 
calculate this index confines correlated storage 
application. Dependent demands of different products 
are easily recognized by the bill of material (BOM) in 
production environments. However, these 
interrelations are more complex to utilize in 
distribution warehouses. These changing and hard to 
predict relationships emanate partially from clients 
purchase preferences and patterns which can be 
derived from different resources such as catalogs, 
promotional plans, market surveys and similar 
information (Sadiq et al, 1996). Recently the 
advances in the field of big data, data analytics and 
data mining facilitate identification of correlated 
products. 

 
Dedicated storage policies have the lowest space 

utilization in comparison to other policies for this 
they allot space for all items such that to be able to 
accommodate the maximum level of inventory while 
most of the time the inventories are not at their 
maximum level and even stock-outs may happen (de 
Koster et al, 2007).  

In addition, contrary to haphazard policies which 
utilize the picking aisles evenly, the picking activities 
in the COI-based and turnover-based storage policies 
concentrate on the regions where items with low COI 
and high turnover are located. For one order picker 
system, clearly congestion is not an issue. This is also 
true for small warehouses as well as large warehouses 
divided into zones with one order picker in each zone 
(Caron and Perego, 1998). However, in those 
environments where several order pickers work 
simultaneously the situation is different and more 
pickers does not essentially leads to higher 
throughput. This issue is more severe in storage 
systems where turnover-based approach 
implemented, that is, the more the number of workers 
the higher the productivity reduction. This is a main 
incapability in this class of storage policies which is 
more troublesome where demand seasonality is 
present as well (Ruben and Jacobs, 1999).    

Finally, although dedicated storage yields the 
minimum travel time, it is not practically popular as 
its implementation is not simple thus is used as a 
performance benchmark to evaluate other storage 
policies. Even some authors (e.g., (Rosenblatt and 
Eynan, 1989)) view its implementation as 
“practically impossible”. A reason is that abundant 
information is a prerequisite for a high performance 
from the policy. Accurate data, continuous 
supervision and capability to cope with ceaseless 
changes are requirements of a successful dedicated 
storage which are all difficult to gain and accomplish 
in many warehouses ((Tompkins et al, 2010); (Rao 
and Adil, 2013)). 

2.3 Class-based Storage 

Class-based storage is a compromised policy that 
classifies SKUs into product classes, based on an 
appropriate criteria such as volume or usage rate. The 
SLAP now is the problem of assignment of SKUs to 
a product class and then a class to a storage region in 
the warehouse. Items are positioned in their class 
following a simple haphazard rule, e.g. random or 
nearest open location. Haphazard policy is actually 
the class-based policy with one class and if each 
product has its own class, then it is dedicated policy 
(Gu et al, 2007). Class-based storage with three 
classes often is referred to as ABC storage 
(Roodbergen and de Koster, 2009). Class-based 
storage is popular among practitioners due to its great 
capabilities such as simple implementation, 
manageable maintenance and ability to cope with 
product mix and demand variations (Le-Duc and de 
Koster, 2005). No need for full sorted list of SKUs 
and more convenient administration are the reasons 
of easier implementation of class-based storage in 
comparison to dedicated storage. Class-based storage 
also outperforms haphazard storage in terms of travel 
time that is comparable to that of dedicated storage as 
well (Petersen and Aase, 2004). 

The general belief, among the warehouse 
community, is that dedicated storage yields lower 
travel distances than class-based storage. Petersen  
and Aase(2004) demonstrate that a turnover-based 
dedicated policy performs better than class-based 
policy with three classes but this improvement is less 
than 1% that even this may not be true because 
haphazard allocation of SKUs in the classes causes 
lower storage area and consequently shorter order 
picking time (Muppani and Adil , 2008a). Travel time 
of class-based policy, in traditional research, is 
considered at its best to approach to that of turnover-
based policy. However, Guo and de Koster (2015) 
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show that the average one way travel distance of the 
turnover-based storage is not a lower bound in the 
warehouse. Space sharing is the answer of this 
contradiction; since SKUs share the warehouse space 
in haphazard storage hence less space is required 
(almost two third) in comparison with turnover-based 
policy that subsequently influences the average travel 
time. Furthermore, Muppani and Adil (2008b) 
observed that where a system suffers from high 
inventory fluctuations of SKUs, class-based solutions 
perform better than dedicated approach.  

The strength of class-based policy is in taking 
advantage of the logic of dedicated storage, while 
avoiding the exhaustive chores alongside (Petersen 
and Aase, 2004). For this, Class-based policy classify 
products based on some criteria, and once all products 
have their class being determined, neglect the criteria 
for the period of planning horizon to exploit the 
simplicity and convenience of haphazard storage 
policy. Most previous studies used turnover rate as 
the basis to classify products for storage assignment 
(Chiang et al, 2014) but all other criteria which were 
explained for dedicated storage may be applied for 
this purpose. This is the reason why these criteria 
have been connected to the class-based box with a 
dashed line in figure 1. 

3 CONFIGURATION OF 
CLASSES 

The performance of a warehouse is highly affected by 
its layout (configuration), the way SKUs are placed in 
and picked from locations and also the position of I/O 
points. Several authors studied configuration of 
classes in a warehouse. A surprising result in this field 
is that the optimal configuration for a warehouse with 
a specific capacity is independent of the storage 
policy. This fact makes the design of storage system 
easier since the designers do not have to worry about 
which policy is or will be put into practice. They just 
need to optimize the configuration considering a 
simple (e.g. haphazard) policy, whatever the result is, 
the storage shape is optimal for other policies such as 
turnover-based or class-based storage (Zaerpour et al 
2013) 

3.1 Class Formation 

Rosenblatt and Eynan (1989) developed a one-
dimensional search procedure to determine optimal 
boundaries for class-based policy. They show that 
using a relatively small number of classes can result 

,in average, travel times which approach travel times 
obtained for the turnover-based assignment. Some 
authors have already suggested some numbers for 
class formation. For instance, Rao and Adil (2013) 
claim that maximum of three classes is sufficient to 
get a major extent of the benefit of turnover policies 
and Guo and de Koster (2015) argue a class-based 
policy with a small number of classes, no more than 
5, is optimal. 
Although conventional research (e.g., (Eynan and 
Rosenblatt, 1994), (Rosenblatt and Eynan, 1989)) 
show that there is inverse relation between picking 
time and the number of classes (figure 2), warehouse 
managers limit the number of classes to a small 
number. Yu et al (2015) demonstrate that the travel 
 

 

Figure 2: Inverse relation between picking time and the 
number of classes (Yu et al, 2015). 

time function has a different shape (figure 2) and, 
contrary to previous studies, there is an optimum for 
the number of classes. Another main result of their 
study is the insensitivity of travel time function to the 
number of classes in a wide range around the optimal 
number of classes which is something between 3 to 8. 
This is a good news for the warehouse managers since 
this gives them more freedom in implementing class-
based policy and they can also take into account their 
practical constraints. 

3.2 Implementation of Classes 

Hausman et al (1976) consider the problem of finding 
class regions for the class-based storage policy. The 
authors suggest L-shaped (figure 3(a)) class regions. 
This shape is optimal for Chebyshev travel times, if 
only single-command cycles are present. They 
analytically determine optimal class sizes for two 
classes in a square-in-time rack, such that the mean 
single-command travel time is minimized. Graves et 
al (1977) observe that L-shaped regions are not 
necessarily optimal when dual-commands occur. 
Petersen and Schmenner (1999) present four  
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Figure 3: Implementation of classes. 

variations for turnover-based storage: diagonal, 
within-aisle, across-aisle, and perimeter storage 
which can also be considered as different variations 
for class-based policy, (figure 3(b)-(e)). They show 
within-aisle storage with a middle I/O point is the best 
storage policy for all pick lists. The middle I/O point 
is better than the corner I/O point. However, this 
difference becomes almost nonexistent for large pick 
lists. 

The within-aisle strategy has also later been 
shown to have a higher performance than other 
storage implementation strategies regardless of 
thenumber of storage classes. ((Petersen et al, 2004); 
(van Gils et al, 2017)). 

4 CONCLUSION AND 
FUTUREESEARCH 
DIRECTIONS 

This paper draws a framework for the class-based 
storage location assignment problem in the ware-
house storage process. According to the examined 
studies, a number of conclusions are addressed. 

First of all, we would like to draw the attention of 
researchers to integrated warehouse operations. The 
importance of integrated warehouse problems has 
already been highlighted by some other authors (e.g., 
(Roodbergen and Vis, 2009); (Cergibozan and Tasan, 
2016); (van Gils et al, 2017)). However, the focus of 
the research community has been on combination of 
the storage, batching and routing. The significant 
statistical correlation of storage, batching and routing 
has already been tested and confirmed. 

Second, the potential advantage of integrated 
models is clear but they have not still been validated 
in complex industrial contexts. This gap is not only 
limited to integrated models but also incorporate 
studies which just deal with SLAP in its own. The few 
published industrial case studies ((van Oudheusden et 
al, 1988); (Zeng et al, 2002); (Dekker et al, 2004)) 
accentuate the lack of balance between papers with an 
assumption-restricted modeling approach and those 
based on the complex reality of warehouses. This gap 
has been also underscored by other studies ((Gu et al, 

2007); (Davarzani and Norman, 2015)) in warehouse 
literature and it shows the limited cross fertilization 
between research community and practitioners. A 
good liaison establishment between academia and 
industry is a win-win situation. On the one hand, it 
helps researchers in better understanding the reality to 
identify possible future research challenges from the 
industrial point of view. On the other hand, research 
results with a validity check on real-case 
environments will have a more substantial impact on 
practice. Therefore, practical case studies and 
research, explaining applied or validated method-
logies which illustrate the potential advantages of 
implementing scientific literature results to real 
problems, or on discovering the unknown challenges 
which hinder their successful implementation is 
another direction for future contribution. 

Some researchers introduced other measures for 
SLAP along with economics measures. Future 
research should focus on other performance measures 
as well. For instance, an important subject in progress 
is the sustainability issues in logistics. Sustainable 
operations have been widely studied in past years, but 
the inclusion of metrics in warehouse management 
have still place for examination (Staudt et al, 2015). 
Although energy efficiency and environmental 
performance have gained increasing attention during 
past couple of decades in operations management 
literature, majority of the reviewed literature focused 
on economic efficiency of SLAP. Social awareness 
and governmental regulations about global warming 
and environmental issues spotlight this topic. Another 
instance is the inclusion of human factors into SLAP 
models. Reminding that majority of operating 
warehouses are still manual systems, put more 
emphasize on the importance of further research in 
this field. 

Finally, the early focus of warehouse 
management research was on process improvement 
which essentially does not need IT tools. However, 
the complexity of warehouse operations has increased 
in recent years and more complicated algorithm and 
models appear in warehouse management 
publications (Staudt et al, 2015). Application of 
information systems in warehouse management is a 
growing tendency and the related new technologies 

Class-based Storage Location Assignment: An Overview of the Literature

395



will certainly be used for decision making in the 
future. We believe there is big room to study 
opportunities and challenges of employing more 
advanced technologies and initiatives such as 
augmented reality, internet of things, cloud 
technologies, cyber physical systems and Industry 4.0 
not only in SLAP but also in other warehouse 
processes in general. 
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